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Zusammenfassung

In der theoretischen Informatik, unterscheiden wir zwischen effizient lösbaren und
rechnerisch schweren Problemen. Aber auch schwere Probleme müssen gelöst werden
und es gibt verschiedene Methoden, um mit ihnen umzugehen. Eine dieser Metho-
den besteht darin, die Eingabe auf bestimmte Instanzklassen zu beschränken, die
algorithmisch besser handhabbar sind. Bei graphentheoretischen Problemen, ent-
spricht dies dem Ansatz, spezielle Graphenklassen zu betrachten, wie zum Beispiel
planare Graphen oder Graphen, die auf einer gegebenen festen Fläche einbettbar
sind. Eine weitere Verallgemeinerung solcher Graphen führt zu Klassen von Gra-
phen, die unter Minorenbildung abgeschlossen sind. Minorenabgeschlossene Klassen
von Graphen haben in den letzten Jahrzehnten an enormer Bedeutung gewonnen,
nicht zuletzt wegen der Graphenminorentheorie von Robertson und Seymour. In
dieser Dissertation betrachten wir verschiedene Algorithmen und Komplexitätstheo-
retische Resultate, die für minorenabgeschlossene Klassen gelten oder eng mit der
Minorentheorie verwandt sind. Die Arbeit besteht aus drei Teilen.
Im ersten Teil, betrachten wir das Steinerbaumproblem in eingebetteten Graphen.

Dies ist eines der bedeutendsten Probleme in der Informatik, sowohl in der Theorie
als auch in der Praxis, und diente stets als eines der Standardprobleme, auf dem neue
algorithmische Ideen entwickelt und untersucht worden sind. Vor kurzem wurde ein
polynomielles Approximationsschema (PTAS) für dieses Problem in planaren Gra-
phen von Borradaile, Klein und Mathieu entwickelt (2007,2009). Wir (i) zeigen, wie
dieser PTAS von planaren Graphen auf Graphen mit beschränktem Genus erweitert
werden kann; (ii) bieten eine Implementierung und Engineering des Algorithmus an
und zeigen, dass es sogar auf großen Instanzen erstaunlich gut funktioniert; und (iii)
zeigen, wie dieser Algorithmus angewendet werden kann, um einen PTAS für das
geometrische Steinerbaumproblem mit Hindernissen in der Ebene zu erhalten.
Im zweiten Teil der Arbeit, betrachten wir Algorithmen auf generellen echten

minorenabgeschlossenen Klassen von Graphen. Zum einen, entwickeln wir einen
kürzeste Wege Algorithmus mit linearer Laufzeit auf diesen Klassen, in dem wir
einen entsprechenden Algorithmus für planare Graphen von Henzinger, Klein, Rao
und Subramanian (1994,1997) erweitern; daraus entwickeln wir ebenfalls eine 2-
Approximation für das Steinerbaumproblemen in Linearzeit auf diesen Klassen. Zum
anderen, zeigen wir, wie man eine große Anzahl von Approximationsschemata und
parametrischen Algorithmen auf solchen Klassen wesentlich beschleunigen kann.
Im letzten Teil, betrachten wir die Komplexität des Model-Checking Problems der

monadischen Logik zweiter Stufe (MSO) mit Quantifizierung über Kanten: gegeben
eine feste MSO-Formel und ein Graph, möchten wir überprüfen, ob die Formel in
dem Graphen gilt. Ein sehr bekannter Satz von Courcelle (1990) besagt, dass die-
ses Problem auf Graphenklassen mit beschränkter Baumweite effizient lösbar ist.
Wir präsentieren erste untere Schranken für dieses Problem, in dem Sinne, dass
wir zeigen, dass es Klassen von Graphen gibt, die unbeschränkte, aber sehr kleine,
Baumweite haben und in denen das Model-Checking Problem von MSO nicht effizi-
ent lösbar ist (unter angemessenen Voraussetzungen aus der Komplexitätstheorie).
Um dies zu erreichen, entwickeln wir mehrere Algorithmen, um einige maßgebliche
Strukturen aus der Graphenstrukturen- und minorentheorie effizient zu berechnen.
Unter anderem zeigen wir, wie Brambles, Gitter-ähnliche Minoren und bestimmte
Baumgeordnete Gewebe in generellen Graphen mit ausreichend hoher Baumweite
effizient konstruiert werden können.



Abstract

Theoretical computer science provides us with tools and techniques to classify
problems as efficiently solvable or computationally hard. But even hard problems
have to be solved and there exist various ways to attack them. One way is to
restrict the input to certain classes that are computationally more feasible. In the
case of graph-theoretic problems, this is akin to considering the problem on special
graph classes. One of the most important such classes is the class of planar graphs
or more generally, graphs that are embedded on a fixed surface; an even further
generalization is to consider classes of graphs that are closed under taking minors.
Such classes of graphs have been extensively studied in the past three decades,
especially due to the deep graph minor theory of Robertson and Seymour. In this
thesis, we consider various algorithms on or related to such graph classes and the
theory of graph minors. The thesis consists of three parts:
In the first part, we consider the Steiner tree problem in embedded graphs. The

Steiner tree problem is one of the most well-studied problems in computer science
and a testbed for many new algorithmic ideas. Very recently, a polynomial-time
approximation scheme (PTAS) for Steiner tree in planar graphs has been discovered
by Borradaile, Klein, and Mathieu (2007,2009). We present an extension, engineer-
ing, and application of this algorithm: (i) we show how to generalize the technique
of the PTAS from planar graphs to graphs of bounded genus and further subset
connectivity problems; (ii) we implemented and engineered this algorithm from a
practical point of view and show that it works surprisingly well, even on very large
instances; and (iii) we apply this algorithm to obtain an efficient PTAS for the geo-
metric Steiner tree problem among obstacles in the plane, which had been an open
problem for a long time.
In the second part of the thesis, we consider further algorithms on minor-closed

graph classes. We present a linear-time shortest-paths algorithm by generalizing
the algorithm of Henzinger, Klein, Rao, and Subramanian (1994,1997) from planar
graphs to all proper minor-closed graph classes; and we show how to obtain faster
approximation schemes and parameterized algorithms for a large number of problems
on these graph classes.
Finally, in the last part, we study the complexity of checking if a graph satisfies

a formula of monadic second-order logic (MSO) with edge quantification when pa-
rameterized by the length of the formula. A famous theorem of Courcelle (1990)
shows that this problem is efficiently solvable, that is, fixed-parameter tractable,
on graphs of bounded treewidth. We provide first lower bounds on classes of col-
ored graphs and subgraph-closed classes by showing that if the treewidth of such
a class is not polylogarithmically bounded, the model-checking problem of MSO is
not fixed-parameter tractable on the class (modulo some complexity assumptions).
To achieve this, we develop several algorithmic tools using recent graph structure
and graph minor theory, which are interesting in their own right. Most notably,
we provide polynomial-time algorithms to construct brambles, grid-like minors, and
tree-ordered webs in general graphs of sufficiently high treewidth.
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Introduction

In theoretical computer science, we distinguish between problems that are efficiently
solvable and computationally hard ones. The former are defined as the set of problems
that admit a polynomial-time algorithm, usually referred to as P, and the latter is the
class of NP-hard problems. It turns out that unless P = NP, an abundant number of
important problems are computationally hard – but this does not obviate the need of
solving them somehow; indeed, there exist various ways to attack such problems and
one way is to restrict the input to certain classes that are computationally more feasible:
oftentimes, a problem is hard in its full generality but turns out to be much better
tractable on instances that are relevant in a certain context. In this thesis, we study the
complexity of problems on restricted input classes. In some cases, we provide (more)
efficient algorithms for the considered class, and in other cases, show the hardness of
problems even on the constrained input.
One way to restrict the input is to consider a given problem together with a parameter.

Sometimes a problem comes with a natural parameter – the simplest one being the size
of the solution – such that if the parameter is small, the problem is tractable. This point
of view leads to the theory of parameterized complexity [DF99, FG06] and we will often
resort to this paradigm in this work.
Another common method to attack hard problems is the development of approximation

algorithms: an algorithm that delivers a solution that is guaranteed to be at most a
certain factor worse than the optimum. Ideally, we would like to have arbitrarily close
approximations, that is, an algorithm that, for a given problem instance and ε > 0, finds
a solution that is at most by a factor of (1+ε) away from optimum. When dealing with a
hard problem, the running time of such an algorithm must deteriorate with smaller ε and
usually is exponential in ε−1. We call such an algorithm a polynomial-time approximation
scheme (PTAS) if its running time is polynomial for every fixed ε. Unfortunately, it turns
out that lots of problems do not even admit a PTAS unless P = NP. Hence, we are often
forced to combine these ideas: try to obtain an approximation scheme on restricted
input. Indeed, a large portion of this thesis deals exactly with this matter.
A considerable number of computational problems are defined in or can be translated

to the language of graph theory. In the case of graph theoretic-problems, restricting
the input is akin to considering the problem on special graph classes. One of the most
important of such classes is the class of planar graphs, graphs that can be drawn in the
plane such that their edges do not cross. More generally, one can consider graphs that
are embedded on a fixed surface, such as the torus or the Klein bottle. An even further
generalization is to consider classes of graphs that are closed under taking minors, that is,
closed under vertex and edge deletion and edge contraction. Such classes of graphs have
been extensively studied in the past three decades, especially due to the deep graph
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Introduction

minor theory of Robertson and Seymour [RS04]. Besides proving some of the most
seminal results in this area, Robertson and Seymour develop a vast toolbox of ideas and
concepts to exploit the structure of graphs. In this work, we consider various algorithms
on or related to such graph classes and the theory of graph minors. The thesis consists
of the three parts outlined below.

Part I: Steiner Tree in Embedded Graphs:
Extension, Engineering, and Application of a PTAS

The Steiner tree problem is one of the most fundamental problems in computer science
and serves as a testbed for many new algorithmic ideas - both in theory and practice:
given a graph and a subset of its vertices, called terminals, we wish to find the shortest
tree in the graph that interconnects the terminals. The applications reach from all
kinds of network design, perhaps most importantly VLSI design, to phylogenetic trees
in bioinformatics [FG82, HRW92, KR95, CKM+98, CD01]. The problem is well-known
to be NP-hard [Kar72], even on planar graphs [GJ77], and does not even admit a PTAS
in general graphs [BP89] unless P = NP. However, recently a PTAS for this problem on
planar graphs has been discovered by Borradaile, Klein, and Mathieu [BKM09]. After
a thorough introduction to the Steiner tree problem and its PTAS on planar graphs
in Chapter 1, we have three chapters that deal with this PTAS, each from a different
point of view. Chapter 2 is based on joint work with Glencora Borradaile and Erik
Demaine [BDT09]; Chapters 3 and 4 are based on joint work with Matthias Müller-
Hannemann [TM09a, MT07, MT10].
In Chapter 2, we present an extension of the work of [BKM09] by developing the first

PTAS for Steiner tree in edge-weighted graphs of bounded genus. Our algorithm runs
in time O(n logn) for graphs embedded on both orientable and nonorientable surfaces
with a constant that is singly exponential in the genus and the inverse of the desired
accuracy. This work generalizes the PTAS frameworks of [BKM09, Kle06] from planar
graphs to bounded-genus graphs, also in the sense that any future problems shown to
admit the required structure theorem for planar graphs will similarly extend to bounded-
genus graphs. In particular, this gives rise to PTASes in bounded-genus graphs for the
subset traveling salesman problem [BDT09], {0, 1, 2}-edge-connected survivable network
problem [BK08b], and also for the Steiner forest problem [BHM10].
In Chapter 3, we present the first attempt on implementing and engineering a highly

theoretical polynomial-time approximation scheme with huge hidden constants, namely,
the aforementioned PTAS for Steiner tree in planar graphs by Borradaile, Klein, and
Mathieu. Whereas this result, and several other PTAS results of the recent years, are of
high theoretical importance, no practical applications or even implementation attempts
have been known to date due to the extremely large constants that are involved in
them. We describe techniques on how to circumvent the challenges in implementing
such a scheme. With today’s limitations on processing power and space, we still have
to sacrifice approximation guarantees for improved running times by choosing some
parameters empirically. But our experiments show that with our choice of parameters,
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we do get the desired approximation ratios, suggesting that a much tighter analysis
might be possible.
Our computational experiments with benchmark instances from SteinLib and large

artificial instances well exceeded our own expectations. We demonstrate that we are
able to handle instances with up to a million nodes and several hundreds of terminals in
1.5 hours on a standard PC. On the rectilinear preprocessed instances from SteinLib, we
observe a monotonous improvement for smaller values of ε, with an average gap below 1%
for ε = 0.1. We compare our implementation against the well-known batched 1-Steiner
heuristic and observe that on very large instances, we are able to produce comparable
solutions much faster. We also present a thorough experimental evaluation of the influ-
ence of the various parameters of the PTAS and thus obtain a better understanding of
their empirical effects.
Finally, in Chapter 4, we present a PTAS for the geometric Steiner tree problem with

polygonal obstacles in the plane with running time O(n log2 n), where n denotes the
number of terminals plus obstacle vertices. To this end, we show how a planar spanner
of size O(n logn) can be constructed that contains a (1+ε)-approximation of the optimal
tree. Then one can find an approximately optimal Steiner tree in the spanner using the
PTAS for Steiner tree in planar graphs [BKM09]. We prove this result for the Euclidean
metric and also for all uniform orientation metrics, i.e. particularly the rectilinear and
octilinear metrics.

Part II: Algorithms on Minor-Closed Graph Classes

In Chapter 5, we generalize the linear-time shortest-paths algorithm for planar graphs
with nonnegative edge-weights of Henzinger, Klein, Rao, and Subramanian [HKRS97]
to work for any proper minor-closed class of graphs. We argue that their algorithm
cannot be adapted by standard methods to all proper minor-closed classes. By using
recent deep results in graph minor theory by Reed and Wood [RW09], we show how
to construct an appropriate recursive division in linear time for any graph excluding a
fixed minor and how to transform the graph and its division afterwards, so that it has
maximum degree three. Based on such a division, the original framework of Henzinger
et al. can be applied. Afterwards, we show that using this algorithm, one can implement
Mehlhorn’s 2-approximation algorithm for the Steiner tree problem [Meh88] in linear
time on these graph classes. This chapter is based on joint work with Matthias Müller-
Hannemann [TM08, TM09b].
In Chapter 6, we improve the running time of the general algorithmic technique known

as Baker’s approach [Bak94] on H-minor-free graphs from O(nf(|H|)) to O(f(|H|)nO(1))
showing that it is fixed-parameter tractable (FPT) with respect to the parameter |H|.
The numerous applications include, for example, a 2-approximation for graph coloring,
and PTASes for various problems such as dominating set and maximum cut, where we
obtain similar improvements. The main tool that we use is an algorithmic decomposition
theorem for H-minor-free graphs by Dawar, Grohe, and Kreutzer [DGK07] that can be
applied in FPT-time with respect to parameter |H|.

3



Introduction

On classes of odd-minor-free graphs, which have gained significant attention in recent
years, we obtain a similar acceleration for computing a variant of the structural decom-
position given by Demaine, Hajiaghayi, and Kawarabayashi [DHK10] and a Baker-style
decomposition into two graphs of bounded treewidth. We use these algorithms to derive
faster 2-approximations; furthermore, we present the first PTASes and subexponential
FPT-algorithms for independent set and vertex cover on these graph classes using a novel
dynamic programming technique.
We also introduce a technique to derive (nearly) subexponential parameterized al-

gorithms on H-minor-free graphs. We provide a uniform algorithm running in time
O(2OH(

√
k logn)nO(1)) = inf0<ε≤1O((1 + ε)k +nOH(1/ε)), where n is the size of the input

and k is the number of vertices or edges in the solution. Our technique applies, in par-
ticular, to problems such as the general problem of finding a (directed) subgraph with a
property, Steiner tree, (directed) longest path, and (connected/independent) dominating
set, on some or all proper minor-closed graph classes, many of which were previously
not even known to admit an algorithm with running time better than O(2knO(1)). We
obtain as a corollary that all problems with a minor-monotone subexponential kernel
and amenable to our technique can be solved in subexponential FPT-time on H-minor
free graphs.

Part III: Lower Bounds for the Complexity of
Monadic Second-Order Logic
In Chapter 7, we develop several algorithmic tools – on one hand, for a number of (well-
known) concepts from structural graph theory, and on the other hand, for some new
structures that we introduce in our work. While these algorithms stand in their own
right and are of independent interest, we will exploit them, in particular, to prove lower
bounds for the tractability of monadic second-order logic (MSO2) in Chapter 8. This
part of the thesis is based on joint work with Stephan Kreutzer [KT10a, KT10b].
Specifically, in Chapter 7, we develop polynomial-time algorithms to compute the

following structures:

(i) a bramble of the order of the square-root of the treewidth, up to logarithmic fac-
tors; brambles were introduced as the dual notion to treewidth and Grohe and
Marx [GM09] recently showed that for polynomial-sized brambles, the order of the
square-root of the treewidth is essentially the best we can hope for;

(ii) a k-web, a notion that we introduce based on the notion of k-meshes by Diestel,
Gurbunov, Jensen, and Thomassen [DGJT99]; whereas k-meshes are not known
to be constructable in polynomial time, we show that k-webs admit an efficient
algorithm and can in turn be used to construct brambles, grid-like minors, and
tree-ordered webs;

(iii) a grid-like minor of order polynomial in the treewidth; these structures were re-
cently introduced by Reed and Wood [RW08] as a replacement for grid minors;

4



(iv) a perfect bramble of order polynomial in the treewidth; a bramble with a particu-
larly simple structure that we introduce in this work and apply to obtain a meta
theorem to decide certain subgraph-closed parameters in general graphs; we hope
that this notion might have other interesting applications in the future;

(v) a (labeled) tree-ordered web of order polynomial in the treewidth; we define these
objects by combining the concepts of k-webs and grid-like minors and introducing
much more structure into it, so that it can be fully defined in MSO2 and in fact,
can be interpreted as a colored wall (or grid) in this logic; this will be the main
algorithmic tool to derive our result about the complexity of MSO2 in subgraph-
closed classes of graphs in the following chapter.

Courcelle’s famous theorem [Cou90] states that any property of graphs definable in
MSO2 can be decided in linear time on any class of graphs of bounded treewidth, or
in other words, MSO2-model checking is fixed-parameter tractable in linear time on
any such class of graphs. From a logical perspective, Courcelle’s theorem establishes a
sufficient condition, or an upper bound, for tractability of MSO2-model checking.
Whereas such upper bounds on the complexity of logics have received significant at-

tention in the literature, almost nothing is known about corresponding lower bounds. In
Chapter 8, we establish a strong lower bound for the complexity of monadic second-order
logic. In particular, under a suitable complexity assumption, we show that if

(i) C is a class of colored graphs which is closed under recolorings, or

(ii) C is any class of graphs which is closed under taking subgraphs,

and additionally, the treewidth of C is not bounded polylogarithmically (in fact, logc n for
some small c suffices), then the model checking problem of MSO2 is not fixed-parameter
tractable on C; and not even decidable in polynomial time if we allow the exponent of
the polynomial to depend on the length of the given fixed formula.
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1 Introduction to the Steiner Tree Problem
and Its PTAS on Planar Graphs

In this chapter, we first introduce the Steiner tree problem and some of its variants and
review some of the most important related literature. Afterwards, we briefly describe
the PTAS for Steiner tree in planar graphs by Borradaile, Klein, and Mathieu [BKM09]
as it builds the basis of the work we do in this part of the thesis.

1.1 The Steiner Tree Problem
We consider the following network design problem (see Figure 1.1):

Problem 1.1 (Steiner Tree). Given an edge-weighted graph G and a set of terminals
R ⊆ V (G), find a tree in G of minimum weight that includes all the terminals.

Figure 1.1: A graph with 3 blue terminals is given on the left; a Steiner tree with thick
red lines is indicated on the right.

Steiner Tree is one of the most fundamental problems in computer science and
serves as a testbed for many new algorithmic ideas – both in theory and in practice. It
is one of the 21 problems that were first shown to be NP-hard by Karp [Kar72]. Later,
Bern and Plassmann [BP89] showed that it is even APX-hard [BP89], i.e. does not ad-
mit a PTAS in general unless P = NP; in fact, it is already NP-hard to approximate
Steiner Tree beyond a factor of 1.01053 [CC02]. Up until very recently, the best
known approximation bound was 1.55 + ε as given by Robins and Zelikovsky [RZ00]; in
a forthcoming paper, Byrka et al. [BGRS10] have announced a randomized approxima-
tion algorithm with expected approximation ratio of 1.39 + ε. The problem is in FPT
when parameterized by the number of terminals, as originally shown by Dreyfus and
Wagner [DW72] and later improved by Erickson et al. [EMAFV87] and Bjorklund et
al. [BHKK07]. As described in the next section, there is a well-known 2-approximation
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algorithm for this problem [Cho78, Ple81] and Mehlhorn [Meh88] improved its running
time to O(m+ n logn). Recently [TM09b], we further improved this algorithm, obtain-
ing a linear running time on all proper minor-closed graph classes (which include planar
graphs), see Chapter 5.
In planar graphs, the Steiner tree problem is also NP-hard [GJ77]. Erickson et

al. [EMAFV87], Bern [Ber90], and Bern and Bienstock [BB91] showed that the problem
is in FPT when parameterized by the genus and the number of faces or layers in which
terminals appear. Very recently a PTAS has been presented by Borradaile, Klein, and
Mathieu [BKM09]. See Section 1.5 for further details of this algorithm.

1.1.1 Geometric Variants

Problem 1.2 (Esmt). Given a set of n terminals in the Euclidean plane, find the
shortest tree that interconnects the given terminals.

Figure 1.2: An example of Esmto with 3 terminals and an obstacle with 3 corners; a
solution is indicated on the right.

This problem is known as the Euclidean Steiner minimum tree (Esmt) problem. Note
that the solution to an Esmt instance is a tree that may well contain additional points of
the plane as vertices; in fact, this is what makes the problem difficult. In the rectilinear
version (Rsmt), we measure the length of edges in the Manhattan metric, i.e. the `1-
metric. Both variants are well known to be NP-hard [GJ77, GGJ77]. A PTAS was
presented by Arora [Aro98] and Mitchell [Mit99]. Rao and Smith [RS98] improved the
running time of Arora’s algorithm from O(n(1

ε logn)O(1/ε)) to O(2poly(1/ε)n + n logn)
and this is the best running time known so far. The rectilinear case can be reduced
to the planar graph version by using the so-called Hanan-grid [Han66, GC94], and the
Euclidean case can be reduced to planar graphs as shown in [MT10] (see Chapter 4); the
latter work actually shows that both variants can be reduced to planar graphs even in
the presence of obstacles and thereby admit a PTAS in this case, too; in these versions,
known as Esmto and Rsmto, we are additionally given a set of polygonal obstacles
whose interiors may not be crossed by the Steiner tree (see Figure 1.2).

10
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1.1.2 Practical Significance

The Steiner tree problem and its many variations are also of high practical relevance;
the applications reach from all kinds of network design to phylogenetic trees [FG82,
HRW92, KR95, CKM+98, CD01]. Especially the geometric case with obstacles is very
important in VLSI design since there are usually regions in the plane that may not be
crossed by wire [GC94, ZW99]. Also, it is often only allowed to route the tree along
a rectilinear or octilinear grid and so, Rsmto and similar variants are required [Tei02,
CCK+03, KMZ03, PWZ04, MS06]
Since Steiner Tree has to be solved in many industry applications, numerous im-

plementations exist that are able to solve this problem, often very well, in practice. The
most important exact algorithms are due to Zachariasen and Winter [ZW99] for geo-
metric instances, Koch and Martin [KM98] using integer linear programming techniques,
and Polzin and Daneshmand [PD01, PD02, PD06] with the strongest results for general
graphs. Also, many powerful heuristics exist, see, for example, [KR92, GRSZ94, PW02,
KMZ03].
We refer to the books of Hwang et al. [HRW92] and Prömel and Steger [PS02] for

further background on the Steiner tree problem.

1.2 A 2-Approximation Algorithm in O(n log n+m) time
Let G be a given graph with a terminal set R ⊆ V (G). The basic idea of the standard
2-approximation algorithm for Steiner Tree [Cho78, Ple81] is to consider the distance
network ND of the terminals: a complete graph that has one vertex for each terminal and
in which the weight of every edge equals the shortest-path distance of the corresponding
terminals in the input graph. Then a minimum spanning tree of the distance network
is a 2-approximate Steiner tree of R in G.
Mehlhorn [Meh88] suggested an efficient implementation of this idea by observing

that it is not necessary to construct the full distance network; instead, one can construct
a reduced distance network N?

D as follows. We first partition the graph into Voronoi
regions with respect to the set of terminals. Every vertex of the graph belongs to the
Voronoi region of its closest terminal (if a vertex happens to have the same distance to
more than one terminal, it should belong to the Voronoi region of the terminal with the
smallest index). Voronoi regions in graphs can be calculated easily using a shortest-paths
computation: add a super-source s0 to the graph and connect it to every terminal with
a directed zero-weight edge; find the shortest paths from s0 to every vertex and then
remove s0 from the resulting shortest-paths tree. The tree falls apart into |R| connected
components, each having a terminal as their root. These components correspond exactly
to the Voronoi regions of the terminals. Using Dĳkstra’s algorithm [Dĳ59], one obtains
a running time of O(n logn+m) for general graphs.
In the distance network N?

D, there exists an edge between two terminals u and v if
and only if there exists an edge between two vertices x and y in G, so that x belongs to
the Voronoi region of u and y belongs to the Voronoi region of v. The weight of such
an edge is the length of the shortest such paths connecting u and v. Once the Voronoi
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regions of G with respect to R are determined, N?
D can be constructed in linear time

using bucket sort.
After the distance network N?

D is determined, one can find its minimum spanning
tree and replace every edge with the corresponding shortest path in G. Mehlhorn shows
that the resulting graph is indeed a tree and its weight is at most (2 − 2

|R|) times the
weight of the minimum Steiner tree of R in G. The implementation he offers runs in
time O(n logn+m) for general graphs.

1.3 PTASes in Planar and Other Minor-Closed Graph Classes

Planar graphs constitute a very well-studied class of graphs in the literature. Even
though most NP-hard problems remain NP-hard for their planar instances [GJ77, Lic82],
they are often “easier” to handle; for example, many of them admit a PTAS. The research
in this area was initiated already in 1979 by Lipton and Tarjan’s planar separator theo-
rem [LT79, LT80], where a PTAS for Independent Set on planar graphs was presented.
An important milestone was Baker’s approach [Bak94] that provided PTASes for a va-
riety of problems, such as Vertex Cover, Independent Set, and Dominating Set
on planar graphs. This approach was generalized to apex-minor-free graphs through the
notion of bounded local treewidth by Eppstein [Epp00a] and to H-minor-free graphs by
Grohe [Gro03]. Demaine and Hajiaghayi [DH05a] unified and generalized some of these
results using the theory of bidimensionality. Still, for a number of problems PTASes
are only known up to the class of apex-minor-free graphs, since these are exactly the
minor-closed classes of graphs that have the bounded local treewidth property.
The traveling salesman problem (Tsp) - arguably one of the most prominent prob-

lems in computer science - was first shown to admit a PTAS on unweighted planar
graphs [GKP95], then on weighted planar graphs [AGK+98], weighted bounded-genus
graphs [DHM07], and very recently unweighted apex-minor-free graphs [DHK09]. Since
the Tsp requires a global connectivity measure, it can not be handled in the same way
as bidimensional or similar local problems. The question whether it admits a PTAS on
H-minor-free graphs is a very important open question in this area.
In [Kle08], Klein obtained a linear time approximation scheme for Tsp in weighted

planar graphs and hence substantially accelerated the result of [AGK+98]. In this work,
he established a framework for obtaining PTASes in planar graphs that we are going
to discuss in more detail in the next section. In [Kle06], Klein applied this framework
to present a PTAS for Subset Tsp in planar graphs – a variant, where we are given a
subset of the vertices of a planar graph and are asked for the shortest tour that visits this
subset. Finally, Borradaile et al. [BKM07a] managed to extend these ideas and obtain
a PTAS for Steiner Tree in planar graphs; shortly after, they improved the running
time of their algorithm [BKM07b, BKM09]. Recently, this PTAS was generalized from
planar graphs to bounded-genus graphs [BDT09] (see Chapter 2). Notice that almost
a decade passed from the time a PTAS for planar Tsp was discovered until one for
Steiner Tree was presented. The fact that in Steiner Tree we have to deal with a
subset of the vertices makes it apparently substantially harder to approach than Tsp.
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1.4 A Framework for PTASes in Planar Graphs

As mentioned above, in [Kle08], Klein proposed a framework to obtain a PTAS for
a problem in planar graphs. We briefly review (a slightly modified version of) this
framework in this section. In what follows, let Gin be the input graph and let OPT
denote the weight of an optimal solution to a considered minimization problem; we also
sometimes use the notation OPT(G,R) to indicate the value of the optimal solution of
a considered problem in a graph G on terminal set R.

1. Spanner Step The first step of the framework is to find a subgraph of the input
graph that (i) has weight at most αOPT, for a constant α; and (ii) still preserves
an approximately optimal solution. Such a subgraph is (somewhat imprecisely)
often called a spanner. Strictly speaking, a (1 + ε)-spanner of a graph G is a
spanning subgraph G′ of G such that distG′(u, v) ≤ (1 + ε) distG(u, v) for any two
vertices u, v ∈ V (G), i.e. a subgraph of G that approximately preserves distances.
However, for a problem such as Steiner Tree this is not sufficient; we need to
make sure that approximately optimal Steiner trees are preserved in the spanner.
Rao and Smith [RS98] first obtained such a structure for Euclidean Steiner trees
and called it a banyan. We use the general term spanner whenever no confusion
arises. So, let Gspan be the spanner obtained in this step from Gin.

2. Thinning Step In the second step, one finds a set of edges S ⊆ E(Gspan) of weight at
most O(εOPT) such that upon contracting S in Gspan, one obtains a graph Gthin
of bounded treewidth. In planar graphs, this can be achieved by applying Baker’s
decomposition [Bak94] to the dual of Gspan: perform breadth-first-search (BFS)
in the dual and, for a constant η, label the BFS-layers periodically by 0, . . . , η− 1.
Now, contracting the edges with any fixed label in the primal graph results in a
graph of bounded treewidth (recall that we identify the edges of the primal and
the dual of a planar graph). Hence, by picking η = O(αε ) and picking the label
that induces the smallest total weight, we can guarantee to find a set S with the
desired properties.

3. Dynamic Programming Step Since Gthin has bounded treewidth, we can usually
calculate an optimal solution in Gthin in polynomial time using standard dynamic
programming techniques (cf. [AP89, KS90]).

4. Lifting Step In the final step, we lift the solution of Gthin back to a solution of Gin
by uncontracting the edges of S and adding them to the solution. This adds only
an ε-fraction of OPT to the solution as the weight of S is bounded; furthermore,
we only lost another ε-fraction in the spanner step and hence, by choosing the
constants appropriately, we can guarantee that the final solution is near optimal.
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(a) (b) (c) (d)

Figure 1.3: (a) An input graph G with mortar graph MG given by bold edges; (b) the set
of bricks corresponding to MG; (c) the portal-connected graph, B+(MG, θ);
the portal edges are gray; (d) B+(MG, θ) with the bricks contracted, re-
sulting in the brick-contracted graph, B÷(MG, θ); the dark vertices are
brick vertices. These pictures are republished by courtesy of Glencora Bor-
radaile [BKM09].

1.5 A PTAS for Steiner Tree in Planar Graphs

The main challenge in applying the framework above to Steiner Tree is the first step,
i.e. obtaining a spanner that contains a (1+ε)-approximate solution and whose weight is
bounded in terms of OPT. The first PTAS for this problem was obtained by Borradaile
et al. [BKM07a] by showing how to accomplish this step in time O(2poly(1/ε)n logn);
this resulted in a PTAS with total running time O(22poly(1/ε)

n logn).1 Shortly after, Bor-
radaile et al. [BKM07b, BKM09] presented a modified algorithm in which they combined
the spanner step and the dynamic programming step and obtained a PTAS with total
running time singly exponential in 1/ε, i.e. O(2poly(1/ε)n logn). The centerpiece of their
algorithm is the construction of a grid-like subgraph of the input graph, called a mortar
graph. On one hand, the mortar graph can be used to construct a spanner and obtain a
doubly exponential PTAS by the framework above; on the other hand, it can be directly
incorporated into the dynamic programming to obtain a singly exponential algorithm.
In what follows, we define the mortar graph and describe its construction along with the
accelerated PTAS that it leads to.

1.5.1 The Mortar Graph and the Bricks

In [BKM09], the mortar graph is defined for planar graphs; but as this concept is gener-
alized to graphs of bounded genus in [BDT09] (see Chapter 2), we define it here in this
more general setting. A path P in a graph G is ε-short in G if for every pair of vertices
x and y on P , the distance from x to y along P is at most (1 + ε) times the distance
from x to y in G: distP (x, y) ≤ (1 + ε) distG(x, y). Given a graph G embedded on a
surface and a set of terminals R, a mortar graph is a subgraph of G with the following
properties :

1The running time obtained in [BKM07a] is actually triply exponential in 1/ε but as pointed out
in [BKM09], this can be improved to a doubly exponential algorithm by using Catalan structures.
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Definition 1.3 (Mortar Graph and Bricks). Given a graph G embedded on a sur-
face of genus g, a set of terminals R, and a number 0 < ε ≤ 1, consider a subgraph
MG := MG(G,R, ε) of G spanning R such that each facial walk of MG encloses an area
homeomorphic to an open disk. For each face F of MG, we construct a brick B of G by
cutting G along the facial walk ∂F ; B is the subgraph of G embedded inside the face,
including ∂F . We denote this facial walk as the mortar boundary ∂B of B. We define
the interior of B as B without the edges of ∂B. We call MG a mortar graph if for some
constants α(ε, g) and κ(ε, g) (to be defined later), we have `(MG) ≤ αOPT and every
brick B satisfies the following properties:

1. B is planar.
2. The boundary of B is the union of four paths in the clockwise order W , N , E, S.
3. Every terminal of R that is in B is on N or on S.
4. N is 0-short in B, and every proper subpath of S is ε-short in B.
5. There exists a number k ≤ κ and vertices s0, s1, s2, . . . , sk ordered from left to right

along S such that, for any vertex x of S[si, si+1), the distance from x to si along
S is less than ε times the distance from x to N in B: distS(x, si) < ε distB(x,N).

The mortar graph and the set of bricks are illustrated in Figures 1.3 (a) and (b). Next
we describe the algorithmic steps involved in constructing a mortar graph for a planar
input graph G:

Decomposition into Strips The first step of the algorithm is to find a 2-approximate
Steiner tree T . This can be done using our recent improvement on Mehlhorn’s algorithm
in linear time [TM09b, Meh88] (see Chapter 5). Afterwards, we cut open the tree along
its Euler tour to obtain a distinguished face fout; we may think of this face as the outer
face of the graph. See Figure 1.4 (a), (b) and (c) for an illustration. Note that the
weight of fout is bounded by 4 ·OPT.
The goal of the strip decomposition is to decompose the graph into a number of com-

ponents, called strips, so that the outer boundary of each strip consists of one shortest
paths N , called the north boundary of the strip, and one ε-short path S, called the south
boundary of the strip. We start with the whole graph and the boundary of its outer face,
as described above; if there exists a subpath of the current outer boundary that is not
ε-short, we determine a smallest subpath violating the condition, find a shortest path
between its endpoints, and separate it from the current graph as a new strip (see Fig-
ure 1.4 (d)). Klein [Kle06] shows that the total weight of the strip boundaries is bounded
by 4(1 + ε−1) · OPT. He describes an O(n logn)-time algorithm for the strip decom-
position using dynamic trees (see, e.g. [TW05]) and his multiple-source shortest-paths
algorithm [Kle05].

Adding Super-Columns The next step is to divide each strip into a number of bricks
by adding so-called super-columns. The algorithm proceeds by finding a shortest path
from every vertex on the south boundary to (any vertex on) the north boundary. This
can be done by a single shortest-paths computation in O(n logn) time [Kle06]. Starting
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(a) (b) (c)

(d) (e) (f)

Figure 1.4: Construction of a mortar graph: (a) a 2-approximate Steiner tree (with red
edges); (b) splitting the 2-approximation along its Euler tour; (c) thinking
of the newly created face as the outer face; (d) adding shortest paths that
comprise the strip-decomposition; (e) finding the columns inside each strip;
(f) selecting the super-columns from among the columns. These pictures are
republished by courtesy of Glencora Borradaile.

on the left-most vertex of the south boundary and moving to the right by one edge at a
time, the algorithm extracts a set of columns as follows: if at any point the current sum
of edges that are traversed so far is more than ε times the distance of the current node
to the north boundary, this shortest path to the north boundary is added to the set of
columns and the current sum of edges is reset to zero (see Figure 1.4 (e)). Next, for a
constant κ and for each i = 0, . . . , κ − 1, the columns with indices i + cκ, c ∈ N, are
considered, and the set with minimum weight is selected to be the set of super-columns
in this strip (see Figure 1.4 (f)). This way, it is ensured that each brick contains at most
κ columns, and furthermore, that the total weight of the super-columns is at most κ−1

times the total sum of all columns, which is in turn at most 4κ−1ε−1(1 + ε−1) · OPT.
We sometimes refer to κ as the spacing of the super-columns of the mortar graph.
The following results can be easily deduced from [Kle06] and [BKM09]:

Lemma 1.4 ([Kle06, BKM09]). Let 0 < ε ≤ 1 and G be a planar graph with outer
face fout containing the terminals R and such that `(fout) ≤ α0 OPT, for some constant
α0. For α = (2α0 + 1)ε−1, there is a mortar graph MG(G,R, ε) containing fout whose
length is at most αOPT and whose super-columns have length at most εOPT with
κ = α0ε

−2(1 + ε−1). The mortar graph can be found in O(n logn) time.

Theorem 1.5 ([Kle06, BKM09]). Let G be a planar graph, R be a subset of vertices,
and 0 < ε ≤ 1. For α = 9ε−1 there is a mortar graph MG(G,R, ε) of G such that
the length of MG is ≤ αOPT and the super-columns of MG have length ≤ εOPT with
κ = 4ε−2(1 + ε−1). The mortar graph can be found in O(n logn) time.
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1.5.2 Structure Theorem
Along with the mortar graph, Borradaile et al. [BKM09] define an operation B+ called
brick-copy that allows a succinct statement of the Structure Theorem below. For each
brick B, a subset of θ vertices is selected as portals such that the distance along ∂B
between any vertex and the closest portal is at most `(∂B)/θ. For every brick B, embed
B in the corresponding face of MG and connect every portal of B to the corresponding
vertex of MG with a zero-length portal edge: this defines B+(MG, θ) as illustrated in
Figure 1.3 (d). We denote the set of all portal edges by Eportal. The following simple
observation, proved in [BKM09], holds also for bounded-genus graphs:
Observation 1.6 ([BKM09]). If A is a connected subgraph of B+(MG, θ), then A \
Eportal is a connected subgraph of G spanning the same vertices of G.
The following Structure Theorem is the heart of the correctness of the PTAS.

Theorem 1.7 (Structure Theorem [BKM09]). Let G be a graph embedded on a surface,
R ⊆ V (G) a given set of terminals, and 0 < ε ≤ 1. Let MG(G,R, ε) be a corresponding
mortar graph of weight at most αOPT and super-columns of weight at most εOPT with
spacing κ. There exist constants β = o(ε−2.5κ) and θ(α, β) depending polynomially on
α and β such that

OPT(B+(MG, θ), R) ≤ (1 + cε) OPT(G,R) ,

where c is an absolute constant.
The lengthy proof of this theorem is deeply involved and is presented in [BKM09] for

planar graphs. Since the bricks are always planar, the proof for bounded-genus graphs
follows as for the planar case [BDT09].

1.5.3 Obtaining a PTAS via a Spanner
As already mentioned, one way to obtain a PTAS for Steiner Tree in planar graphs is
to construct a spanner and apply the framework of Klein [Kle08] reviewed in Section 1.4
above. Once a mortar graph MG is constructed, a spanner can be obtained as follows:
for each brick B defined by MG and for each subset X of the portals of B, find the
optimal Steiner tree for X in B (using the method of Erickson et al. [EMAFV87]); the
spanner is the union of all these trees over all bricks plus the edges of the mortar graph.
This results in the following theorem:
Theorem 1.8 ([BKM09]). Let G be an edge-weighted planar graph and R ⊆ V (G) a
given set of terminals. There exists a spanner Gspan ⊆ G such that

1. Gspan contains a (1 + cε)-approximate solution to Steiner Tree; and
2. `(Gspan) ≤ f(ε) OPT;

where the function f(ε) is singly exponential in a polynomial in ε−1 and c is an absolute
constant. The spanner can be found in O(n logn) time.
Together with the framework of Section 1.4, Theorem 1.8 gives rise to a doubly expo-

nential PTAS for Steiner Tree in planar graphs.
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ff

(a) (b) (c)

Figure 1.5: (a) A planar graph with black vertices and full lines and a breadth-first-search
tree of the dual represented with white vertices and dashed lines; (b) a parcel
decomposition corresponding to this BFS tree, rooted at face f , separating
after level 1 of the tree; the white faces constitute the first parcel and the
gray faces the second; (c) an illustration of a more complicated situation
where many parcels are created at only one separating level.

1.5.4 Obtaining a Faster PTAS via Dynamic Programming over the Bricks

The idea of the faster PTAS is to apply the thinning step to the mortar graph instead of
the spanner and then perform dynamic programming on the thinned mortar graph; but
now, some leaves of the dynamic programming tree might actually be bricks in which
case we have to compute and store all non-crossing Steiner trees of the brick using the
algorithm of Erickson et al. [EMAFV87]. We review these steps in more detail below.
A different thinning and dynamic programming technique that works more generally for
graphs of bounded genus is discussed in Section 2.2.

Parcel Decomposition The thinning step is done somewhat differently in [BKM09]
from the framework proposed by Klein [Kle08]. We obtain a set of edges S of weight
at most ε

2 OPT as described in Section 1.4 by performing breadth-first search in the
dual of the mortar graph and considering the layers of the BFS-tree modulo a constant
η := 2αε = 18ε−2. But instead of contracting these edges, we consider each region that is
enclosed by S and call it a parcel; the set of edges S is called the set of parcel boundaries.
Now each parcel has bounded dual radius – which implies bounded treewidth – and can
be handled separately. See Figure 1.5 (a)–(b) for an illustration and note that there
might be several parcels lying between the same two consecutive selected layers of the
BFS-tree as shown in Figure 1.5 (c). In what follows, we set the weight of the parcel
boundaries to zero as they can be added later to the final solution while causing only a
small overhead of O(εOPT).

Adding Auxiliary Terminals In order to ensure that the final solution is connected, we
might have to add some auxiliary terminals to the parcels. Since every parcel P is a
connected set of faces of the mortar graph, its outer boundary BP is well-defined; let
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RP be the region of the plane enclosed by BP and QP be the region of the plane outside
BP . If both RP and QP contain a terminal, we have to add an auxiliary terminal to
BP to ensure connectivity of the final solution. As the weight of BP is set to zero, i.e.
BP is completely added to the final solution, we may select an arbitrary vertex on BP
as such an additional terminal. In [BKM09] it is shown that this step can be performed
in linear time.

Dynamic Programming in the Parcels The operation brick contraction, B÷, is defined
as first applying B+ and then contracting each brick to become a single brick vertex of
degree at most θ, where θ is the constant from the Structure Theorem 1.7. The graphs
B+(MG) and B÷(MG) are illustrated in Figures 1.3 (d) and (e), respectively. Since each
parcel P has dual radius at most η, we observe that B÷(P ) has dual radius at most θη.
We consider a spanning tree of P , root it at some terminal, and add one portal edge per
brick to it to obtain a spanning tree T of B÷(P ). Now each edge e = vw of T defines
a subproblem Te of the dynamic program (DP) that includes w and all its descendants
in T . The bounded dual radius property of P ensures that Te is separated from the
rest of the graph by a cut of at most ξ edges, where ξ := 2θη + 1 is a constant. By
enumerating over all non-crossing partitions of this cut into sets that are to be connected
inside the subproblem, one can fill the entries of the DP table – just as in standard DP
algorithms on graphs of bounded treewidth [AP89, KS90]; however, for every leaf of T
that is a contracted brick vertex, optimal Steiner trees for all non-crossing partitions of
the portals inside the corresponding brick have to be calculated using the algorithm of
Erickson et al. [EMAFV87]. A full description of the DP including implementation-level
details is given in Section 3.2.3.

Putting Things Together In summary, the PTAS works as follows:

1. find the mortar graph MG;
2. decompose the graph into parcels;
3. set the weight of the parcel-boundaries to zero;
4. add auxiliary terminals if necessary;
5. for each parcel P , find the optimal Steiner tree in the brick-contracted graph B÷(P )

using dynamic programming;
6. return the union of the Steiner trees found in the parcels together with the parcel

boundaries as the final solution (if necessary, prune some edges to obtain a tree).

The Structure Theorem 1.7 guarantees that the solution that we find for each parcel
is within a factor of (1 + cε) of the optimum solution of the parcel; by running the
algorithm with ε′ = ε

2c , we can ensure that the approximation error incurred in this step
is at most ε

2 OPT. We add the parcel boundaries to the solutions of the parcels to obtain
one connected Steiner tree of the input graph; since the weight of the parcel boundaries
is also bounded by ε

2 OPT, our final solution has weight at most (1+ε) OPT, as desired.

Theorem 1.9 ([BKM09]). There exists a PTAS for Steiner Tree in planar graphs
with running time O(2poly(1/ε)n logn).
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2 Extension of PTASes for
Subset-Connectivity Problems from
Planar to Bounded-Genus Graphs1

In many practical scenarios of network design, input graphs have a natural drawing on
the sphere or equivalently the plane. In most cases, these embeddings have few crossings,
either to avoid digging multiple levels of tunnels for fiber or cable or to avoid building
overpasses in road networks. But a few crossings are common, and can easily come
in bunches where one tunnel or overpass might carry several links or roads. Thus we
naturally arrive at graphs of small (bounded) genus, which is the topic of this chapter.
We develop a PTAS framework for subset-connectivity problems on edge-weighted

graphs of bounded genus. In general, we are given a subset of the nodes, called termi-
nals, and the goal is to connect the terminals together with some substructure of the
graph by using cost within 1 + ε of the minimum possible cost. Our framework applies,
in particular, to the well studied Steiner Tree problem, where we require the sub-
structure to be connected. This problem will be the main focus of this chapter. Our
framework yields the first PTAS for this problem in bounded-genus graphs. The PTAS is
efficient, running in O(f(ε, g)n+h(g)n logn) = Oε,g(n logn) time for graphs embedded
on orientable surfaces and nonorientable surfaces (we usually omit the mention of f(ε, g)
and h(g) by assuming ε and g are constant, but we later bound f(ε, g) as singly expo-
nential in a polynomial in 1/ε and g and h(g) as singly exponential in g). In contrast,
we know that Steiner Tree is APX-complete (and constant-factor-approximable) for
general graphs.
We build upon the recent PTAS framework of Borradaile, Klein, and Mathieu [BKM09]

for subset-connectivity problems on planar graphs. In contrast to the planar-graph
framework, our PTASes have the attractive feature that they run correctly on all graphs
with the performance degrading with the genus. Also, our result is strictly more general:
any problem to which the previous planar-graph framework applies readily generalizes
to our framework as well, resulting in a PTAS for bounded-genus graphs.
For example, the Subset Tsp problem, where we are looking for a tour that passes

through a given set of terminals, has been shown to admit a PTAS in planar graphs by
Klein [Kle06]. We can directly combine the techniques of [Kle06] with our framework
to generalize this PTAS to bounded-genus graphs.2 As another example, Borradaile

1This chapter is based on joint work with Glencora Borradaile and Erik Demaine [BDT09].
2In fact, we show in [BDT09] how to unify the approaches of [Kle06] and [BKM09] and obtain a
structure theorem for Subset Tsp, so that the mortar graph framework can be applied to it as well.
However, as this part of the paper is due to Glencora Borradaile, we choose not to include it here.

21



2 PTASes for Subset-Connectivity Problems in Bounded-Genus Graphs

and Klein [BK08b] have recently claimed a PTAS for the {0, 1, 2}-edge-connectivity
Survivable Network problem using the planar framework. This will imply a sim-
ilar result in bounded-genus graphs. In this problem, the substructure we are after
must have min{cx, cy} edge-disjoint paths connecting terminals x and y, where each
cx ∈ {0, 1, 2}; we allow the substructure to include multiple copies of an edge in the
graph, but pay for each copy. In particular, if cx = 1 for all terminals x and y, then we
obtain the Steiner tree problem; if cx = 2 for all terminals x and y, then we obtain the
minimum-cost 2-edge-connected submultigraph problem.
Our techniques for attacking bounded-genus graphs include two recent results: decom-

positions into bounded-treewidth graphs via contractions [DHM07] and fast algorithms
for finding the shortest noncontractible cycle [CC07]. We also use a simplified version of
an algorithm for finding a short sequence of loops on a topological surface [EW05], and
sophisticated dynamic programming. Our aim is to prove the following theorem:

Theorem 2.1. There exists a PTAS for Steiner Tree in edge-weighted graphs of genus
g with running time O(2poly(ε−1,g)n+ 2poly(g)n logn).

Notation and Basic Definitions
We use the notions about graphs embedded on surfaces as introduced in Section A.2
based on the book of Mohar and Thomassen [MT01]. In this chapter, all graphs G =
(V,E) have n vertices, m edges, and are undirected with edge lengths (weights). The
length of an edge e, subgraph H, and set of subgraphs H are denoted by `(e), `(H),
and `(H), respectively. The shortest distance between vertices x and y in a graph G is
denoted distG(x, y). Furthermore, ∂G denotes the boundary of a graph G embedded in
the plane or on a disc.
We consider 2-cell embedded graphs with a combinatorial embedding on an orientable

or nonorientable surface. We let f denote the number of faces of G and g = 2+m−n−f
the Euler genus. Recall that the dual G? of G is defined on the same set of edges as G.
A cycle of an embedded graph is contractible if it can be continuously deformed to a

point; otherwise it is noncontractible. The operation of cutting along a twosided cycle C
is essentially: partition the edges adjacent to C into left and right edges and replace C
with two copies C` and Cr, adjacent to the left or right edges, accordingly. The inside of
these new cycles is “patched” with two new faces. If the resulting graph is disconnected,
the cycle is called separating, otherwise nonseparating. Cutting along a onesided cycle
C on nonorientable surfaces is defined similarly, only that C is replaced by one bigger
cycle C ′ that contains every edge of C exactly twice. See [MT01, pages 105–106] for
further technical details.
The input graph is G0 = (V0, E0) and has genus g0; the terminal set is Q. We assume

G0 is equipped with a combinatorial embedding; such an embedding can be found in
linear time if the genus is known to be fixed, see [Moh99]. Let P be the considered subset-
connectivity problem. In Section 2.1.1, we show how to find a subgraph G = (V,E) of
G0 such that for 0 ≤ ε ≤ 1 any (1 + ε)-approximate solution of P in G0 also exists in G.
Hence, we may use G instead of G0 in the rest of the paper. Note that as a subgraph of
G0, G is automatically equipped with a combinatorial embedding.
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2.1 Mortar Graph and Structure Theorems

Let OPT denote the length of an optimal Steiner tree spanning terminals Q. We define
OPTP to be the length of an optimal solution to problem P. For the problems that we
solve, we require that OPTP = Θ(OPT) and in particular that OPT ≤ OPTP ≤ µOPT.
The constant µ will be used in Section 2.1 and is equal to 1 for the Steiner tree problem.
We choose this presentation to easily allow for generalizations to other problems. For
example, for both Subset Tsp and {0, 1, 2}-edge-connectivity Survivable Network,
we have µ = 2. This requirement is also needed for the planar case; see [BK08b]. Because
OPT ≤ OPTP , upper bounds in terms of OPT hold for all the problems herein. As a
result, we can safely drop the P subscript henceforth.
We show how to obtain a (1+cε) OPT solution for an absolute constant c. To obtain a

(1+ε) OPT solution, we can simply use ε′ = ε/c as input to the algorithm. We follow the
framework of Borradaile et al. [BKM09] as introduced in Section 1.5: first, we construct
a mortar graph MG and then perform dynamic programming on the mortar graph and
the bricks. We also show how to obtain a spanner and apply Klein’s framework [Kle08]
as reviewed in Section 1.4.

2.1 Mortar Graph and Structure Theorems

Let G0 = (V0, E0) be the input graph of genus g0 and Q be the terminal set. In a first
preprocessing step, we delete a number of unnecessary vertices and edges of G0 to obtain
a graph G = (V,E) of genus g ≤ g0 that still contains every (1+ε)-approximate solution
for terminal set Q for all 0 ≤ ε ≤ 1 while fulfilling certain bounds on the length of
shortest paths. In the next step, we find a cut graph CG of G that contains all terminals
and whose length is bounded by a constant times OPT. We cut the graph open along
CG, so that it becomes a planar graph with a simple cycle σ as boundary, where the
length of σ is twice that of CG. See Figure 2.1 for an illustration. Afterwards, the
remaining steps of building the mortar graph can be the same as in the planar case, by
way of Theorem 1.4.
For an edge e = vw in G0, we let distG0(r, e) = min{distG0(r, v),distG0(r, w)} + `(e)

and say that e is at distance distG0(r, e) from r. If the root vertex represents a contracted
graph H, we use the same terminology with respect to H.

2.1.1 Preprocessing the Input Graph

Our first step is to apply the following preprocessing procedure:

Algorithm Preprocess(G0, Q, µ).
Input. an arbitrary graph G0, terminals Q ⊆ V (G0), a constant µ
Output. a preprocessed subgraph of G0

1. Find a 2-approximate Steiner tree T0 for Q in G0; contract T0 to a vertex r.
2. Find a shortest-path tree rooted at r.
3. Delete all vertices v and edges e of G0 with distG0(r, v),distG0(r, e) > 2µ`(T0).
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2 PTASes for Subset-Connectivity Problems in Bounded-Genus Graphs

(a) (b)

Figure 2.1: (a) a cut graph of a tree drawn on a torus; (b) the result of cutting the
surface open along the cut graph: the shaded area is homeomorphic to a disc
and the white area is the additional face of the planarized surface.

Any deleted vertex or edge is at distance > 2µ`(T0) > 2µOPT from any terminal and
hence can not be part of a (1 + ε)-approximation for any 0 ≤ ε ≤ 1. We call the
resulting graph G = (V,E) and henceforth use G instead of G0 in our algorithm. The
preprocessing step can be accomplished in linear time: T0 can be calculated with our
recent improvement on Mehlhorn’s algorithm [Meh88, TM09b] (see Chapter 5), and the
shortest path tree with Henzinger et al.’s algorithm [HKRS97]. Trivially, we have

Proposition 2.2. All vertices and edges of G are at distance at most 4µOPT from T0.

2.1.2 Constructing the Cut Graph
A central fact that we use in this section and also in other parts of our work is the
following observation, whose proof is folklore; see e.g. [Epp03] and cf. Figure 1.5.

Observation 2.3 (folklore). Let G be a planar graph and T a spanning tree of G. Then
the set of edges E(G) − E(T ) induces a spanning tree T ? in the dual G?. If T is a
minimum spanning tree of G, then T ? is a maximum spanning tree of G?.

A similar lemma also holds for bounded-genus graphs: if T is a (minimum) spanning
tree of G and T ? a (maximum) spanning tree of G? − E(T ), then T ? is a (maximum)
spanning tree of G? and the size of the set of remaining edges X := E(G)−E(T )−E(T ?)
is g, the Euler genus of G, by Euler’s formula. Eppstein [Epp03] defines such a triple
(T, T ?, X) as a tree-cotree decomposition of G and shows that such a decomposition can
be found in linear time for graphs on both orientable and nonorientable surfaces.
In order to construct a cut graph, we start again with a 2-approximation T0 and con-

tract it to a vertex r. Next, we look for a system of loops rooted at r: iteratively find
short nonseparating cycles through r and cut the graph open along each cycle. Erickson
and Whittlesey [EW05] showed that, for orientable surfaces, taking the shortest appli-
cable cycle at each step results in the shortest system of loops through r. They suggest
an implementation of their algorithm using the tree-cotree decomposition (T, T ?, X) of
Eppstein [Epp03] in linear time. Eppstein showed that the set of elementary cycles
{loop(T, e) : e ∈ X} is a cut graph of G where loop(T, e) is the closed walk formed by
the paths in T from r to the endpoints of e plus the edge e. Eppstein’s decomposition
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2.1 Mortar Graph and Structure Theorems

also works for nonorientable embeddings. As we only need to bound the length of our
cut graph, we present a simpler algorithm below:

Algorithm Planarize(G0, Q, µ).
Input. a graph G0 of fixed genus g, terminals Q ⊆ V (G0), a constant µ
Output. a preprocessed subgraph G ⊆ G0 and a cutgraph CG of G

1. Apply Preprocess(G0, Q, µ) and let G be the obtained subgraph.
2. Find a 2-approximate Steiner tree T0 for Q in G; contract T0 to a vertex r.
3. Find a shortest paths tree SPT rooted at r.
4. Uncontract r and set T1 = T0 ∪ SPT. (T1 is a spanning tree of G)
5. Find a spanning tree T ?1 in G? − E(T1). (T ?1 is a spanning tree of G?)
6. Let X := E(G)− E(T )− E(T ?).
7. Return CG := T0 ∪ {loop(T1, e) : e ∈ X} together with G.

Lemma 2.4. The algorithm Planarize returns a cut graph CG such that cutting G
open along CG results in a planar graph Gp with a face fσ whose facial walk σ

(i) is a simple cycle;
(ii) contains all terminals (some terminals might appear more than once as multiple

copies might be created during the cutting process); and
(iii) has length `(σ) ≤ 2(8µg + 2) OPT.

The algorithm can be implemented in linear time.

Proof. Clearly, (T1, T
?
1 , X) is tree-cotree decomposition of G and so, by Eppstein’s

Lemma [Epp03], CG is a cut graph. By Euler’s formula, we get that |X| = g, the Euler
genus of G. Each edge e = vw ∈ X completes a (nonsurface-separating, not necessarily
simple) closed walk as follows: a shortest path P1 from T0 to v, the edge e, a shortest
path P2 from w to T0 and possibly a path P3 in T0. By Proposition 2.2, we know that e
is at distance at most 4µOPT from T0 and so, P1, P2, and at least one of P1 ∪ {e} and
P2 ∪ {e} have length at most 4µOPT. Hence, we have that `(P1 ∪ {e} ∪ P2) ≤ 8µOPT.
Because there are (exactly) g such cycles in CG, we get that

`(CG) ≤ g · 8µOPT +`(T0) ≤ (8µg + 2) OPT .

Because CG is a cut graph, it follows that it consists of a single facial walk σ′; this
follows easily from Euler’s formula and the fact that CG has Euler genus g with some k
vertices and k+g−1 edges. So, σ′ contains every edge of CG exactly twice (cf. [MT01]),
i.e. `(σ′) = 2`(CG). Cutting the graph open along σ′ results in a planar graph with a
simple cycle σ = σ′ as its boundary, as desired (see Fig. 2.1).
As mentioned in the previous section, T0 and SPT can be computed in linear time on

bounded-genus graphs [HKRS97, TM09b]. T ?1 can be obtained, for example, by a simple
breadth-first-search in the dual. The remaining steps can also easily be implemented in
linear time. �
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2.1.3 Constructing the Mortar Graph

Theorem 2.5. Let an embedded edge-weighted graph G of Euler genus g, a subset of its
vertices Q, an 0 < ε ≤ 1, and µ ≥ 1 be given. For α = (32µg + 9)ε−1, there is a mortar
graph MG(G,Q, ε) of G such that the length of MG is ≤ αOPT and the super-columns
of MG have length ≤ εOPT with spacing κ = (16µg+4)ε−2(1+ε−1). The mortar graph
can be found in O(n logn) time.

Proof. Let Gp be the result of planarizing G as guaranteed by Lemma 2.4. Gp is a planar
graph with boundary σ such that σ spans Q and has length ≤ 2(8µg+2) OPT. Let MG
be the mortar graph guaranteed by Theorem 1.4 as applied to G with σ as its outer face.
Every edge of MG corresponds to an edge of G. Let MG′ be the subgraph of G composed
of edges corresponding to MG. Every face f of MG (other than σ) corresponds to a face
f ′ of MG′ and the interior of f ′ is homeomorphic to a disk on the surface in which G is
embedded. It is easy to verify that MG′ is indeed a mortar graph of G; and the length
bounds specified in the statement of the theorem follow directly from Theorem 1.4 and
the bound on the length of σ. �

2.1.4 Structure Theorems for Subset-Connectivity Problems

We stated the Structure Theorem 1.7 for Steiner Tree already in its full generality
for bounded-genus graphs. Note that it is due to the special way of constructing our
mortar graph that we can obtain this theorem immediately from the planar case that
was proven by Borradaile et al. [BKM09]: the crucial point here is that our bricks are
always planar – even when the given graph is embedded in a surface of higher genus.
Recall the definition of the graph B+(MG, θ) as given in Section 1.5.2 and Fig-

ure 1.3 (d). The Structure Theorem essentially says that there is a constant θ depending
polynomially on ε−1 such that in finding a near-optimal solution to G, we can restrict
our attention to B+(MG, θ). Whenever we wish to apply our framework to a new prob-
lem, it is essential to prove a similar structure theorem for the considered problem. This
is exactly what we did for Subset Tsp in [BDT09] and Borradaile and Klein [BK08b]
did for Survivable Network. We refer to the cited papers for further details on these
problems. Note also that for Subset Tsp, it is possible to obtain a singly exponential
algorithm by following the spanner construction of Klein [Kle06] after performing the
planarizing step (Lemma 2.4).

2.2 A PTAS for Steiner Tree in Bounded-Genus Graphs

As in Chapter 1, we present two methods to obtain a PTAS for Steiner Tree. One
is based on finding a spanner and applying the framework of Klein [Kle08] as reviewed
in Section 1.4; the other one is based on dynamic programming directly on the mortar
graph and the bricks. While both methods result in O(n logn) algorithms, the first
method is doubly exponential in a polynomial in g and ε−1 and the second is singly
exponential.
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2.2.1 Spanner Construction
Recall that a spanner is a subgraph of length Oε,g(OPT) that contains a (1 + ε)-
approximate solution. Here we show how to find a spanner for Steiner Tree in
bounded-genus graphs. After a mortar graph is computed, the construction is, in fact,
exactly the same as in Section 1.5.3, namely:

For each brick B defined by MG and for each subset X of the portals of
B, find the optimal Steiner tree of X in B (using the method of Erickson
et al. [EMAFV87]). The spanner Gspan is the union of all these trees over
all bricks plus the edges of the mortar graph.

Theorem 2.6 (Spanner Theorem). Let G be an edge-weighted graph embedded on a
surface of Euler genus g and Q ⊆ V (G) a given set of terminals. There exists a spanner
Gspan ⊆ G such that

1. Gspan contains a (1 + cε)-approximate Steiner tree; and
2. `(Gspan) ≤ f(ε, g) OPT;

where the function f(ε, g) is singly exponential in a polynomial in ε−1 and g, and c is
an absolute constant. The spanner can be found in O(n logn) time.

Proof. Given a mortar graph MG(G,Q, ε) as guaranteed by Theorem 2.5, a spanner is
constructed as specified above. As in [BKM09], the time to find Gspan is O(n logn).
It was proved in [BKM09] that `(Gspan) ≤ (1 + 2θ+1)`(MG). Therefore, `(Gspan) ≤
(1 + 2θ+1)αOPT and f(ε, g) = (1 + 2θ+1)α (recall that α and θ depend polynomially
on ε−1 and g). It remains to show that Gspan contains a near-optimal solution; but this
follows directly from the Structure Theorem 1.7. �

2.2.2 PTAS via Spanner
In order to apply the PTAS framework of Klein [Kle08] to bounded-genus graphs, we
need the following Contraction Decomposition Theorem due to Demaine et al.:

Theorem 2.7 ([DHM07, Theorem 1.1]). For a fixed genus g, and any integer η ≥ 2
and for every graph G of Euler genus at most g, the edges of G can be partitioned into
η sets such that contracting any one of the sets results in a graph of treewidth at most
O(g2 · η). Furthermore, such a partition can be found in O(g5/2n3/2 logn) time.

Recent techniques [CC07] for finding shortest noncontractible cycles of embedded
graphs have improved the above running time to O(2poly(g)n logn).
We review the four steps of the framework in our setting:

1. Spanner Step Find a spanner Gspan of G according to Theorem 2.6.

2. Thinning Step For η = f(ε, g)/ε (where f(ε, g) is the function given in Theorem 2.6),
let S1, . . . , Sη be the partition of the edges of Gspan as guaranteed by Theorem 2.7.
Let S∗ be the set in the partition with minimum weight: `(S∗) ≤ εOPT. Let Gthin
be the graph obtained from Gspan by contracting the edges of S∗. By Theorem 2.7,
Gthin has treewidth at most O(g2ε−1f(ε, g)).
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2 PTASes for Subset-Connectivity Problems in Bounded-Genus Graphs

3. Dynamic Programming Step Use dynamic programming (see, e.g. [KS90]) to find
the optimal solution to the problem in Gthin.

4. Lifting Step Convert this solution to a solution in G by incorporating some of the
edges of S∗; see, e.g., [Taz06, BKM09].

Analysis of the running time. By Theorem 2.6, the spanner step takes Oε,g(n logn)
time (with singly exponential dependence on polynomials in g and ε−1). By Theo-
rem 2.7, thinning takes time Og(n logn) using [CC07]. Dynamic programming takes
time 2O(g2ε−1f(ε,g))n: because f(ε, g) is singly exponential in polynomials in g and ε−1,
this step is doubly exponential in polynomials in g and ε−1. Lifting takes linear time.
Hence, the overall running time is O(2O(g2ε−1f(ε,g))n+ 2poly(g)n logn).

2.2.3 PTAS via Dynamic Programming over the Bricks

We proceed in a similar fashion as in the case of planar graphs [BKM09] as reviewed in
Section 1.5.4. However, as the concept of bounded dual radius does not apply straight-
forwardly to bounded-genus graphs, we have to deal with treewidth directly. We do this
by applying the Contraction Decomposition Theorem 2.7 of Demaine et al. [DHM07]
and a generalized dynamic programming technique. Recall that the operation brick-
contraction B÷ is defined as the application of the operation B+ followed by contracting
each brick to become a single vertex of degree at most θ (see Figure 1.3 (e)).

Algorithm Thinning(G,MG).
Input. a graph G of fixed genus g, a mortar graph MG of G
Output. a set S? ⊆ E(B÷(MG)), a tree decomposition (T, χ) of B÷(MG)/S?

1. Assign the weight `(∂F ) to each portal edge e enclosed in a face F of B÷(MG).
2. Apply the Contraction Decomposition Theorem 2.7 to B÷(MG) with η :=

3θαε−1 to obtain edge sets S1, . . . , Sη; let S? be the set of minimum weight.
3. If S? includes a portal edge e of a brick B enclosed in a face F of MG,

add ∂F to S? and mark B as ignored.
4. Let MGthin := B÷(MG)/S? (but without deleting parallel portal edges).
5. Let (T, χ) be a tree decomposition of width O(g2 · η) of MGthin.
6. For each vertex b of MGthin that represents an unignored contracted brick

with portals {p1, . . . , pθ}:
6.1. Replace every occurrence of b in χ with {p1, . . . , pθ};
6.2. Add a bag {b, p1, . . . , pθ} to χ

and connect it to a bag containing {p1, . . . , pθ}.
7. Reset the weight of the portal edges back to zero.
8. Return (T, χ) and S?.

We apply the Contraction Decomposition Theorem to B÷(MG) and contract a set of
edges S? in B÷(MG). However, we apply a special weight to portal edges so as to prevent
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them from being included in S?. Also, in B÷(MG), we slightly modify the definition of
contraction: after contracting an edge, we do not delete parallel portal edges. Because
portal edges connect the mortar graph to the bricks, they are not parallel in the graph
in which we find a solution via dynamic programming.

Lemma 2.8. The algorithm Thinning(G,MG) returns a set of edges S? and a tree
decomposition (T, χ) of B÷(MG)/S?, so that

(i) the treewidth of (T, χ) is at most ξ where ξ(ε, g) = O(g2ηθ) = O(g3ε−2θ2);
in particular, ξ is polynomial in ε−1 and g;

(ii) every brick is either marked as ignored or none of its portal edges are in S?; and
(iii) `(S?) ≤ εOPT.

Proof. We first verify that (T, χ) is indeed a tree decomposition. For a vertex v and
a tree decomposition (T ′, χ′), let T ′v denote the subtree of T ′ that contains v in all of
its bags. Let us denote the tree decomposition of step (5) by (T 0, χ0). For each brick
vertex b and each of its portals pi, we know that T 0

b is connected and T 0
pi is connected

and that these two subtrees intersect; it follows that after the replacement in step (6.2),
we have that Tpi = T 0

b ∪ T 0
pi is a connected subtree of T and hence, (T, χ) is a correct

tree decomposition. Note that Theorem 2.7 guarantees a tree decomposition of width
O(g2η) if any of S1, . . . , Sη are contracted; and in step (3), we only add to the set of
edges to be contracted. Hence, the treewidth of (T 0, χ0) is indeed O(g2η) and with the
construction in line (6.1), the size of each bag will be multiplied by a factor of at most
θ. This shows the correctness of claim (i). The correctness of claim (ii) is immediate
from the construction in line (3). It remains to verify claim (iii).
Let L denote the weight of B÷(MG) after setting the weights of the portal edges

according to step (1) of the algorithm. We have that

L ≤ `(MG) +
∑
F

`(∂F )θ ≤ αOPT +θ
∑
F

`(∂F ) ≤ αOPT +θ · 2αOPT ≤ 3θαOPT .

Hence, the weight of S?, as selected in step (2), is at most L/η ≤ 3θαOPT
3θαε−1 ≤ εOPT. The

operation in step (3) does not add to the weight of S?: when the boundary of a face F
is added to S?, its weight is subtracted again when resetting the weights of the portal
edges back to zero in step (7). �

If a brick is “ignored” by Thinning, the boundary of its enclosing mortar graph face
is completely added to S?. Because S? can be added to the final solution, every potential
connection through that brick can be rerouted through S? around the boundary of the
brick. The interior of the brick is not needed.
An almost standard dynamic programming algorithm for bounded-treewidth graphs

(cf. [AP89, KS90]) can be applied to Gthin and (T, χ). However, for the leaves of the
tree decomposition that are added in step (6.2) of the Thinning procedure, the cost of
a subset of portal edges is calculated as the cost of the minimum Steiner tree intercon-
necting these portals in the corresponding brick using [EMAFV87]. Since all the portal
edges of this brick are present in this bag (recall that we do not delete parallel portal
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edges after contractions), all possible solutions restricted to the corresponding brick will
be considered. Since the contracted brick vertices only appear in leaves of the dynamic
programming tree, the rest of the dynamic programming algorithm can be carried out
as in the standard case.

Analysis of the running time. As was shown in [BKM09], the total time spent in the
leaves of the dynamic programming is O(4θn). The rest of the dynamic programming
takes time O(2O(ξ)n). The running time of the thinning algorithm is dominated by
the Contraction Decomposition Theorem 2.7 which is Og(n logn) [CC07]. Hence, the
total time is O(2O(ξ)n+ 2poly(g)n logn) for the general case; in particular, this is singly
exponential in ε−1 and g, as desired. This proves Theorem 2.1.

2.3 Conclusion and Outlook
We presented a framework to obtain PTASes on bounded-genus graphs for subset-
connectivity problems, where we are given a graph and a set of terminals and require
a certain connectivity among the terminals. Specifically, we obtained the first PTAS
for Steiner Tree on bounded-genus graphs running in O(n logn)-time with a con-
stant that is singly exponential in ε−1 and the genus of the graph. Our method is
based on the framework of Borradaile et al. [BKM09] for planar graphs; in fact, we
generalize their work in the sense that basically any problem that is shown to admit
a PTAS on planar graphs using their framework easily generalizes to bounded-genus
graphs using the methods presented in this chapter. In particular, this gives rise to
PTASes in bounded-genus graphs for Subset Tsp [BDT09], {0, 1, 2}-edge-connected
Survivable Network [BK08b], and also Steiner Forest [BHM10].
As mentioned in Chapter 1 and Appendix A, H-minor-free graphs have earned much

attention in recent years. Many hard optimization problems have been shown to admit
PTASes and fixed-parameter algorithms on these classes of graphs; see, e.g., [DH05a,
Gro03]. But subset-connectivity problems, specifically Subset Tsp and Steiner Tree,
remain important open problems [Gro03, DHM07]. Both a spanner theorem and a con-
traction decomposition theorem are still missing for the H-minor-free case. Very often,
results on H-minor-free graphs are first shown for planar graphs, then extended to
bounded-genus graphs, and finally obtained for H-minor-free graphs. This is due to
the powerful decomposition theorem of Robertson and Seymour [RS03] that essentially
says that every H-minor-free graph can be decomposed into a number of parts that are
“almost embeddable” in a bounded-genus surface. We conjecture that our framework
extends to H-minor-free graphs via this decomposition theorem. The advantage of our
methodology is that handling weighted graphs and subset-type problems are naturally
incorporated, and thus it might be possible to combine all the steps for a potential
PTAS into a single framework for H-minor-free graphs based on what we presented in
this chapter. Hence, whereas our work is an important step towards this generalization,
still a number of hard challenges remain; see also [DHM07] for a further discussion on
this matter.
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3 Dealing with Large Hidden Constants:
Engineering a Planar Steiner Tree PTAS1

In the past few decades, a huge body of work has evolved that shows the existence
of polynomial-time approximation schemes for many hard optimization problems on
various input classes. These algorithms are, of course, of high theoretical importance,
and many of them are seminal results. But unfortunately, most of these results are far
from being applicable in practice; the problem is that, even though their theoretical
running time is polynomial for a fixed error bound, often even near linear, the constants
hidden in the big-O notation turn out to be much too large for an actual implementation,
even for large approximation factors. We present the first attempt on implementing
such a highly theoretical algorithm, namely, a PTAS for the Steiner tree problem in
planar graphs, showing that it is possible to actually implement and run it, even on
large instances, already today – but under some compromises. This suggests that some
improvements, both in theory and practice, might make these great theoretical works
bear practical fruits in the future. On a higher level, we would like to stimulate the
theoretical world to further improve on the practical applicability of their results by
showing that implementation attempts are not necessarily as far fetched as is generally
thought today.
The compromises we had to make are of the following nature: even though we have

implemented the algorithm completely and correctly and substantially accelerated it in
several places, with today’s processing power and space limitations, we are not able to set
all parameters as high as required by the original algorithm; hence, we cannot maintain
an a-priori guarantee on the approximation ratio. But our experiments show that, with
our choice of parameters, we do get the desired approximation ratios suggesting that
a much tighter analysis might be possible. Also, there is a natural trade-off between
running time and solution quality.

On PTASes and Parameterized Complexity

Ever since Lipton and Tarjan’s planar separator theorem [LT79], a large number of
PTASes on various problems have been presented, see e.g. [Bak94, GKP95, AGK+98,
RS98, Aro03, Gro03, Kle08, DH05a, Kle06]. Even though all these algorithms are poly-
nomial for a fixed error bound, there is a qualitative difference in their running times
that becomes very important when it comes to their practical applicability: whereas
many PTASes are in XP when parameterized by 1/ε, there have been great efforts in
recent years in obtaining efficient PTASes (EPTASes), namely, PTASes that are in FPT
1This chapter is based on joint work with Matthias Müller-Hannemann [TM09a].
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3 Engineering a Planar Steiner Tree PTAS

with respect to the parameter 1/ε, see e.g. [Bak94, RS98, Gro03, Kle08]. Note that only
EPTASes come into question when it comes to implementation attempts. In this sense,
these efforts – and more generally, the design of FPT-algorithms – are extremely valuable
and important in pushing such algorithms towards practicality. Of course, even after an
EPTAS or an FPT-algorithm is discovered for a problem, it still remains to find the al-
gorithm with the smallest dependence on the parameter; indeed, in our case, it was such
an improvement on the parameter-dependence that made our implementation possible
(see the next subsection). In a more general context, the current work can be seen as an
implementation and engineering of an FPT-algorithm where the theoretical dependence
on the parameter is huge – but, with some compromises, somehow manageable.

The Steiner Tree Problem

We consider the Steiner tree problem, which we thoroughly discussed in Chapter 1.
Recall that it is NP-hard [Kar72] and even APX-hard [BP89] in general graphs but admits
an FPT-algorithm when parameterized by the number of terminals [DW72, EMAFV87,
BHKK07]. A 2-approximation can be easily found [Cho78, Ple81] in time O(m+n logn)
in general graphs [Meh88] and in linear time on H-minor-free graphs [TM09b]. The
Euclidean and rectilinear Steiner tree problem are also NP-hard [GJ77, GGJ77] but
admit a PTAS [Aro98, Mit99, RS98]. The rectilinear case can be reduced to the planar
graph version by using the so-called Hanan-grid [Han66, GC94], and the Euclidean case
can be reduced to planar graphs as shown in [MT10].
In planar graphs, the Steiner tree problem is also NP-hard [GJ77]. Erickson et

al. [EMAFV87], Bern [Ber90], and Bern and Bienstock [BB91] showed that the problem
is in FPT when parameterized by the genus and the number of faces or layers in which
terminals appear. Very recently a PTAS has been found by Borradaile et al. [BKM09],
which we reviewed in Chapter 1. While the first version of the PTAS [BKM07a] was triply
exponential in a polynomial in the inverse of the desired accuracy, i.e. had a running
time of O(222poly(1/ε)

· n logn), the complexity has been improved to a singly exponen-
tial algorithm running in time O(2poly(1/ε) · n logn) in [BKM07b, BKM09]. This was
an important step in making an implementation attempt possible. Still the exponent
is a polynomial of ninth degree, which renders a direct implementation hopeless. Their
result goes in line with several other highly theoretical papers that showed the existence
of PTASes for important hard optimization problems, see e.g. [Bak94, Aro03, Gro03,
Kle08, DH05a, Kle06], to name a few. To the best of our knowledge, no attempts on
actually implementing these algorithms have been made to date.
Steiner tree is also a very important problem in practice and has to be solved in many

industry applications, most prominently, in VLSI design. Hence, numerous implemen-
tations exist that are able to solve it, often very well, in practice. The most important
exact algorithms are due to Zachariasen and Winter [ZW99] for geometric instances,
Koch and Martin [KM98] using integer linear programming techniques, and Polzin and
Daneshmand [PD01, PD02, PD06] with the strongest results for general graphs. Also,
many powerful heuristics exist, see, for example, [KR92, GRSZ94, PW02, KMZ03].
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The Mortar Graph and Its Uses

Recall that the concept of a mortar graph, as introduced by Borradaile et al. [BKM09]
and defined in Section 1.5.1, is a grid-like subgraph of the input that has several use-
ful properties, the most important of which are that it contains all the terminals, has
bounded weight, and that there exists a near optimal solution that crosses each of its
faces at most at a bounded number of vertices. The parts of the original graph that are
enclosed in the faces of the mortar graph are called bricks. This mortar graph/brick-
decomposition, in a sense, replaces the need for a spanner and is the centerpiece of the
improved PTAS presented in [BKM07b, BKM09]. Very recently, it has been shown that
it can also be used to approximate other problems: a PTAS for the minimum 2-edge-
connectivity survivable network problem was given in [BK08b]; A PTAS for the Steiner
forest problem has been announced in [BHM10]; and the traveling salesman problem is
shown to admit this methodology in [BDT09]. As we saw in Chapter 2, the latter work
actually generalizes the concept of a mortar graph to graphs of bounded genus and gives
an outlook on even further generalizations. In the current chapter, we present the first
implementation of a mortar graph/brick-decomposition for planar graphs and use it to
obtain a PTAS for the Steiner tree problem. We hope that this implementation will
prove useful for other problem domains, such as the ones mentioned above, as well.

Relation to Bounded-Treewidth Algorithms

The main idea of the PTAS of Borradaile et al. is to first find the mortar graph, then
decompose it into parts of bounded dual radius, called parcels, and then apply dynamic
programming to each of the parcels. The decomposition into parcels is in the nature of
Baker’s work [Bak94] and the dynamic programming is very similar to algorithms on
graphs of bounded treewidth or branchwidth, see e.g. [BK08a]. In fact, planar graphs
of bounded dual radius have bounded treewidth (though the situation here is somewhat
different since we also have to deal with the bricks). Implementations of algorithms
on graphs of bounded treewidth have been studied several times in the literature, see
e.g. [ADN05] and [KvHK02]. Recent surveys are given by Hicks et al. [HKK05] and Bod-
laender and Koster [BK08a]. These algorithms depend exponentially on the treewidth of
the underlying tree decomposition and hence can only be applied if a tree decomposition
of small width is known for the input graph. However, in our case, we only need to apply
these algorithms to the parcels, which are parts of the mortar graph, which in turn can
be (and usually are) much smaller than the input graph. Hence, we are able to attack
very large problem instances, with up to one million vertices, see Section 3.3.

Contribution and Outline of this Chapter

In this work, we make a first attempt to bridge the gap between the theoretical world
of approximation schemes and practice. Our aim is not to beat the current heuristics
and exact solvers for the Steiner tree problem but to present a new approach based on
deep theoretical results, discuss its current limitations, and give an outlook for its pos-
sible future use. We had to apply several modifications and non-trivial implementation
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3 Engineering a Planar Steiner Tree PTAS

techniques to make an implementation possible at all. These techniques comprise a main
part of our contribution and are described in Section 3.2; they build the main focus of
this paper. Before we get to our implementation, we shortly describe the original PTAS
and its main implementation challenges in Section 3.1. In Section 3.3, we present our
experimental results, which well exceed our own expectations! In our experiments on
FST-preprocessed instances2 from the SteinLib library [KMV01], we are on average only
about 1% away from optimum and on our randomly generated test instances, we are
able to handle instances with up to one million vertices. To see how our implementation
of the PTAS compares to one of the best heuristics, we also implemented a version of
the batched 1-Steiner heuristic [GRSZ94]. While this heuristic still beats our method on
many instances (within the range of parameters that we chose for our tests), we observe
that on large instances, we are able to produce solutions that are nearly as good in much
less time. Also, we obtain additional slight improvements by combining these two meth-
ods. We present a thorough experimental evaluation of the various parameters of the
PTAS in order to gain a better understanding and a deeper insight into their empirical
effects. Finally, in the last section, we give a short summary and an outlook on possible
future work.

3.1 The PTAS and Its Challenges
In this section, we first review some properties of the PTAS of Borradaile et al. [BKM09]
and its most important implementation challenges before we go on to explain our mod-
ifications and implementation techniques.

3.1.1 The Parameters of the PTAS
A detailed review of the PTAS along with formal definitions of the mortar graph and
the bricks is given in Chapter 1. We briefly recall the most important concepts and
parameters. Let the input graph be G = (V,E), having n vertices and m edges, let
R ⊆ V be the given set of terminals, and OPT be the length of an optimal Steiner tree
of R in G. We denote the mortar graph by MG and recall its most important properties
below:

(i) `(MG) ≤ αOPT;
(ii) there exists a Steiner tree T for R in G such that `(T ) ≤ (1 + cε) ·OPT; and
(iii) for each brick, the part of T in the interior of B intersects MG in at most θ vertices

called portals.

Here, α and θ are constants that depend polynomially on ε−1 and c is an absolute
constant that is not specified exactly. Mote that the properties mentioned above par-
tially follow from the powerful Structure Theorem 1.7 by Borradaile et al. [BKM09].
Another parameter that plays into the mortar graph construction is κ, the spacing of
2These are rectilinear instances that were preprocessed with GeoSteiner [WWZ03], a software for com-
puting full Steiner tree (FST) sets. For a description of the algorithm see [War97, WWZ00].
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3.1 The PTAS and Its Challenges

. parameter usage theor. our typical
(keywords) value strat. values

α weight-factor of MG 9ε−1 actual val. X 1–3
κ spacing of super-columns O(ε−3) Sect. 3.2.1 X 5–20
θ # of portals o(ε−7.5) parameter × 5–10
η dual radius of parcels O(ε−2) Sect. 3.2.2 X 2–6
γ error-factor of parcel decomp. ηα−1ε parameter X 2–3
ξ cut size/treewidth in DP 2θη + 1 actual val. X 15-30
λ max. table size of DP O(4ξ) parameter × 10000/ε
ε total error parameter - - 0.01–0.06

Table 3.1: A table of the parameters of the PTAS. The second column specifies the part
of the algorithm in which the parameter is used; the fifth column specifies
if our strategy could theoretically violate the approximation guarantee: a ×-
sign means that this is the case; and in the last column we give estimates on
values that we typically observed or used in our experiments.

the super-columns: recall that in order to construct a mortar graph, we first find a strip-
decomposition, identify a number of columns in each strip and select every κth column
to be a super-columns; the mortar graph consists of the strip-boundaries together with
the super-columns. See Sections 1.5.1 and 3.2.1 for further details. The mortar graph
and the bricks are illustrated in Figures 1.3 (a)–(c) on page 14. See also Figure 3.10 on
page 65 for a large example of an actual mortar graph.
After MG is constructed, it is decomposed in the nature of Baker’s approach [Bak94]

into a number of parts, called parcels, with the property that each parcel has bounded dual
radius, namely, at most equal to a parameter η. The total weight of the parcel boundaries
is bounded by α

η OPT ≤ ε
γ OPT for a constant γ if we choose η = αγε−1 = O(ε−2). This

way, one may add the parcel boundaries to the final solution without violating the
approximation guarantee.
Finally, A dynamic programming (DP) algorithm is presented that finds optimal

Steiner trees in the brick-contracted graph B÷(P ) for each parcel P (see Figure 1.3 (d)).
It is shown that the size of the cuts that are considered in the DP – that we impre-
cisely but for convenience call treewidth of the instance – is bounded by a constant
ξ = 2θη + 1. The DP runs in time exponential in ξ. Afterwards, the solutions of the
parcels are connected using the parcel boundaries; and the Structure Theorem 1.7 by
Borradaile et al. [BKM09] guarantees that the constructed solution is close to optimum.
See Section 1.5 for further theoretical details and Section 3.2 for implementation-level
details of the algorithm.

3.1.2 Main Challenges

The “official” running time of the PTAS is O(n logn), not specifying the hidden con-
stants. But in order to ensure that the solution is within a factor of (1+ε) of the optimal
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3 Engineering a Planar Steiner Tree PTAS

solution, the constants in the algorithm have to be chosen appropriately. Table 3.1 gives
an overview of the involved parameters and constants of the algorithm and how they
are/should be chosen.
As one can see, the constants tend to get extremely large for even fairly large values

of ε, such as 0.5; and some of them are not even specified concisely. The most dramatic
problem occurs in the dynamic programming: the table size is the number of non-
crossing partitions of at most ξ = 2θη+1 elements, which is by a Catalan bound within
O(4ξ) = O(2ε−9.5) [BKM09]. Now noticing that, say, the 15th Catalan number is already
around 10 million, the 20th around 6.5 billion, and that in order to calculate the table
entries for a node, each pair of table entries of the child nodes have to be considered, it is
pretty much impossible to implement the PTAS as it is specified in theory, even if these
constants are chosen to be extremely small. So, besides the challenge of constructing
the mortar graph and the decompositions efficiently, the most important challenge of
an implementation is to modify the algorithm and find compromises so as to make the
dynamic programming work in practice.

3.1.3 Our Approach
An important observation that we made is that the constants specified in [BKM09] are
worst-case constants; for a given instance in practice, one can compute a lower bound
on the solution value and choose the constants according to this value. It turns out
that, on all tested instances, the constants may be chosen to be much smaller. The only
constant that cannot be chosen easily according to this rule is θ, the number of portals
on the brick boundaries. In fact, in order to guarantee a (1 + ε)-approximate solution –
according to the analysis given in [BKM09] – this constant has to be chosen to be very
large. We decided to choose this value empirically; it turns out that even for very small
values of θ, like 5 or 8, the solution is well within the required approximation bounds –
in fact, oftentimes very close to optimum (see Section 3.3)! The dynamic programming
tables still become very large. In order to get reasonable running times, we decided
to introduce a new parameter λ to set a bound on the maximum allowed size of the
DP-tables. We choose this parameter as a function of ε to reflect the need for larger
table sizes as ε decreases. In order to achieve good solutions, even with these bounds, we
employed several techniques that are described in the following subsections. The running
time of our implementation is O(n2 logn+nλ2) where the first term originates from the
mortar graph construction and the second term from the dynamic programming. But
as can be seen in Section 3.3, the empirical running time of our DP is well below what
one would expect from O(nλ2).

3.2 Our Implementation
We break down the description of our implementation into four main parts: the construc-
tion of the mortar graph, the decomposition into parcels, the dynamic programming, and
the lifting, i.e. putting everything together and creating a valid solution. In what follows,
each of these stages is discussed in detail.
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3.2 Our Implementation

3.2.1 Constructing the Mortar Graph
We refer to Section 1.5.1 for a detailed algorithmic description of the mortar graph
construction along with figures. In what follows, we complement this description by
giving some implementation-level details and considerations.

Main Data Structures We implemented the program in C++ using the Standard
Template Library (STL). We defined a structure called EmbeddedGraph as our main data
structure that stores a combinatorial embedding of a graph; it contains three main
arrays, one for the edges, vertices, and faces of the graph, respectively. The input is
undirected but each edge is stored as a pair of directed edges having a pointer to each
other. Each directed edge knows its head and tail vertices and the faces to its left and
right. A directed edge (v0, w0) has a pointer to its next and previous vertex edges,
(v0, w1) and (v0, w−1), regarded in clockwise order, and also a pointer to its next and
previous face edges, (w0, v1) and (v−1, v0), counted in counter-clockwise order, where an
edge is always associated with the face on its left. Each vertex has only a pointer to
its first outgoing edge and its degree. Likewise, each face has only a pointer to its first
edge and its degree, i.e. the number of edges on its (not-necessarily simple) facial walk.
The input may be given “face-wise”, i.e. specifying the facial walks in counter-clockwise
order, or “vertex-wise”, i.e. specifying the adjacent edges of each vertex in clockwise
order. Note that with this data structure, we have access to the primal and dual of the
graph simultaneously since we have defined them on the same set of edges: a directed
edge that connects two vertices in the primal is the same edge that connects the face
to its left with the face to its right in the dual. We also make use of an additional
data structure named FastGraph that simply stores a graph as an adjacency list. In
the following, we denote the weight of an optimal solution by OPT and the weight of a
lower-bound, by LB. We compute LB as half the weight of a 2-approximation.

Creating a Split 2-Approximation The first step of the mortar graph construction is to
find a 2-approximate Steiner tree of the input. We accomplish this task using Mehlhorn’s
algorithm [Meh88] in O(n logn) time (see Section 1.2). The 2-approximate Steiner tree
has to be split along its Eulerian cycle, in which each edge is traversed exactly once
in each direction, thus adding a new face to the graph, which may be regarded as the
outer-face of the graph (see Figure 1.4 (a)–(c)). We create a copy of the input and
split the tree in this copy in linear time (having a copy not only simplifies restoring the
original solution but is also important in the next step).

Decomposition into Strips We start with the whole graph and the boundary of its
outer-face, as described above; if there exists a subpath of the current outer boundary
that is not ε-short, we determine a smallest subpath violating the condition, find a
shortest path between its endpoints, and separate it from the current graph, storing it
as a new strip (see Figure 1.4 (d)). Klein [Kle06] describes an O(n logn)-time algorithm
for the strip decomposition using dynamic trees (see, e.g. [TW05]) and his multiple-
source shortest-paths algorithm [Kle05]. We decided to follow the main parts of the
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algorithm as given in [Kle06] but instead of using dynamic trees, which cause a large
constant overhead, we used Dĳkstra’s algorithm [Dĳ59] once from each relevant vertex,
resulting in a quadratic-time algorithm. This implementation is fast enough for (almost)
all of our instances. An important implementation detail is that the shortest paths that
are used to separate the strips might actually overlap with some parts of the current
outer boundary and thus create tree-like parts on the boundary; these parts have to be
handled appropriately in an implementation. Note that since this algorithm separates
the strips from the graph, it gradually destroys it. We store the strip boundaries in a
table and throw away the split copy of the graph after this step is finished.

Adding Super-Columns The next step is to divide each strip into a number of bricks
by adding super-columns. In each strip, we find a shortest path from every vertex on
the south boundary to (any vertex on) the north boundary. This can be done by a single
shortest-paths computation in each strip in O(n logn) total time [Kle06]. From this, we
extract the set of columns and super-columns according to a parameter κ as described in
Section 1.5.1 (see Figures 1.4 (e)–(d)). This way, it is ensured that each brick contains
at most κ columns, and furthermore, that the total weight of the super-columns is at
most κ−1 times the total sum of all columns.
The effect of the parameter κ is two-fold: on one hand, the larger κ is, the larger

will be the bricks and so, with a fixed number of portals, the best possible solution in
the portal-connected graph might become worse; on the other hand, the smaller κ is,
the larger is the sum of the weights of the super-columns, which are added to the final
solution in the theoretical analysis. In [BKM09], κ is chosen as O(ε−3) so as to guarantee
that the sum of the weights of the super-columns is at most O(εOPT). We choose κ as
follows: let SC be the total sum of the weights of all columns; we set κ0 = 3SC

εLB ; in each
strip, we determine the smallest κ ≤ κ0 such that the sum of the weights of the resulting
super-columns is at most κ−1

0 times the sum of the weights of the columns in that strip.
This way, we guarantee that the sum of the weights of all super-columns is at most
κ−1

0 SC ≤ ε
3 OPT while choosing the κ for each strip as small as possible. Additionally,

we benefit from the fact that we do not automatically add the super-columns to the final
solution and so do not necessarily have this extra-weight added to our solution.

Constructing the Mortar Graph and the Bricks We keep a boolean vector that spec-
ifies for each edge of G if it is included in the mortar graph or not (this vector is filled
in the steps above). Then we construct the mortar graph as a new EmbeddedGraph
“vertex-wise” by going over the vertices of G and adding their adjacent mortar edges
in clockwise order while keeping maps between original and mortar vertices and edges.
Afterwards, we scan each face of the mortar graph and determine if the corresponding
part in G includes some edge that is not a mortar edge; in this case, we have found a
new brick graph, which we store as a FastGraph since its embedding is not needed later
on. The theoretical algorithm requires that the boundaries of the bricks are split so that
each one forms a simple cycle that corresponds one-to-one with its mortar face bound-
ary; this way, it is ensured that the portals lie on the outer boundary of the brick. We
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Figure 3.1: (a) A planar graph with black vertices and solid lines and a breadth-first-
search tree of the dual represented with white vertices and dashed lines;
(b) a parcel decomposition corresponding to this BFS tree, rooted at face f ,
separating after level 1 of the tree; the white faces constitute the first parcel
and the gray faces the second; (c) an illustration of a more complicated
situation where many parcels are created at only one separating level.

found out that this step is not necessary in practice and that it bears no disadvantage to
store the bricks without splitting their boundary and allowing some portals to be placed
inside the brick (which can only happen if the corresponding mortar face has a tree-like
part that goes inside the brick, cf. Section 3.2.3). See Figure 3.10 on page 65 for a large
example of a mortar graph.

Designating Portals The original portal selection algorithm is straightforward: for a
brick B, calculate the weight of the mortar boundary ∂B; start at some vertex on the
boundary and choose it as the first portal v0; then, walking along the mortar boundary,
whenever the weight of the current path exceeds `(∂B)/θ, choose the current vertex as
the next portal and reset the current path to zero. Our implementation differs in two
aspects: first, we only select such vertices as portals that are adjacent to at least one
non-boundary edge inside the brick; second, if we are to select a vertex that is already
chosen as a portal for this brick, we skip it and reset the current path length to zero —
there is no benefit in selecting a vertex as a portal twice. In the original algorithm, θ
has to be 10ε−2o(ε−5.5) but as we discussed above, we choose the value of θ empirically,
usually between 5 and 10.

Adding Portal Edges In the original algorithm, it is required to augment the mortar
graph as follows: for each face F of MG that corresponds to a brick, add a brick vertex
to F and connect it to the portals of F via zero-weight edges (this corresponds to the
operation B÷ in the theoretical description of the algorithm). We do not perform this
step explicitly; we add these portal edges to the graph, but do not incorporate them into
our EmbeddedGraph data structure. Instead, we store them in extra tables and treat
them as special edges. These edges play an important role in the dynamic programming
part of the algorithm.
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3.2.2 Decomposition into Parcels

The parcel-decomposition algorithm is in the nature of Baker’s decomposition [Bak94]
applied to the mortar graph: perform breadth-first search (BFS) in the dual and label
the BFS-layers periodically by 0, . . . , η − 1; this partitions the edges into η sets, and we
choose the one with the smallest total weight to be the set of parcel boundaries. Each
part of MG that lies between two consecutive parcel boundary levels is called a parcel
and is defined to include the boundaries (see Figure 3.1 (a)–(b)). Note that there might
be several parcels lying between the same two consecutive levels (see Figure 3.1 (c)).
The radius of the dual of each parcel is by construction bounded by η. Borradaile et
al. [BKM09] define η to be 18ε−2. In practice, we cannot afford η to be more than
about 5. The trick to achieve this is as follows: whereas in theory, it does not matter
at which vertex to root the tree, in practice, we search for a root-face that minimizes
the depth of the resulting BFS tree; furthermore, we are allowed to count faces that
only share a vertex together also as adjacent (cf. [Tam03]), see the next paragraph and
Figure 3.2. These two techniques alone often result in a very small tree depth so that no
parcel-decomposition is necessary at all. Additionally, we apply the following: instead
of first setting the value of η, we take the error factor γ as a parameter and calculate
the maximum allowed parcel boundary size PB as εLB

γ . Then, starting at the mid-level
of the BFS tree, we look in both directions for one level at a time and select the first
level whose total edge-weight is not more than PB. This way, we try to split the tree
as evenly as possible at some level that complies with the given weight-bound, if such
a level exists. Currently, we have not implemented a strategy that tries to choose more
than one separating level for the parcels since our strategy is sufficient for our test cases,
and we do not expect it to be often possible to choose more than one separating level
while remaining within the given bound PB. We store each parcel by storing the status
of each edge of MG in the parcel, without making an explicit new copy of the graph.

About Vertex-Degrees The original algorithm assumes that each vertex of G has max-
imum degree 3. This can be achieved easily by splitting vertices of higher degree and
creating zero-weight edges. We chose to not split the graph initially; we only split the
vertices when it is needed. Firstly, this decision considerably accelerates the mortar
graph construction; additionally, it turns out to be very useful in the parcel decomposi-
tion: as already mentioned above, when searching for a BFS-tree with minimum depth,
we are allowed to cross vertices, counting faces that only meet at a vertex as adjacent
(see Figure 3.2 (a)–(b)). This results in trees of considerably smaller depth. After the
tree with minimum depth is selected, we traverse the tree and split the vertices at the
points where they are crossed, creating an actual zero-weight edge that makes the cor-
responding faces adjacent (see Figure 3.2 (c)). So, after these splittings, our chosen
tree becomes an actual BFS tree of the dual graph. Similarly, after selecting the parcel
boundary levels, we split the vertices on these levels to ensure that the boundary of each
parcel becomes a simple cycle. In other parts of the algorithm, we also only split vertices
when it is really needed to have bounded degree and mention it wherever applicable.
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Figure 3.2: A planar graph with black vertices and solid lines and a breadth-first-search
tree of the dual, represented with white vertices and dashed lines; (a) the
depth of the dual BFS-tree rooted at face f is 3; (b) if “crossing vertices” is
allowed, the depth of the tree becomes 2; (c) after splitting vertex v accord-
ingly, the tree becomes a valid dual tree of depth 2; note that, e.g., vertex w
needs not be split; (d) splitting a vertex in the primal tree: the solid edges
are in the primal tree and the dashed edges are not; it is only necessary to
establish a maximum degree of 3 w.r.t. to the primal tree edges.

Constructing the Primal Trees and Preparing the Parcels It is a well-known fact
in graph theory that the set of edges not included in a spanning tree of the dual of a
planar graph builds a spanning tree in the primal planar graph (see Figure 3.3 (a) and
Observation 2.3). We consider this primal tree for each parcel P and add the first portal
edge of each brick to it to obtain a primal tree for B÷(P ). We make sure that every
vertex of this tree has degree at most 3 by splitting the vertices of higher degree using
zero-weight edges if necessary (see Figure 3.2 (d)). If the parcel contains a terminal,
we root the tree at a terminal. We add an auxiliary root edge to the tree to ensure
that the final solution of the parcel is connected. In the original PTAS, it is stated
that the weight of the parcel-boundaries has to be set to zero and an algorithm is given
to add some terminals to these boundaries so as to ensure that, at the end, we get
a connected solution by adding the parcel boundaries to the solution. We do set the
boundary weights to zero but decided to not add new terminals; we describe in the last
part of this section how we create a connected solution while trying to avoid including
the whole parcel boundaries as originally specified.

3.2.3 Dynamic Programming

The dynamic programming part of the PTAS is based on the following observation: for
a directed edge e = (v, w) of the primal tree of a parcel, consider the subtree Te of the
primal tree rooted at w; this subtree is separated from the rest of the graph by a cut
Ce calculated as follows (see Figure 3.3): consider the faces FL and FR to the left and
right of e; the path connecting FL and FR in the dual BFS-tree is the desired cut and
has at most 2η edges since the depth of the tree is η. But each face may contain up to
θ portal edges, so the total size of Ce, including e itself, is at most 2θη + 1, which is a
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Figure 3.3: A planar graph with black vertices and solid lines and a breadth-first-search
tree of the dual represented with white vertices and dashed lines; (a) the
primal tree rooted at vertex r is indicated in bold solid lines; the path con-
necting the left face of edge e to its right face in the dual BFS tree is indicated
in bold dashed lines; (b) the subproblem corresponding to edge e; the cut
Ce that separates this subproblem from the rest of the graph is drawn with
bold solid lines.

constant. Hence, in theory, we may enumerate over all possible non-crossing partitions
of Ce and calculate the optimal solution of the partition via dynamic programming. The
optimal solution of a partition is a forest of minimum weight such that each terminal
of Te is included in the forest and each tree of the forest has at least one edge in Ce.
If Te contains the first portal edge of a brick, that brick has to be considered in the
solution for Te, too. The value of a solution is twice the sum of the weights of edges
of the solution inside Te plus (once) the weight of the edges selected from Ce. At the
end of the DP, the final solution value will be divided by 2. The details of the dynamic
programming and its implementation are given below.

Dealing with Partitions In the current state of our program, we assume that the largest
cut size that we have to deal with is 64 (which is the case in all of our test cases; in
fact, sets of size more than 30 are already very hard to deal with since the number of
their partitions is extremely large). We store a subset of edges as a bitset in an unsigned
64-bit long integer. A partition is stored as a tuple of such bitsets where the first set
specifies which edges are included in total in this partition. We call this first set the
inclusion set of the partition. Each subsequent set specifies one part of the partition.
Besides the first set, the remaining sets are always sorted from large to small according
to their unsigned integer value.

The Base Case The base case of the dynamic programming occurs at the leaves of the
primal tree. If a leaf is an edge e = (w, v) of MG, we simply enumerate over all subsets of
non-zero edges adjacent to v and store the solution together with the zero-weight edges.
If v is a terminal, we make sure that all stored solution sets are non-empty; otherwise,
we make sure that an empty solution, without the zero-weight edges, is also stored.
If the edge e is a portal edge of a brick B, we proceed as follows: first, for all subsets of
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portals of B, we calculate the optimal solution via a dynamic programming algorithm for
Steiner tree in planar graphs with all terminals on one face by Erickson et al. [EMAFV87].
This algorithm runs in time O(θ3 · n + θ2 · n logn); however, determining the optimal
Steiner tree for all subsets of portals requires O(2θθ2 ·n logn) time. Our case is slightly
different from Erickson et al. [EMAFV87] and from Borradaile et al. [BKM09] since we
did not split the boundary of the bricks, and therefore not all portals lie on the outer face.
But this is not a problem since the non-boundary portals can be mixed in via the general
DP algorithm for Steiner trees of Dreyfus and Wagner [DW72] that runs in total time
O(3θ · n logn) for all subsets. If θb is the number of boundary portals, θn is the number
of non-boundary portals, and θ = θn + θb, the total time our algorithm requires to find
an optimal Steiner tree for all subsets of the portals is O(3θnθn · 2θbθ2

b · n+ 2θ · n logn).
This is between the two running times mentioned above but usually much closer to that
of [EMAFV87] since the number of non-boundary portals is usually small. Also, recall
that θ can practically not be chosen to be more than 10 and is usually set equal to 5 (cf.
Section 3.3); hence, this algorithm is indeed quite fast in practice.
After the solution for each subset is calculated, we look at each non-crossing partition

of the portals (which are precomputed and stored for each i = 0, . . . , θ) and store as
its value the sum of the values of the parts it contains. An important improvement in
this stage is that we only store the solutions of such partitions of the portals for which
the optimal Steiner trees of the parts are disjoint; if the trees intersect, they actually
impose another partition on the portals that might even have a better solution and is
considered at some point of its own. Even though checking the disjointness of the trees
causes some computational overhead, this measure usually reduces the number of stored
solutions considerably and results in a significant reduction of the total running time.

Solving the DP At a non-leaf edge e = (w, v), the subproblem of Te contains one
or two subproblems Te1 and Te2 corresponding to edges e1 = (v, v1) and e2 = (v, v2)
of the primal tree. Let C0 be the set of edges adjacent to v, Ce1 and Ce2 be the cuts
corresponding to Te1 and Te2 , and Ce be the cut corresponding to Te (see Figure 3.4 (a)).
In order to construct the DP table for Te, the original algorithm tells that one has to
look at every triple of partitions (S0, P1, P2) where S0 is a subset of C0, P1 is an entry
from the solution table of Te1 , and P2 is an entry from the solution table of Te2 ; if some
triple (S0, P1, P2) is consistent, as defined below, then one calculates the merged partition
resulting from merging S0, P1, and P2 and stores it along with its value in the solution
table of Te. For i = 1, 2, let Si be the inclusion set for Pi; a triple is considered consistent
if: (i) for each pair (i, j) ∈ {0, 1, 2}2, we have that Si∩ (Ci∩Cj) = Sj ∩ (Ci∩Cj), i.e. the
partitions have the same set of edges interconnecting v and the subproblems; and (ii)
each subset in the merged partition of S0, P1, and P2 contains an edge from the outer
cut Ce; see Figure 3.4 (b). The latter condition ensures that each subset reaches the
outside and will eventually be connected to the solution tree.
For an efficient implementation, we proceed as follows: for each edge of the primal

tree, we store a partition table and a solution table (as C++ STL-vectors). For the base
cases of the DP, the values for these tables are computed as described in Section 3.2.3
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Figure 3.4: (a) Illustration of a nonleaf edge e = (w, v) in the DP with children e1 =
(v, v1) and e2 = (v, v2); the cut C0 is the set of all edges adjacent to v, the
cut Ce is indicated with bold lines, the cut Ce1 consists of all edges attached
to the subproblem Te1 , and the cut Ce2 consists of all edges attached to the
subproblem Te2 ; (b) a triple of consistent solutions S0, S1, and S2 indicated
with bold lines and the result of merging them into a solution S for Te.

and sorted in such a way that the entries of the tables correspond to each other. When
solving an inner node Te, we first collect the cuts Ce, C0, Ce1 , and Ce2 and store them in
an array called CutMap so that each edge is stored exactly once. We make sure that in
the CutMap, the order of edges, from right to left, is as follows: (1) the outer edges Ce;
(2) the remaining edges of Ce2 , i.e. Ce2 ∩ (Ce1 ∪C0); (3) the remaining edges of Ce1 , i.e.
Ce1 ∩C0; (4) the remaining edges of C0. Recall that our data structure for partitions is
basically a collection of bitsets, where the first bitset is the inclusion set of the partition.
Now, if we could make sure that the order of the edges in these bitsets corresponds to
the current CutMap and order the partition tables according to their inclusion set, all
partitions of Ce1 that include the same subset of C0 would appear consecutively because
the corresponding bits are the leftmost bits of the inclusion sets; similarly, all partitions
of Ce2 that include the same subset of C0∪Ce1 would appear consecutively; in particular,
we could use binary search to look for consistent triples! All we have to do is to remap
the partition table of the left and right child to correspond to the current CutMap and
sort them (along with their solution tables) according to the unsigned integer value of
their inclusion sets.
Now, in order to find consistent triples, we can first go over all possible choices of

S0 as described in the base case of the DP and build the corresponding bitmask. Then
we can find the first position in the table of Te1 that matches S0 by binary search and
examine consecutive entries of the table until the first mismatch. Each examined entry
corresponds to a partition P1 that is consistent with S0; we build the merged bitmask of
S0 and S1 and look it up by binary search in the table of Te2 . This way, we can identify
consistent triples very efficiently.
After a consistent triple has been found, their subsets have to be merged to form

a partition for Te. We implemented a simple bit-manipulating merging algorithm to
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accomplish this. If the number of the subsets is k and the number of edges of the
CutMap without Ce is b, our implementation runs in time O(min(k, b)k). Since both k
and b are constants, this is a constant running time (recall that we do not allow the
CutMap to have size more than 64 and that its real size is usually much less).The value
of the solution is the sum of the values of the solutions chosen in the triple. This way,
each edge internal to Te is counted twice and each edge in Ce is counted once, as desired.

Managing the Partition Table As already mentioned, we set the maximum allowed
table size to be λ. At each node, we only store the λ solutions with the smallest value.
In order to manage the table efficiently, we use a balanced binary search tree (a C++
STL-map) to store the set of partitions currently found for this node. This way, when a
new partition is found, it is easy to check if it is already contained in our table, if its
value needs to be updated, and if it may be inserted into the table at all due to the
mentioned size constraints. We also keep a reverse map, indexed by the solution values,
so that the value of the longest stored solution can be found quickly. After a node is
completely processed, these maps are copied into arrays (i.e. the STL-vectors of the
partition and solution tables mentioned earlier) and emptied to be reused for the next
node. Also, the partition tables of the children of the current node may be freed at this
point in order to save memory (but not the solution tables since they are needed for
reconstructing the solution).

Ensuring Good Solutions Keeping only the λ smallest solutions might not always
result in very good solutions. In fact, it might happen that at later stages of the DP, no
solution can be found at all. In order to make sure that (good) solutions are found, we
always include the partition that corresponds to the 2-approximation in our partition
table. In order to do so efficiently, we first have to do some preprocessing: we consider
the intersection of the 2-approximation with the current parcel and call this forest T2; we
eliminate zero-weight cycles in the parcel by deleting zero-weight edges that are not part
of T2 and then augment T2 by all the zero-weight edges that are connected to it. Note
that since the parcel boundaries have zero-weight, this step makes sure that T2 becomes
a tree. We label the nodes of T2 in a post-order traversal and additionally, store at
each edge, the smallest of all labels that occur in its subtree. Using these labels, we can
easily decide in constant time whether two nodes remain in the same partition of T2 if an
edge of T2 is removed. This information can be used, in turn, to calculate the partition
corresponding to T2 at each node of the dynamic program in constant time using bit
manipulations (in fact, linear in the number of edges in the CutMap). This calculation
needs to be done only once per node of the primal tree; afterwards, we just have to make
sure never to throw away the smallest-value solution that corresponds to this partition
from our table. Adding this feature to our program is one of the main reasons why it
works so surprisingly well, see Section 3.3. The value of the 2-approximation intersected
with the current parcel also serves as an upper bound: any solution with a larger value
may be neglected.
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Handling Portal Edges Portal edges pose a special complication to the dynamic pro-
gramming: on one hand, they are zero-weight edges, so one would not want to waste
time and space in enumerating all of their subsets at each node; on the other hand, if
they are always included, they are only consistent with partitions that also include them
and hence require solutions to go through bricks, which might (and usually does) violate
optimality; or if handled somewhat differently, they might impose every portal to be
connected to the outer cut, which also violates optimality. We have developed several
strategies to deal with portal edges but currently, the basic strategy of enumerating over
all subsets of portal edges, i.e. treating them as non-zero edges, is our fastest and best
strategy.

3.2.4 Creating a Connected Solution
After having solved each parcel separately, we have to make sure that our solution is
connected. At worst, we could include the complete parcel boundaries, as specified
in [BKM09]. But we decided to take the disconnected solution as it is and connect it as
follows: first, we reduce the number of connected components by (conceptually) contract-
ing each connected component and starting to build the minimum spanning tree of the
distance network of the contracted graph by a method very similar to Mehlhorn [Meh88]
(actually, we just set the weight of edges included in the solution to zero, instead of
contracting them). When the number of connected components is reduced to some
predefined constant (currently 5), we find the optimal Steiner tree of the remaining
components using the algorithms of [EMAFV87] and [DW72] as described in the base
case of our DP for the bricks.
This way, our solution is always better than the originally proposed method of simply

adding all parcel boundaries; and since we are usually very close to optimum, accepting
this computational overhead does make a significant difference in the quality of our
solutions.

3.3 Experimental Evaluation
To evaluate our implementation we used test instances from the instance library Stein-
Lib [KMV01] as well as randomly generated test instances. From SteinLib, we focus
on results from FST preprocessed rectilinear graphs (cf. Section 3); optimal solutions
are known for these instances and can be used for comparison. The instances have
10, 20, . . . , 100, 250, 500, and 1000 terminals, and each size class contains 15 instances.
Since the instances are FST preprocessed, the total number of vertices of the instances
are only up to 3 times as many as the number of terminals (as opposed to a quadratic
number obtained from the Hanan-grid) and are very similar for each fixed number of
terminals; hence, we report on these instances by their number of terminals instead of
number of vertices. We use these instances to thoroughly investigate the influence of the
various parameters of the algorithm.
We also shortly report on the LIN class from SteinLib that consists of a number

of VLSI-derived instances where the optimal solutions are known as well. In the end
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of this section, we present our results on large randomly generated instances. All our
computations were executed on an Intel(R) Core(Tm) 2 Duo processor with 3.0 GHz and
4 GB main memory running under Ubuntu 2.6.22. Our C++ code has been compiled
with g++ 4.1.2 and compile option -O2.
We compare our method against the standard 2-approximation (which can always

be computed in at most a few seconds) and the well-established batched 1-Steiner
(1-St) heuristic, which is known to produce near-optimal solutions on many instance
classes [GRSZ94]. In spite of many heuristics and a few exact codes for the Steiner tree
problem, implementations are either not publicly available or are tailored to geometric
versions of the problem but not applicable to planar graphs. The idea of the 1-Steiner
heuristic is as follows: we start with a 2-approximation and for every vertex not in the
tree, we calculate its gain, i.e. the improvement obtained if the vertex is added as a
fixed Steiner point to the set of terminals; the vertex with the highest gain is added
to the tree and the procedure is repeated. In the batched version, we simultaneously
add all vertices with independent positive gains in each iteration; two vertices u, v have
independent gains if the gain of u does not change after v is added to the tree. Our im-
plementation of 1-Steiner runs in O(n2 logn)-time per iteration on planar graphs. The
number of iterations is at most 4 in practice.
Unless otherwise mentioned, we use the following standard parameter settings in our

tests: we set ε = 0.5, the number of portals θ = 5, the table size λ = 10000/ε, the
super-column parameter κ as described in Section 3.2.1, and the parcel decomposition
parameter γ = 2.

3.3.1 Varying ε

Figure 3.5 shows the average gap and time for the FST preprocessed rectilinear instances
of SteinLib for ε = 1, 0.5, 0.3, 0.1, and 0.05, respectively. The average is taken over
all 15 instances of SteinLib for each fixed number of terminals. We can see that the
solution quality improves monotonically with ε and that there is a nice trade-off between
computation time and solution quality. Note that the optimality gap is below 2.2% in
all cases, whereas the original “approximation guarantee” would be a gap between 5%–
100%. Our algorithm well outperforms the standard 2-approximate solution: whereas
the 2-approximation has optimality gaps above 5% on all cases (not drawn in the figure),
our solution is well below a gap of 1% for ε ≤ 0.1. One can also see that the 1-Steiner
heuristic mostly lies between the solutions for ε = 0.1 and ε = 0.3 but outperforms our
algorithm on the instances with 1000 terminals. On these instances, the heuristic takes
at most 9 seconds and is thus clearly the better choice. We also combined our method
with 1-Steiner by taking its solution as the initial tree for our mortar graph construction.
This way, we can improve upon the 1-Steiner solution by up to 2.4% in some cases, but
only slightly on average.
The slight irregularities for the cases with less than 100 terminals result from the fact

that the solution quality and time depend on the structure of the mortar graph and its
treewidth (cf. Section 3.3.4). It might be that some instance with fewer terminals has
a more complicated mortar graph with higher treewidth and hence pushes the average
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optimality gap and time of a particular class higher than a class with more terminals.

3.3.2 Increasing the Number of Portals
The parameter θ that specifies the number of portals in each brick is perhaps the most
delicate parameter of this PTAS; it is the main reason why we have to give up the a-priori
guarantee of the algorithm in our implementation. In theory, it has to be huge, namely
about O(ε−7.5); in practice, even setting it to zero would be basically fine since already
the 2-approximation is usually within a few percent of the optimum. On the other hand,
the table size of the dynamic programming part of the algorithm grows exponentially
with θ, and since we set the table size limits manually, we would have to choose this
limit to be very large – even for fairly small values of θ – in order to actually benefit
from increasing this parameter; but this, of course, would make the running time and
memory requirement explode. Judging from our empirical observations (cf. Section 3.3.1
and Section 3.3.8), it seems that our compromise solution of setting θ = 5 results in very
good solutions and reasonable running times. The experiments in this section support
this hypothesis.
We tested the FST instances from SteinLib with up to 250 terminals for ε = 0.5

and ε = 0.1 with θ = 5 and θ = 8. In order to minimize the effects of varying (and too
small) table sizes, we set the maximum table size for all these tests equal to one million3.
The results and a comparison to the 1-Steiner heuristic are given in Figure 3.6 (a) and
Table 3.3.
As one can see, the average optimality gaps are all well below 1%, even for ε = 0.5

with θ = 5. Decreasing the value of ε has a much stronger effect on the solution quality
of these instances than increasing θ: the results for ε = 0.1 are (almost) consistently
much better than for ε = 0.5. But for each fixed ε, the solutions do get better for
θ = 8 (this is not completely trivial since the table size limit could still distort the
results). The batched 1-Steiner heuristic needs at most 2 seconds on these instances and
performs somewhat better than the runs with ε = 0.5 but is outperformed when setting
ε = 0.1. The increase of the running times is not completely consistent in all cases since
it depends too much on the achieved structure and treewidth of the constructed mortar
graphs. But in most cases, especially the larger instances, the runs with θ = 8 take
considerably longer than the ones with θ = 5 – regardless of the value of ε. This is
indeed expected since the treewidth should grow linearly with θ; and even the slightest
increase in the treewidth can cause much longer running times (cf. Section 3.3.4).
We would also like to mention that within each FST preprocessed class of SteinLib

with a fixed number of terminals (remember, we take averages over 15 instances in each
class), there are some considerable discrepancies between the solutions of the various
instances, especially the running times. This is, again, due to the fact that different
instances (and different parameter settings) can have very different mortar graphs and
treewidths and thus require very different running times to be solved. In order to give
a more detailed account on this observation, we present the individual results for the
3We also ran some tests with our standard settings for the table sizes but the results were highly
distorted; further experiments regarding the table sizes are given in the next subsection.
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instances with 250 terminals in Table 3.4. As in all of this subsection, the table size used
in these tests are constantly set to one million. Luckily, as we saw in the experiments so
far, when we build averages on these classes, we do observe (mostly) consistent behavior.

3.3.3 A Closer Look at the Table Size

The actual required table size for the dynamic programming is proportional to the
Catalan number of order of the treewidth [BKM09]. Of course, we cannot afford such
huge dynamic programming tables; so, we had to introduce the parameter λ to specify
the maximum allowed table size. In our standard parameter setting, we set it equal to
10000/ε to reflect the need for larger table sizes with decreasing ε; naturally, this is not
really sufficient but it does work reasonably well in practice, cf. Section 3.3.1. But it still
causes unpleasant distortions like worse solutions for smaller values of ε or larger values
of θ on some, especially large, instances. In this subsection, we consider two experiments
to examine the effect of the table size somewhat more closely. These are summarized in
Figure 3.7.
In Figure 3.7 (a), we observe the effect of increasing the maximum allowed table size

from our standard setting, which is λ = 10000/ε, to λ = 106. One can see that, whereas
the improvement is oftentimes not particularly very much (especially remembering that
much longer running times have to be accepted, cf. Section 3.3.1–3.3.2), only the cases
with large memory demonstrate that increasing the value of θ actually improves the
solution.
Figure 3.7 (b) shows what percentage of the 15 instances in each class of the FST

preprocessed instances could be solved completely under the given table size limits; in
other words, it shows for how many of the instances the given maximum table size was
sufficient so that no potential solutions had to be thrown away in the dynamic program-
ming. It is clear in the figure that for λ = 106 considerably more dynamic programs
could be solved optimally. But it is also interesting to notice that more instances could
be correctly solved for the case ε = 0.1, λ = 105 than in ε = 0.5, λ = 20000. On the
other hand, the fact that for the case with 250 terminals and λ = 106, the value for
ε = 0.1 is somewhat better than ε = 0.5 can probably be attributed to the presumption
that the mortar graph of a particular instance turned out to be more complicated for
ε = 0.5 than for ε = 0.1.

3.3.4 The Influence of Treewidth

The most important factor that influences the running time and – since we bound the
table size – also the solution quality of the instances is the size of the cuts that separate
the subproblems in the dynamic programming. This corresponds, in fact, to the width
of the tree decomposition that is given implicitly by the primal tree of the current parcel
(see Section 3.2.2– 3.2.3). Note that this is not a tree decomposition of just the mortar
graph but that of the brick-contracted graph (see Figure 1.3 (e)). Somewhat imprecisely
and for the sake of convenience, we call the maximum size of these cuts, the treewidth
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of the current instance4. In theory, this value is bounded by 2θη + 1, where η is the
maximum breadth-first-search depth (or outerplanarity) of the parcels. In practice, it
is usually somewhat smaller. Figure 3.6 (b) shows the average treewidth of the FST
preprocessed instances of SteinLib for various settings of ε and θ. It is interesting and
somewhat unexpected to note that on these instances, for fixed θ, the average treewidth
is larger for ε = 0.5 than for ε = 0.1. This fact can also clearly be observed by comparing
the running times in Table 3.3. Apparently, the structure of the mortar graphs of these
instances turns out to be more complicated when constructed with ε = 0.5 than with
ε = 0.1.
Figure 3.8 demonstrates the direct exponential dependence of the table size and run-

ning time of the algorithm on the treewidth of the instances, regardless of the parameter
setting; in other words, the input and the parameters determine the treewidth and the
treewidth determines the running time. Note that λ, the maximum allowed table size,
is set to one million in this experiment.

3.3.5 Varying the Number of Super-Columns

After the “columns” of each strip are determined (see Section 3.2.1), every κth column
is taken to be a “super-column” and is added to the mortar graph. In the theoretical
analysis, it is important that the total sum of the weights of the super-columns does
not exceed O(εOPT) since they are assumed to be added to the final solution. In an
implementation, we don’t need to add all the super-columns to the solution and we let
the dynamic program decide about them. So, it is not absolutely necessary to keep this
weight bound; still, we described a strategy for selecting super-columns in Section 3.2.1
that obeys this bound while trying to keep κ as small as possible. In this subsection, we
compare this strategy against some fixed values of κ, namely 5, 10, and 20. The results
are shown in Table 3.5.
A small value of κ means that we get more and smaller bricks; this can lead to better

solutions. On the other hand, since the weight of the super-columns could get too high,
we lose the approximation guarantee inside the bricks (but we lose this guarantee anyway
because of θ). Indeed, we see in Table 3.5 that we obtain smaller optimality gaps for
smaller values of κ. We can also observe that our strategy is similar to the choice of
κ = 20 and, somewhat surprisingly, results in the best average running times. One
would expect longer running times for smaller values of κ – because having more bricks
should impose a larger treewidth; but this presumption is not completely confirmed
by the experiments on these FST preprocessed instances: only for the cases with 1000
terminals, we see that for κ = 5 we have much longer running times.

3.3.6 Creating More Parcels

The original PTAS has a parameter η = O(ε−2) that specifies how to split the mortar
graph into parts of treewidthO(η). It is very important that the total weight of the parcel
4The actual treewidth would, of course, be the minimum width minus one over all tree decompositions
of the parcel.
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boundaries does not exceed O(εOPT) since they have to be added to the final solution.
In our implementation, like in the case of super-columns, we do not automatically add
all parcel boundaries to the solution; we first assume that they are added and solve each
parcel separately; then we remove the parcel boundaries and reconnect the solution parts
by the strategy explained in Section 3.2.4. So, once again, it is not absolutely necessary
that the weight of the parcel boundaries is bounded by O(εOPT). We introduced a new
parameter γ that specifies the maximum allowed weight of the parcel boundaries to be
εOPT
γ (in fact, we use the lower bound εLB

γ , see Section 3.2.2). In our standard settings,
we set γ = 2. By lowering the value of γ, we might get more parcels and a smaller
treewidth for each parcel. We tested the FST preprocessed instances with γ = 2, 1, and
0.5 (we also tested γ = 1.5 but the results were either equal to the case of γ = 2 or
γ = 1). In Table 3.6, we see the results on some instances, in which a change actually
occurred.
One can see that the treewidth and hence the running time of the instances drastically

reduces if a smaller value of γ can lead to a better partitioning of the mortar graph into
parcels. But the optimality gap usually worsens: this is because creating a connected
solution out of many parcels, as described in Section 3.2.4, proceeds very similarly to the
2-approximation and can thus cause relatively large errors (the strategy of just adding
all parcel boundaries as in the theoretical description would be much worse). Note
that sometimes, e.g. the instances esfst1000fst02, esfst1000fst03, and esfst1000fst15, a
smaller value of γ can result in a larger or the same treewidth but with a different parcel
structure. This is due to the way we split the mortar graph into parcels: as described
in Section 3.2.2, we try to split the mortar graph as evenly as possible while obeying
the given weight bound on the parcel boundaries; but when we add the bricks, the tree
decomposition of the brick-contracted graph can still turn out to have a somewhat larger
width.

3.3.7 The LIN Instances from SteinLib

Tables 3.7 and 3.8 show the results of the VLSI derived instances LIN from the SteinLib
library. One can see that the batched 1-Steiner heuristic performs extremely well on
these instances. Nevertheless, on very large instances it needs a lot of time - sometimes
much longer than our PTAS. This is because its running time depends strongly on n
whereas our running time depends much more on the treewidth of the instance and the
parameter λ. See the next subsection for a further discussion about this matter. Another
curious observation is that our algorithm can hardly improve the 1-Steiner solution, when
we start with this solution instead of the 2-approximation; in both the FST preprocessed
instances (see Section 3.3.1) and the random instances (see Section 3.3.8), we get some,
albeit minor, improvements, but on these LIN instances there are almost none or only
very minimal improvements. One reason is surely the fact that the 1-Steiner solutions
of these instances are almost optimal. But otherwise it seems like the 1-Steiner solution
very much imposes its own structure on the dynamic programming; i.e. in order to
improve it, some drastically different solution structures have to be found that probably
have relatively large weight in the early stages of the dynamic programming and are thus
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thrown away due to space limitations. However, this is only a speculation and cannot
be firmly backed by data.

3.3.8 Results on Randomly Generated Instances

Our Solution 1-Steiner Combined
n |R| impr.(%) time (s) impr.(%) time (s) impr.(%) time (s)

10000 500 2.79 69 3.47 67 3.53 126
50000 500 3.15 148 3.86 1996 4.00 2132

100000 500 3.28 246 3.99 7423 4.03 7651
500000 500 3.05 1506 3.32 234758 3.49 236219
1000000 500 3.71 3668 - - - -

Table 3.2: Results for randomly generated test instances. The table columns show the
improvement upon the MST-based 2-approximation algorithm and the com-
putation time in seconds for (1) our PTAS implementation with ε = 0.5, (2)
the batched 1-Steiner heuristic, and (3) the combination of these two meth-
ods. The values shown are averages over 10 instances in each class. Due to the
huge running time, the 1-Steiner and Combined result for the case n = 500000
is only computed for one instance.

Results on our randomly generated test instances are shown in Table 3.2. The in-
stances are biconnected planar graphs generated using the Open Graph Drawing Frame-
work (OGDF) [OGD07]. It is remarkable that we can handle instances with up to one
million vertices in less than 1.5 hours of computation time. We can see that on these
large instances, our PTAS implementation is much faster than the 1-Steiner heuristic
while delivering solutions that are qualitatively very close to it. We achieve again slight
improvements when combining these two methods. Large instances with a relatively
small number of terminals appear often in practice and we observe that we can handle
such instances quite well: the reason is that our computation time strongly depends
on the size of the mortar graph and when there are few terminals, the mortar graph
tends to become small – even in a very large graph. In a sense, the mortar graph/brick-
decomposition identifies the most important parts of the graph in the current instance
and enables us to concentrate on these parts when searching for near-optimal solutions.
On very large instances, the mortar graph construction time can strongly dominate

the dynamic programming time – at least with our standard parameter settings. This
fact can clearly be seen in Figure 3.9 (a). The mortar graph construction has a time
complexity of O(n2 logn), whereas the dynamic programming runs in time O(nλ2). In
our standard settings, we have λ = 20000 and this is much smaller than n in this class
of instances. Using dynamic trees, one can improve the theoretical running time of
the mortar graph construction to O(n logn) (see Section 3.2.1) but at the cost of large
hidden constants in the O-notation. Implementing and applying dynamic trees to the
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mortar graph construction was beyond the scope of this work but would be an interesting
experiment for future work.
It is very interesting to observe that the dynamic programming time indeed grows

very slowly, even though we are considering instances in the range of ten thousand to
one million vertices. This is most likely due to the fact that our instances all have the
same number of terminals, namely 500, and so, the mortar graphs do not grow as fast
as n. Figure 3.9 (b) shows the average treewidth of the instances and one can see that
they are all actually very close to each other. Of course, the fact that λ is constantly
equal to 20000 on all tests is also an important factor that causes these small running
times.

3.3.9 Summary of Observations

We thoroughly examined the various parameters of the algorithm and in summary, made
the following observations. On FST preprocessed instances we could see a consistent
improvement in solution quality with smaller values of ε with average optimality gaps
of less than 1% for ε = 0.1 (whereas theoretically, this value of ε would only guarantee
an optimality gap of 10%). Increasing the number of portals, even slightly, resulted in
vastly deteriorating running times while bringing only little improvement; indeed, we
believe that setting θ = 5 is an appropriate compromise in solution quality and running
time. A main reason why increasing the value of θ does not help very much is that, in
general, we cannot afford to increase the table size proportionally (i.e. exponentially); it
is only with much larger table sizes that actual improvements are achieved by increasing
θ. On the other hand, we observed fairly small improvements by using large table sizes,
while having to accept much longer running times. This leads us to the conclusion that
increasing the table size by only a constant factor is not sufficient for large improvements,
whereas the increase in running time is significant.
We defined the treewidth of an instance as the maximum size of a cut that is considered

in the dynamic programming. We observed a direct exponential dependence of the
running time on the treewidth and also increasing treewidth values for increasing number
of terminals. Still, the values we empirically obtain are much lower than what is predicted
in theory.
Our strategy for choosing the value of the parameter κ that determines the selection

of super-columns turns out to have a similar effect to choosing rather large values of
κ close to 20 while obtaining very good average running times. It seems that smaller
values of κ result in somewhat better optimality gaps.
Decreasing the value of γ and thereby attempting to create more parcels seems to be

seldom successful. In cases where more parcels are actually created, we often observe
a significant improvement in running time in exchange for somewhat worse solution
quality.
Our randomly generated instances with a fixed number of terminals equal to 500

turned out to have parcel decompositions with similar treewidths and hence similar
running times in the dynamic programming part of the algorithm. The main factor
that dominates their running time is indeed the mortar graph construction. We are
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able to handle instances with up to one million vertices and produce solutions that
are qualitatively very close to the solutions of the 1-Steiner heuristic while our PTAS
implementation is up to a factor of 150 faster than the heuristic on large instances.

3.4 Conclusion and Outlook
We provided an implementation of a highly theoretical approximation scheme together
with a thorough experimental evaluation of its performance and the influence of its
various parameters. We hope that this evaluation helps us understand these param-
eters more deeply and that it can be a step towards designing better algorithms and
approximation schemes for these kind of hard problems on graphs – both in theory and
practice. We tried to get to the limit of practicality of algorithms that were generally
thought to be “purely theoretical”; and our experiments show that we can already ex-
ploit these “theoretical ideas” in practice today and that we might be able to get even
better practical fruits from them in the future.
The most interesting technical observation of this work was perhaps the fact that the

parameter θ, that specifies the number of portals in each brick, may be chosen to be very
small in practice while still delivering excellent results; in theory, this parameter had to
be huge in order to provide a rigorous approximation guarantee. Our experiments also
suggest that it might be possible to improve the theoretical analysis of the PTAS.
The most important factor that determines the quality and running time of the dy-

namic programming part of the PTAS is the parameter λ that specifies the maximum
allowed table size. In order to improve our implementation, one has to apply some ideas
to reduce the required table size in practice. One idea would be to consider each partial
solution in the current dynamic programming table, calculate a lower bound on the cost
that is needed to complete the solution and throw it away early on, if this lower bound is
too large. In very recent experiments, we tried to incorporate the trivial lower bound of
taking half of the 2-approximation but it did not bring any noticeable improvements. In-
corporating a strong and efficiently computable lower bound for the Steiner tree problem
in this PTAS is an important task for future work.
As we saw in Chapter 2, the planar (subset) TSP admits the methodology of the

PTAS implemented in this work, too. It would be very interesting to see how the PTAS
performs for this problem and especially, if one can drastically reduce the required table
sizes using the well-known lower and upper bounds for the TSP.
Interestingly, the structure and the techniques used in many FPT algorithms and

EPTASes are similar, especially on planar graphs; hence, it might be possible to attack
other FPT algorithms on planar graphs from a practical point of view as well using the
techniques introduced in this work.
Finally, on very large instances (such as in Section 3.3.8), we observed that the time

needed for the mortar graph construction can dominate the dynamic programming time.
For these instances, one could attempt to use dynamic trees such as top trees for the
mortar graph construction and see if one can improve the empirical running time.
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Figure 3.5: (a) The average optimality gap of FST preprocessed instances of SteinLib for
different values of ε and compared to the 1-Steiner heuristic; (b) the average
running time of these instances. The averages are taken over 15 instances in
each size class.
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Figure 3.9: (a) The average running time of our algorithm on the randomly generated
instances split into the dynamic programming time and the mortar graph
construction time. (b) The average treewidth of the our randomly generated
instances. Recall that we consider tree decompositions of the parcels, which
are subgraphs of the brick-contracted graphs; hence, their treewidth is much
more influenced by the number of terminals (and the parameters) than the
total number of vertices.
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3.4 Conclusion and Outlook

Figure 3.10: An unweighted graph on 128 vertices, 182 edges, and 50 black terminals.
A mortar graph with ε = 0.8 is indicated with thick blue and purple lines.
A Steiner tree that is calculated with our implementation with θ = 8 and
λ = 106 is drawn with dashed red and purple lines. The thick dashed
purple lines are the edges that are shared between the mortar graph and the
Steiner tree. Notice the bricks that actually contain parts of the solution,
i.e. the thin dashed red lines. This image was created using the OGDF
library [OGD07] and the yEd graph editor [yEd10]. 65





4 An O(n log2 n) PTAS for Steiner tree
among Obstacles in the Plane1

We consider the following network design problem: given a set of points in the plane and
a set of disjoint polygonal obstacles, find the shortest network interconnecting the points
and avoiding the interior of the obstacles. We refer to the given points as terminals and
to the obstacle vertices as corners and assume that no terminal is placed in the interior
of an obstacle. We let n be the total number of terminals and corners. The shortest
interconnecting network of the terminals will be a tree, a Steiner tree, and it might use
corners and additional vertices called Steiner points. Note that we use this term only
to refer to points that do not coincide with terminals or corners. This problem is called
the obstacle-avoiding Steiner minimum tree problem (Smto) or Esmto when we want
to emphasize we are using the Euclidean metric (see Fig. 4.1(a)).
Uniform orientation metrics are derived from λ-geometries. In a λ-geometry, one is

allowed to move only along λ ≥ 2 orientations building consecutive angles of π/λ. The
rectilinear or Manhattan metric corresponds to the 2-geometry and the octilinear metric
to the 4-geometry. We call the corresponding Smt problems λ-Smt or, when obstacles
are to be avoided, λ-Smto. In this case, the obstacle edges must obey the restrictions
of the given orientations, too (see Fig. 4.1(b)).
It has been a long-standing open problem whether these Smt problems among ob-

stacles admit a polynomial-time approximation scheme [Pro88, LZSK02, MS06]. With
the recent result of Borradaile et al. [BKM09] about Steiner trees in planar graphs, this
question can now be answered affirmatively for the Euclidean, rectilinear, and octilinear
metrics by combining a number of results in the literature (see below). However, the
resulting time complexity is O(n2 logn) whereas in order to obtain a near linear running
time, new ideas and more sophisticated techniques are required; this is the main con-
tribution of this chapter. Also, we obtain our result for all uniform orientation metrics.
Our approach is based on constructing a planar graph of size O(n logn) that contains
a (1 + ε)-approximation of the solution and then finding an approximate solution in
that graph. The total running time will be O(n log2 n). We widely use the notions of
spanners and banyans in our work (see below): informally, a spanner is a subgraph of
a given graph that preserves approximate shortest paths while having low total weight;
a banyan additionally preserves approximate Steiner trees. Along the way, we prove a
number of spanner results and other properties of Smtos both for the Euclidean and
uniformly oriented case.
Recall from Section 1.1.2 that the Smt problem and its many variations are also

of high practical relevance [FG82, HRW92, KR95, CKM+98, CD01]. Especially the
1This chapter is based on joint work with Matthias Müller-Hannemann [MT07, MT10].
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4 An O(n log2 n) PTAS for Steiner tree among Obstacles in the Plane

λ = 2 λ = 3 λ = 4

(b)(a)

Figure 4.1: (a) An example of Smto with 3 terminals and an obstacle with 3 corners,
i.e. n = 6; on the right we see a solution using 1 Steiner point; (b) examples
of λ-geometries.

geometric case with obstacles is very important in VLSI design, since there are usually
regions in the plane that may not be crossed by wire [GC94, ZW99]. Also, it is often
only allowed to route the tree along a rectilinear or octilinear grid and so, Smtos in
uniformly oriented metrics are required [Tei02, CCK+03, KMZ03, PWZ04, MS06].

Related Work

The Esmto problem is clearly NP-hard since it contains the Steiner minimum tree
problem without obstacles as a special case [GGJ77]. For the Smt problem without
obstacles, Arora [Aro98] and Mitchell [Mit99] were the first to present a PTAS. Rao and
Smith [RS98] improved the running time of Arora’s algorithm from O(n(1

ε logn)O(1/ε))
to O(2poly(1/ε)n+n logn) using banyans and this is the best running time known so far.
All these algorithms require a so-called “patching lemma”, basically saying that the part
of a solution that lies inside a given rectangle in the plane can be replaced by a part
that is not much longer, in such a way that it crosses the boundary of the rectangle at
at most a constant number of points. But in the presence of a large number of obstacles
inside a rectangle, any solution might be forced to cross the boundary of the rectangle
at a large number of points. Hence, these techniques can not be applied directly to the
case with obstacles.
Provan [Pro88] has shown how to approximate Esmto by an Smt problem in graphs

and derived an FPTAS for the special case when the terminals lie on a constant number
of “boundary polygons” and interior points. The first exact algorithm for Esmto is
given by Zachariasen and Winter [ZW99]. Note however that one has to be careful with
“exactness” since computing the length of an Esmt(o) requires the calculation of square
roots and thus, this problem is not even known to be in NP. But for the purpose of
approximation algorithms, this is not a problem since one can round the results to the
required precision.
The PTASes discussed above also apply to λ-Smts for all λ ≥ 2. The rectilinear and oc-

tilinear case have been shown to be NP-complete in [GJ77, MS07]. For general fixed λ no
proof has been published so far, though it is widely believed that these problems are hard,
too. Properties of uniformly oriented Smts have been studied by Brazil et al. [BTW00]
and exact algorithms have been proposed by Nielsen et al. [NWZ02]. Approximation
algorithms for rectilinear Smto have been proposed by Ganley and Cohoon [GC94] and
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for the octilinear case by Müller-Hannemann and Schulze [MS06, MS07]. For rectilinear
Smto with a constant number of obstacles, Liu et al. [LZSK02] presented a PTAS based
on Mitchell’s [Mit99] approach. The Smt problem with length restrictions on obstacles
has been studied by Müller-Hannemann and Peyer [MP03] in the rectilinear case, and
by Müller-Hannemann and Schulze [MS06] in the octilinear case, and constant-factor
approximation algorithms have been proposed.
As we saw in Chapter 1, the Steiner tree problem in planar graphs has very recently

been shown to admit a PTAS by Borradaile et al. [BKM09]. The running time of the
PTAS is O(n logn) with a constant that is singly exponential in a polynomial in 1/ε.
This immediately implies a PTAS for rectilinear, octilinear, and Euclidean Smto by
reducing these problems to the planar graph case using the following results from the
literature: the so-called Hanan-grid [GC94, Han66] for the rectilinear case, the result of
Müller-Hannemann and Schulze [MS06] for the octilinear case, and Provan’s construc-
tion [Pro88] together with the planar spanner result of Arikati et al. [ACC+96] for the
Euclidean case. However, in all these cases, the PTAS of Borradaile et al. has to be run
on a graph of size O(n2) and thus, the total running time will be O(n2 logn). In this
work, we show alternative constructions with running time O(n log2 n). We also briefly
discuss some methods that could possibly result in a reduction of the running time to
O(n logn).

On Spanners and Banyans

The visibility graph of a set of terminals and obstacles in the plane is the graph that
contains all straight-line connections between terminals and corners that do not cross
the interior of any obstacle (see Fig. 4.2(a)). A t-spanner of a set of points P is a
graph that contains a path between any two points of P that is at most a factor of
t longer than the shortest path between them. Spanners have been vastly studied in
the literature [Epp00b] and have often been used in the design of PTASes [RS98]. Of
particular interest to us are spanners of the visibility graph among obstacles in the plane
(see Fig. 4.2(b)). Clarkson [Cla87] showed how to construct a (1 + ε)-spanner of linear
size of the visibility graph in time O(n logn). A linear-sized planar spanner for both
the rectilinear and Euclidean metric has been shown to exist and to be computable in
O(n logn) time by Arikati et al. [ACC+96, Zeh02]. We show how to extend these ideas
to derive sparse planar spanners for all uniform orientation metrics within the same
time.
Rao and Smith [RS98] introduced the notion of banyans. A banyan is a graph that

contains a (1+ ε)-approximation of the Smt of a given set of points and whose weight is
at most a constant factor larger than the Smt. Rao and Smith showed how to construct
a banyan of size O(n) in time O(n logn) in the obstacle-free case.2

2Their construction was in fact more powerful as it included an approximate Smt for any subset of the
terminals.
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4 An O(n log2 n) PTAS for Steiner tree among Obstacles in the Plane

(a) (b)

Figure 4.2: (a) The visibility graph of a given point set with obstacles and (b) a spanner
thereof.

Contribution and Outline of this Chapter

The main result of this chapter is the following theorem:

Theorem 4.1. The Steiner minimum tree problem among disjoint polygonal obstacles in
the plane admits a PTAS in the Euclidean metric and in all uniform orientation metrics.
The running time is O(n log2 n), where n is the total number of terminals and obstacle
corners.

In order to prove Theorem 4.1, we show how to construct a planar banyan for Smto of
size O(n logn) in O(n log2 n) time by building on the framework of Rao and Smith using
new ideas and combining other results from the literature, especially the banyan-result
for planar graphs contained in the work of Borradaile et al. [BKM09]. An approxi-
mate Steiner tree can then be obtained on this planar graph using [BKM09]. Since the
algorithm in [BKM09] is exponential in 1/ε, so is our resulting algorithm.
The main difficulties that arise when obstacles are present are to deal with visibility

and the fact that only a subset of corners is included in the Smt, i.e. we do not know
which vertices of a spanner will be part of the Smt. In particular, a spanner might include
arbitrarily short edges between corners that are not part of the Smt and this causes an
important proof idea of Rao and Smith to fail. Roughly speaking, they show that in
the obstacle-free case, there is always a “long enough” spanner edge near non-negligible
Smt edges and so, they introduce a grid of candidate Steiner points in a neighborhood
around every spanner edge to capture these Smt vertices. Our main new algorithmic
idea is to use O(logn) layers of candidate Steiner points around each spanner edge, so
that we are guaranteed to find such appropriate points even when our spanner edges are
short. Another important difference is that we use planar spanners, so that afterwards,
we can use the algorithm of [BKM09] instead of building on Arora’s approach [Aro98] to
obtain our PTAS. We present our algorithm in Section 4.1 and then present two proofs
for the correctness of our algorithm for the Euclidean case in Section 4.2: one using an
analog of the so-called hexagon property [GGJ77] and another one using a generalization
of the empty ball lemma [RS98]. Even though our proofs follow the lines of the proofs of
Rao and Smith, they differ conceptually at some key points and other techniques have
to be used (see Section 4.2.1).
Afterwards, in Section 4.3, we turn our attention to uniform orientation metrics and

argue how the presented proofs can be modified to work for these cases, too. In Sec-
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4.1 The Algorithm

tion 4.4, we prove a variation of Arikati et al.’s planar spanner result [ACC+96] to apply
to uniform orientation metrics. In Section 4.5 we conclude with an outlook on how to
possibly reduce the running time to O(n logn).

4.1 The Algorithm

Our algorithm is summarized as Algorithm Smto-Ptas below. We are given a set of
terminals Z and a set of disjoint polygonal obstacles O as described in the introduction.
Let n be the total number of terminals and obstacle corners. In the first step, we find a
(1+ε1)-spannerG1 of the visibility graph of Z∪O using the algorithm of Clarkson [Cla87].
We argue in Section 4.4, that this algorithm also applies to all uniform orientation
metrics. The spanner G1 has n vertices and O(n) edges and can be found in time
O(n logn). Note that it is not needed to explicitly construct the full visibility graph.

Algorithm Smto-Ptas(Z,O, ε).
Input. a set of terminals Z, a set of disjoint polygonal obstacles O

in the plane, and the desired accuracy 0 < ε ≤ 1
Output. a (1 + ε)-approximation of the Smto of the terminals
Note. κ is a constant and can be ≤ 226 in the Euclidean and

≤ 50 in the rectilinear case, ε1 and ε2 have to be chosen
appropriately, e.g. ε1 = ε

52 and ε2 = ε
6 .

1. find a (1 + ε1)-spanner G1 of the visibility graph of Z ∪O;
2. let P0 = ∅;
3. for each edge e ∈ E(G1) and i = 0, . . . , dlog2 ne:

• let ` := `(e) and r := κ2i`/ε1;
• let C be a circle of radius r around the midpoint of e;
• place a grid with spacing δ(r) :== rε31/κ

2 inside C;
(the grid has ≤ 4κ4/ε61 = O(1) points)

• add these points to P0;
4. remove all the points from P0 that lie inside obstacles;

(let G2 be the visibility graph of Z ∪ P0 ∪O)
5. find a planar (1 + ε2)-spanner G3 of G2;
6. find a (1 + ε/3)-approximate Smt T of Z in G3;

(using the PTAS of Borradaile et al. [BKM09])
7. return T ;

Around each edge of G1, we consider dlog2 ne circles with doubling radii and place
a grid of constant size inside each of them. This introduces a set P0 of O(n logn)
“candidate Steiner points”(see Fig. 4.3). Here, we make use of a constant κ that depends
on the metric being used. For ε1 ≤ 1, in the Euclidean metric, κ can be chosen to be
≤ 226, and in the rectilinear metric ≤ 50. Let k = n + |P0| = O(n logn) be the total
number of terminals, obstacle corners, and candidate Steiner points. We remove the
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(a) (b)

Figure 4.3: (a) Adding candidate Steiner points around one edge of the spanner; (b) and
around three edges.

ones that lie inside obstacles using a sweep-line algorithm [SH76] in time O(k log k) =
O(n log2 n).
LetG2 be the visibility graph of Z∪P0∪O and letG3 be a planar (1+ε2)-spanner ofG2.

G3 can be found using Arikati et al.’s algorithm [ACC+96] or our extension of it for other
uniform orientation metrics (see Section 4.4). These spanner algorithms need O(k log k)
time and introduce O(k) additional Steiner points to achieve planarity. Thus, G3 can be
constructed in O(n log2 n) time and has O(n logn) vertices and edges (note again that
G2 need not be constructed explicitly). Now we find a (1 + ε/3)-approximate Steiner
minimum tree of the terminals Z in G3 using the PTAS of Borradaile et al. [BKM09] for
the Steiner tree problem in planar graphs. The time needed for this step is O(k log k)
and hence, the total runtime of our algorithm is O(n log2 n).
Note that the first step of the PTAS of Borradaile et al. is to determine a subgraph

G4 of G3 that contains a (1 + ε/3)-approximation of the SMT of G3 and has weight at
most a constant times the weight of the Smt of G3. Hence, G4 is a planar banyan of the
terminal set Z and so, our algorithm also delivers a planar banyan of a set of terminals
among obstacles in the plane.
A note on the running time. Of course, the constants hidden in the O-notations above

all depend on 1/ε. Our algorithm builds the planar graph G3 in time O( κ4

ε11n log2 n) and
its size is more precisely O( κ4

ε11n logn). The PTAS of Borradaile et al. takes time singly
exponential in 1/ε [BKM09].

4.2 Correctness

We present two proofs for the correctness of Algorithm Smto-Ptas. The first one results
in better constants but does not work in the rectilinear case. The other one is more
general and can even be partly extended to give us some structural information about
Smtos in higher dimensions but uses much larger constants. The proof technique and
the generalization of the empty ball lemma used in the second proof might be interesting
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in their own right. In this section, we present these two proofs for the Euclidean metric.
In the next section, we discuss uniform orientation metrics where we include a simpler
proof for the rectilinear case that results in small constants.

4.2.1 Key Differences

Compared to the obstacle-free case, we have two main new challenges: first, the fact
that only some pairs of vertices are visible to each other; and second, that we do not
know which corners will be included in the optimal Steiner tree, i.e. many vertices of
the input need not be part of the Smto at all. To deal with the former, we formulate
and prove Lemma 4.8, which is a technical lemma that is very important in both of our
proofs; it enables us to prove our generalizations of the hexagon property (Lemma 4.9)
and the empty ball lemma (Lemma 4.15).
But more importantly, these issues make the so-called spanner-path property of Rao

and Smith (Lemma 34 in [RS98]) invalid for our case. This property says that two
vertices that are connected in the Smt by an edge of length L, can not be connected in
a spanner by a chain of “tiny” edges of length < L. Indeed, in our case, two terminals
and/or corners can be connected by a spanner-path consisting entirely of “tiny” edges,
finding their way among obstacles. To overcome this problem, we introduce O(logn)
layers of grids around each edge of the spanner G1: we know that any two vertices in
the spanner are connected by a short path with at most n edges and one of them is
long enough, so that by multiplying its length with a power of 2, we can produce a
grid of candidate Steiner points around it that suits our purposes (Lemma 4.10 and
Corollary 4.11). This technique does not require the spanner path property and also
does not depend on finding a terminal or corner near a Steiner point A that is close to
A in the Smto or even part of the Smto at all; it is sufficient to find a terminal or
corner that is close and visible to A and this can be done using Lemmas 4.8 and 4.9.

4.2.2 First Proof

Our proof is structured as follows. First, we show through a number of lemmas (Lem-
mas 4.8-4.11) that near every “non-negligible” Steiner point, there exists a terminal,
corner or grid-point that can approximate it well enough. Then we consider an optimal
obstacle-avoiding Steiner tree of the input and show how to transform it into another
obstacle-avoiding Steiner tree, that does not contain “negligible” Steiner points and that
shares its vertices and edges with the graph G3 constructed by Smto-Ptas. We argue
that this transformation can be done in such a way that the resulting Steiner tree has
length at most (1 + ε/2) times longer than the optimal Steiner tree. Hence, finding a
(1 + ε/3)-approximate Steiner tree in G3 gives us the desired result. In the following,
we consider the notation of Smto-Ptas and let T ? be an Smto of the input.
We use the notation d(A,B) for the length of the shortest obstacle-avoiding path

between two points A and B and the notation dG(A,B) for the shortest path between
A and B in a graph G. We denote the length of a graph G, i.e. the total sum of its
edge-weights, by `(G).
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We start by mentioning some well known facts about Euclidean Steiner minimum trees.
These facts were first proven for the obstacle-free case by Gilbert and Pollak [GP68] and
later, stated and used for the case with obstacles by several authors [Pro88, ZW99]
(explicit new proofs are not given but the generalizations are straightforward). In the
following, recall that we use the term Steiner point for vertices of the tree that do not
coincide with terminals or corners:

Fact 4.2. The Smto is a tree that includes all terminals as vertices. It might include
corners or Steiner points as additional internal vertices.
Fact 4.3. A Steiner point of the Smto may not occur on the boundary of some obstacle.
Fact 4.4. Every Steiner point of the Smto has 3 incident edges making angles of 120◦.
Fact 4.5. Every terminal and corner has degree at most 3 in the Smto.
Fact 4.6. Two edges of the Smto meet only at a common endpoint, i.e. the Smto is
not self-intersecting.
Fact 4.7 (120◦ wedge property [Pro88]). If s is a Steiner point of the Smto, then in
any closed 120◦ wedge with apex s, there exists a terminal or corner v and an Smto
path from s to v that lies entirely inside the wedge.

The following lemma is of central importance for our work and is illustrated in Fig. 4.4:

Lemma 4.8. Let S be a closed convex region of the plane and let A ∈ S be a point that
is not contained in the interior of any obstacle. Then, we have
(i) a terminal or corner in S that is visible to A; or
(ii) the maximal visible area to A in S is a closed convex region S′ ⊆ S that contains no
terminal or corner and its border is composed of parts of obstacle edges and parts of the
boundary of S. Furthermore, any obstacle-avoiding path contained in S and connected
to A is contained in S′.

Proof. Assume there exists an obstacle edge e passing through S that has both its
endpoints outside of S. Let e+ and e− be the two closed half-planes induced by extending
e to a straight line and w.l.o.g. assume A ∈ e+. Then we know that e− does not belong to

V V

S

S’

A

P

(a)

S

S’

C

A

E

D
(b)

Figure 4.4: Illustration of Lemma 4.8; S is the large convex region partly hidden by the
polygonal obstacles; the visible area to A in S, denoted by V , is shaded. (a)
S′ = V ; (b) S′ 6= V and corner E is visible to A.
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the visible area to A in S. Also, if P is an obstacle-avoiding path connected to A inside
S, it can not cross e and thus, it is also completely contained in e+. Define S1 = S ∩ e+.
S1 is closed and convex, contains A, and we can repeat the argument above until we get
a closed convex region S′ ⊆ S that contains the visible area to A in S and such that
there are no obstacle edges passing “through” S′ as mentioned above. Furthermore, S′
shares its border with S except for finitely many straight-line segments where it may
consist of obstacle edges. Also, any obstacle-avoiding path connected to A inside S is
included in S′ (Fig. 4.4(a)).
Let V ⊆ S′ be the area of S′ visible to A. Suppose V 6= S′. Then there is an obstacle

edge e on the border of V that is not part of the border of S′. Consider a line-segment
l lying in V and connecting A to e. If me move one endpoint of l along e, at least in
one direction we will not leave S′ (otherwise e would be passing “through” S′). Moving
in this direction, l either meets one corner of e or another obstacle edge e′; in the latter
case, it must be that we also meet at least one corner of e′. In both cases, we have found
a corner in S′ that is visible to A (see Fig. 4.4(b)). Otherwise, we have V = S′ and thus,
S′ is either free of terminals and corners or contains a terminal or corner visible to A.
�
We define an Smto edge AB to be locally D-bounded if when walking from A or B,

and away from AB, for at most 3 Smto edges or until we encounter a terminal or corner
(whichever comes first), all edges we pass have length at most D (see Fig. 4.5(a)). Now
consider an Smto edge AB and some fixed distance D. Let HA be the regular hexagon
of side length D that has A as a corner, does not contain AB, and builds two 120◦ angles
with AB, i.e. if we extend AB, it would cut HA in half (see Fig. 4.5(b)). We have the
following property:

Lemma 4.9 (Generalized hexagon property). Let AB be a locally D-bounded Smto
edge. Then the regular hexagon HA of side length D defined above contains a terminal
or a corner that is visible to A (this terminal or corner could be A itself).

Proof. Apply Lemma 4.8 with S = HA. If we find a terminal or corner inside S visible to
A we are done. So assume not. Let S′ be the corner-free and terminal-free region asserted
by statement (ii) of Lemma 4.8. Now consider Fig. 4.5(b). If any of the points s1, t1, s2,
t2, s3, or t3 are terminals or corners, then the one closest to A (in terms of number of
edges) is connected to A by an obstacle-avoiding path inside HA and by Lemma 4.8, it
is contained in S′ and thus visible to A; a contradiction. So, all these points are Steiner
points and by Fact 4.4, the situation is exactly as illustrated in Fig. 4.5(b) or symmetric
to it. Now consider the 120◦ wedge placed at s3 as shown. By Fact 4.7, this wedge
contains a terminal or corner connected to s3 by an Smto path and by Fact 4.6, this
path must be contained in HA. By Lemma 4.8, this path is even contained in S′ and
visible to A; again, a contradiction. �

Let AB be an Smto edge of length L. For given constants c ≥ 1 and ε1 > 0, we define
AB to be locally long if it is locally cL/ε1-bounded (see Fig. 4.5). Otherwise we call it
locally short. The next lemma builds the heart of our proof of Theorem 4.1. It assures
that near every locally long Smto edge AB, we find an edge, e, of the spanner G1 that
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T

e

(a) (b)

s3

s2
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D
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Figure 4.5: (a) If T is a terminal and all edges in this figure, possibly except for e, have
length at most D, then e is locally D-bounded; if D = cL/ε1, where L is the
length of e, then e is locally long; (b) Proof of Lemma 4.9: the wedge at s3
includes a path to VA.

is long enough, so that a grid layer around e will enclose the points A and B; and short
enough, so that the spacing of the grid layer does not introduce too large an error.

Lemma 4.10. Let AB be a locally long Smto edge of length L with some constants
c ≥ 1 and 0 < ε1 ≤ 1 to be specified. Consider a run of Smto-Ptas with a constant
κ ≥ 8c + 2. Then there exists an edge e of length ` in the (1 + ε1)-spanner G1 and an
integer 0 ≤ i ≤ dlog2 ne, so that L ≤ 2i` ≤ κL/ε1 and so that A and B are included in
a circle of radius κ2i`/ε1 around the midpoint of e.

Proof. By the hexagon property above with D = cL/ε1, we know that there exists a
terminal or corner VA inside HA and a terminal or corner VB inside HB, so that VA is
visible to A and VB is visible to B (note that VA resp. VB could be equal to A resp. B).
Then we know that L ≤ d(VA, VB) ≤ L+ 4cL/ε1 =: M (see Fig. 4.6(a)). Now consider
the shortest path between VA and VB in the spanner G1. It consists of at most n edges
and its length is at least L and at most

(1 + ε1)M = L+ 4cL/ε1 + Lε1 + 4cL
= ((4c+ 1)ε1 + 4c+ ε21)L/ε1 ≤ κL/ε1

if we choose κ ≥ 8c + 2. Also, this path lies entirely inside a circle Q of radius R :=
(1+ε1/2)M around the midpoint of the edge AB, since a shortest path that starts inside
HA, leaves Q, and returns to HB has length > 2(R−M/2) = (1 + ε1)M and so, would
be too long to be needed for a (1 + ε1)-spanner path. Hence, there exists an edge e of
length ` on this path inside Q, so that L/n ≤ ` ≤ κL/ε1 (see Fig. 4.6(a)). If ` < L, one
can choose an integer 0 < i ≤ dlog2 ne so that L ≤ 2i` ≤ 2L ≤ κL/ε1 otherwise choose
i = 0. Also, since e is inside Q, the distance between the midpoint of e to A or B is at
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Figure 4.6: (a) Proof of Lemma 4.10: L ≤ d(VA, VB) ≤ 4cL/ε1 + L and one can find an
edge e on the spanner path between VA and VB that is not too short and
is close to A and B; (b) the candidate Steiner points around e “cover” the
Steiner points A and B.

most

R+ L/2 = L+ 4cL/ε1 + Lε1/2 + 2cL+ L/2
= ((2c+ 1.5)ε1 + 4c+ ε21/2)L/ε1 ≤ κ2i`/ε1 . �

Let S0 be the set of Steiner points of the Smto T ? that are only incident to locally
short edges of T ?. By Fact 4.4 each vertex of S0 is incident to exactly 3 locally short
edges making angles of 120◦ with each other. Let S1 be the set of all other Steiner points
of T ?. From Lemma 4.10 we get

Corollary 4.11. Let A be a Steiner point from the set S1 and let L be the length of a
locally long edge incident to A. Then there exists a vertex A′ of the graph G3, so that
d(A,A′) ≤ 2Lε1.

Proof. Since A is incident to a locally long edge of length L of T ?, we have by Lemma 4.10
that there exists an edge e of length ` in G1 and a circle Q of radius r = κ2i`/ε1 around
the midpoint of e for some integer 0 ≤ i ≤ dlog2 ne, so that A is included in Q (see
Fig. 4.6(b)). The grid of candidate Steiner points inside Q has spacing3

δ = rε31/κ
2 = 2i`ε21/κ ≤ Lε1

since 2i` ≤ κL/ε1 by Lemma 4.10. A technical lemma of Provan (Lemma 3.2 in [Pro88])
says that for a given Steiner point A in a δ-grid among obstacles, we can always find a
terminal, corner or grid point A′ that is visible to A, so that d(A,A′) ≤ 2δ. All terminals,

3The grid spacing in [RS98] is rε2
1/κ

2 but we believe that the exponent of ε1 should be 3.
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Figure 4.7: (a) Replacing a tree of locally short edges with an Euler tour; (b) moving a
Steiner point A to its approximation A′ in G3.

corners, and candidate Steiner points are part of the graph G3 and hence, our claim is
proven. �

In Lemmas 4.12-4.14, we modify T ? into a tree T ?2 that is not much longer than T ?
and whose vertex set is included in the vertices of the graph G3. In the construction
below, we do not require an edge to be a straight-line segment but allow edges that are
paths comprised of a number of straight-line segments.

Lemma 4.12. The total length of all locally short edges of T ? is at most ε1`(T ?).

Proof. The total length of locally short edges can be estimated as follows: we charge the
cost of a locally short edge of length `, a charger, to its closest edge (in terms of number
of edges) that has length ≥ c`/ε1. Now consider any edge of length L of T ?. Any cost
charged to it is caused by a charger that is at most 3 edges away, so by Facts 4.4 and 4.5
the number of these chargers is at most 28 and the amount charged by each of them is
at most Lε1/c. We set4 c = 28 and so, the total sum is bounded by ε1 times the length
of T ?. �

The main part of the proof of the next lemma is similar to the proof of the classic
MST-based 2-approximation algorithm for the Smt problem [Cho78, Ple81]:

Lemma 4.13. There exists an obstacle-avoiding Steiner tree T ?1 of the terminals such
that

1. it contains all locally long edges of T ?;
2. all of its Steiner points are from the set S1;
3. the degree of each vertex is at most 4;
4. vertices of degree 4 are incident to at least 2 locally long edges of T ?;
5. `(T ?1 ) ≤ (1 + ε1)`(T ?).

Proof. Recall that the notion of locally long and locally short partitions the edges of T ?
into two sets. Consider a maximal subtree T ′ of T ? that consists entirely of locally short
4Thus we can choose κ = 8c+ 2 = 226.
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edges and that contains at least one vertex of S0. Let X0 be the set of vertices of T ′
that belong to the set S0 and let X1 be the set of all other vertices of T ′. Note that the
vertices of X0 are all Steiner points of degree 3 and by Fact 4.3, none of them lies on the
boundary of an obstacle. Also, the vertices of X1 all have degree 1 or 2 in T ′ (because
they are adjacent to at least one locally long edge in T ?). Consider an Euler tour C of
T ′, starting at a leaf v1 and turning right at each vertex (thus, turning around at each
leaf), so that it visits each edge of T ′ exactly once in each direction. Let v1, . . . , vk be
the vertices of X1 in the order they are visited by C and let C[i, j] denote the part of
C that connects vi and vj . For each i = 1, . . . , k − 1, consider a path between vi and
vi+1 that closely follows C[i, i + 1] on its right side without touching it or any other
part of T ?; except for the special case when vi and vi+1 are adjacent, in which case we
may take the edge vivi+1 instead (note that this can happen at most in one direction
for each edge). Since all angles at the internal vertices of each C[i, i + 1] are less than
180◦, such a path can be chosen so that it is not longer than C[i, i+1] (see Fig. 4.7(a))5.
Let T ′′ be the union of these k − 1 paths and note that `(T ′′) ≤ 2`(T ′). Let T ?1 be the
tree obtained from T ? by replacing each such maximal subtree of locally short edges by
its corresponding set of paths as described above. This leaves all locally long edges of
T ? untouched and removes all Steiner points of the set S0 from T ?. Also the degree
requirements are satisfied, as one can easily check using Facts 4.4 and 4.5. The length
of T ?1 is at most the length of T ? plus the total length of the locally short edges of T ?.
By Lemma 4.12, we get that `(T ?1 ) ≤ (1 + ε1)`(T ?). �

Lemma 4.14. There exists a Steiner tree T ?2 of the terminals, so that all its vertices
are from the graph G3 and we have `(T ?2 ) ≤ (1 + 13ε1)`(T ?).

Proof. We start with the tree T ?1 from the Lemma above and modify it the following way.
Each Steiner point A of T ?1 is incident to at least one locally long edge of T ?. Let e be the
shortest locally long edge incident to A and let L be its length. By Corollary 4.11, there
exists a vertex A′ of G3 visible to A, so that d(A,A′) ≤ 2Lε1. Moving the endpoints
of each edge incident to A to A′ adds at most 2Lε1 to the length of that edge (see
Fig. 4.7(b)). Charge this amount to e. The degree of each Steiner point of T ?1 is either
3 or 4; so, each locally long edge is charged at most 4 times from each side. But if the
degree of a vertex is 4, then there are at least 2 locally long edges incident to it, and we
can charge each one of them twice (instead of charging one of them 4 times). So, each
locally long edge of length L is charged at most 6 times and hence, the total overhead
produced by moving the Steiner points to the vertices of G3 is at most 12ε1 · `(T ?).
Thus, the length of T ?2 is at most (1 + 13ε1)`(T ?). �

First proof of Theorem 4.1 for the Euclidean metric. By Lemma 4.14, we know that
there exists a Steiner tree T ?2 with length at most (1 + 13ε1)`(T ?) that uses only the
vertices of G3 as Steiner points. Since G3 is a (1 + ε2)-spanner of its vertex set, we can
replace each edge of T ?2 by a path in G3 that is longer by a factor of at most (1+ε2). Note

5The reason we do not use shortest paths is that we do not want to change the degrees of other terminals
or corners of the tree, nor introduce new Steiner points.
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that this is also true if the considered edge is in fact a path comprised of a number of
straight-line segments. This shows that the optimal Steiner tree T ?3 in the planar graph
G3 has length at most (1 + ε2)(1 + 13ε1)`(T ?) and by choosing ε1 = ε

52 and ε2 = ε
6 ,

we can ensure that this amount is at most (1 + ε/2)`(T ?). The PTAS of Borradaile et
al. [BKM09] returns a (1 + ε/3)-approximate Steiner tree Tout of G3 and we have

`(Tout) ≤ (1 + ε/3)`(T ?3 ) ≤ (1 + ε/3)(1 + ε/2)`(T ?) ≤ (1 + ε)`(T ?) .

�

4.2.3 Second Proof

Our second proof for Theorem 4.1 is based on our generalization of the so called empty
ball lemma. The proof of this lemma can be obtained by a straightforward generalization
of the proofs found in [RS98, Lemma 36] and [Zha05, Lemma 5.4.5] (providing a very
detailed proof):

Lemma 4.15 (Generalization of the empty ball lemma). Let S1 and S2 be closed convex
regions in the plane whose interiors are free of terminals and obstacle edges but whose
borders may partly consist of obstacle-edges. Denote the parts of their borders that are
not obstacle-edges as the free border. Assume that S2 encloses S1 and that the distance
between every point on the free border of S1 to any point on the free border of S2 is at
least γ > 0. Then, for any obstacle-avoiding Smt, the number of Steiner points inside
S1 is bounded by a constant s0 ≤ (96e)8 (where e is the base of the natural logarithm).

Our second proof for Theorem 4.1 is similar in its basic idea to the first proof: for every
locally long edge AB, we find terminals or corners VA and VB with L/2 ≤ d(VA, VB) ≤
4cL/ε1 + L and apply the same argument as before to find vertices A′ and B′ in G3 to
approximate AB; afterwards, the rest of the argument follows.
But here, we have to change the definition of locally long as follows: an Smt edge AB

is considered locally long if when walking from A or B for at most s0 edges or until we
reach a terminal or corner, all edges we encounter have length at most cL

s0ε1
, where s0

is the constant from Lemma 4.15. Hence, in order for our charging scheme to work, we
have to choose c = O(2s0). Here, we only provide the main different part of this proof;
the other details can be straightforwardly adapted from the first proof.
Second proof of Theorem 4.1 for the Euclidean case, main part. Consider a locally
long Smt edge AB of length L, let R = cL/ε1 and consider three co-centric balls Q1,
Q2, and Q3 with radii R + L/2, 2R, and (1 + ε1/2)(4R + L) around the midpoint of
AB, respectively. W.l.o.g. assume AB is vertical and A is above B. Let d1 be a line
perpendicular to AB, passing through A and let d2 be parallel to d1 passing at distance
L/4 below A (see Fig. 4.8). Let S1 be the part of Q1 above d1 and let S2 be the part of
Q2 above d2. We show that S2 contains a terminal or corner VA visible to A. Assume
not. Then, by Lemma 4.8, the part of S2 visible to A is a closed convex region S′2 free
of terminals and corners. Similarly, let S′1 be the visible region of S1 to A and note that
S′1 = S′2 ∩ S1. By applying Lemma 4.15 to S′1 and S′2 with γ = L/4, we see that the
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Figure 4.8: Illustration of the second proof. AB has length L and the distance between
d1 and d2 is L/4. The inner circle has radius R + L/2 and the outer circle
radius 2R.

number of Steiner points inside S′1 is bounded by a constant s0. We show that there
exists an Smt path connected to A, leaving S′1 without crossing d1: just notice that when
we start walking at A and move from Steiner point to Steiner point, there is always an
Smt edge that does not go “downwards”, i.e. that builds an angle 90◦ ≤ α ≤ 270◦ with
AB. So, we can always find a next point until we leave S′1, so that we can encounter
a terminal or corner. Obviously, this path has to leave S′1 at a part of its free border,
so it has to leave Q1, too, and thus, the length of this path is at least R. It consists of
at most s0 edges and hence, we can find an edge that has length at least R/s0 and is
at most s0 edges away from A — a contradiction to the assumption that AB is locally
long. So, the desired point VA has to exist. Similarly one finds a point VB visible to
B and we will have L/2 ≤ d(VA, VB) ≤ 4R + L. The shortest path in the spanner G1
connecting VA and VB will be completely included in Q3 and the rest of the argument
follows. �

The key advantage of this second proof is that it does not make use of the hexagon
property and thus, can be easily extended to metrics that do not have a wedge-property,
such as the rectilinear metric. Also, it gives us some structural information about Smtos
in higher dimensions; in fact, it shows that Smtos in higher dimensions have similar
properties and could potentially be handled with similar methods; but since the resulting
graphs are typically not planar, our PTAS does not apply.

4.3 PTASes in Uniform Orientation Metrics

We first briefly discuss λ-geometries with λ ≥ 3, where we will see that the proofs above
readily generalize. Then we turn our attention to the rectilinear case that has different
properties and requires other techniques. In the last part, we prove our generalization
of Arikati et al.’s [ACC+96] planar spanner result to the cases with λ ≥ 3.
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4.3.1 The Cases λ ≥ 3

Brazil et al. [BTW00] showed that for λ ≥ 3, there always exists an Smt such that
the minimum angle at a Steiner point is 90◦ ≤ αmin ≤ 120◦ and the maximum angle
is 120◦ ≤ αmax ≤ 150◦. For these cases, we get an αmax-wedge property like Fact 4.7
of the Euclidean case and we can use it to prove an analog of the Hexagon property
(Lemma 4.9). Also, using this αmax-wedge property one can derive the following gener-
alization of Provan’s lemma [Pro88]:

Lemma 4.16. Let A be a Steiner point of an Smt with an α-wedge property for an
α < 180◦ and assume there is a grid with spacing δ around A. Then there exists a grid
point, terminal, or corner A′ that is visible to A such that d(A,A′) ≤ δ/cosα2 .

Using these two results, one can generalize both of our proofs from Section 4.2 straight-
forwardly to all λ-geometries with λ ≥ 3, where again, the first proof results in much
better constants (but possibly different ones from the Euclidean case). The only thing
that remains is to show that the planar spanners needed for the algorithm exist and can
be computed in the required time. This is shown in the last part of this section.

4.3.2 The Rectilinear Case

In the rectilinear case, we do not have an α-wedge property for an α < 180◦; in fact, 180◦-
angles can occur at any Steiner point. But instead, the structure of rectilinear Steiner
trees is well-studied. Particularly, we have the following lemma, adapted from [Hwa76,
PS02]:

Lemma 4.17. Let Z be a set of terminals and O a set of disjoint rectilinear obstacles
in the plane, so that in any obstacle-avoiding rectilinear Steiner minimum tree (Rsmto)
of Z, all terminals are leaves and no corner is included except for corners that coincide
with terminals. Let A and B be two Steiner points in an Rsmto of Z that are connected
by a horizontal line-segment. Then B can not be connected to a third Steiner point by a
vertical line segment.

We define a full component of an Rsmto to be a subtree in which every terminal
and corner is a leaf. We can decompose a given Rsmto into its full components and
do the following as long as possible: replace every full component by another Rsmto
that includes more corners or in which the terminals or corners have degree more than
one. Then we will get an Rsmto T ? where we can apply Lemma 4.17 to each of its full
components (counting the included corners as terminals) and so, T ? itself will have the
property of the lemma (see Fig. 4.9(a)):

Corollary 4.18. For any given set of terminals and disjoint rectilinear obstacles in
the plane, there exists an Rsmto, so that for any two Steiner points A and B that are
connected by a horizontal line-segment, B is not connected to a third Steiner point by a
vertical line segment.

82



4.4 Planar Spanners for Uniform Orientation Metrics

(a) (b)

A B
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Figure 4.9: (a) illustration of Lemma 4.17 and Corollary 4.18: if A and B are Steiner
points, C must be a terminal or corner; (b) proof of Lemma 4.19: if the
grid point A′ is not visible to the Steiner point A, there must be an obstacle
corner P closer and visible to A.

Now one can use Corollary 4.18 instead of the hexagon property to prove a rectilinear
version of Lemma 4.10 with even better constants: namely, one can loosen the definition
of locally long edges to include only edges that are at most 2 edges away and so, one
can choose c = 12 and κ = 4c+ 2 = 50. We also have

Lemma 4.19. For a given set of terminals and disjoint rectilinear obstacles in the plane,
there exists an obstacle-avoiding Rsmto that has the property of Corollary 4.18 and each
of its Steiner points A fulfills: if there is a grid with spacing δ around A, then there exists
a grid point, terminal, or corner A′ that is visible to A, so that d(A,A′) ≤ 2δ.

Proof. The Rsmto from Corollary 4.18 can be chosen so that all Steiner points lie on
the Hanan grid spanned by the terminals and corners [Han66, GC94]. Let A be a Steiner
point on this grid. Then there is a terminal or corner visible to A both on the horizontal
and the vertical line passing through A. Consider the two line segments connecting A to
these terminals or corners. The grid point A′ enclosed in the 90◦-wedge built by these
two line segments is either visible to A or is blocked by an obstacle that has a visible
corner to A inside the rectangle spanned by A and A′ (see Fig. 4.9(b)). �

With these observations, both of our proofs from the last section adapt straightfor-
wardly to the rectilinear case with the constants mentioned above.

4.4 Planar Spanners for Uniform Orientation Metrics
Consider a λ-geometry and let ω = π/λ be the smallest allowed angle. We denote the
metric induced by a λ-geometry by a λ-metric; the distance between two points in a
λ-metric by the λ-distance; and a path that is constituted entirely of edges in legal
directions of the given λ-geometry, a λ-path. Before we start with the construction of
our spanner, we need the following technical lemma:

Lemma 4.20. Consider a λ-geometry with smallest allowed angle ω and let a set of
disjoint polygonal obstacles be given whose edges are parallel to the allowed directions.
Consider two points A and B in the plane. Then there exists a shortest path (with respect
to the given λ-metric) between A and B that passes through A = v0, v1, v2, . . . , vk = B,
so that each vi with 0 < i < k is a corner and so that the path between each vi and vi+1
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Figure 4.10: Proof of Lemma 4.20: (a) Case (i); (b) Case (ii).

is either a straight line in an allowed direction or is comprised of two straight lines in
two consecutive allowed directions, i.e. allowed directions that build an angle of π − ω
with each other.

Proof. Let d1, . . . , dλ be the allowed directions building consecutive angles of ω. We
consider a shortest path between A and B that uses the maximum possible number
of obstacle-corners and among those, one that uses the least number of straight-line
segments. If this path contains an obstacle-corner D (besides possibly A and B), we
can apply our proof to the subpaths AD and DB independently and we are done. So
assume that our selected path does not contain any corners besides possibly A and B.
We distinguish three cases:
Case (i): Assume A and B are visible to each other. If AB is a legal direction, we

are done. Otherwise, w.l.o.g. assume AB lies between directions d1 and d2. Let 4ACB
be the triangle in which AC is parallel to d1 and CB is parallel to d2. We call this
triangle the λ-triangle of AB. Clearly, the path ACB is a shortest path connecting A
and B. We first show by induction on the number of corners inside 4ACB, that A and
B can be connected by a shortest path using only directions d1 and d2 inside 4ACB. If
4ACB contains no parts of an obstacle, we are done. Otherwise, since obstacle-edges
are assumed to be only in legal directions and since d1 and d2 are consecutive directions
and AB is not crossed by any obstacle-edge, the triangle must include at least one corner.
Sweep a line parallel to d2 along AC until we hit an obstacle-corner (if we hit an edge, we
will also hit a corner by the preceding observation). Let D be the point where the swept
line leaves AC and let E be the point where it meets AB (see Fig. 4.10(a)). Then ADE
is a shortest path connecting A and E and using only directions d1 and d2. Furthermore,
E and B are visible to each other and the λ-triangle of EB is contained in 4ACB and
contains at least one corner less. So, we get our claim by the induction hypothesis. Now
we know that either A and B can be connected by the two straight-line segments AC
and CB or there exists a shortest path between A and B including another corner — a
contradiction to the selection of our path.
Case (ii): Assume A and B are not visible to each other but are connected by exactly

2 straight-line segments AC and CB (in legal directions, of course). Since the line AB
is crossed by an obstacle-edge, but no such edges cross AC and CB, the triangle 4ACB
must include at least one obstacle-corner. Circle a line l around A starting at AC and
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moving towards AB until it hits an obstacle corner D inside 4ACB. Consider the
parallelogram between the points C and D with lines parallel to AC and CB. This
parallelogram is completely “swept over” by l and hence, contains no obstacles. Let P1
and P2 be the other two corners of this parallelogram. Replacing P1C and CP2 with
P1D and DP2 results in a shortest path between A and B that includes an additional
corner — again, a contradiction (see Fig. 4.10(b)).
Case (iii): Assume A and B are not visible to each other and the path between them

is comprised of more than 2 straight-line segments. By an argumentation similar to that
in Case (ii), one can show that the first 3 line segments can either be replaced by a path
that contains an additional obstacle-corner or they can be replaced by at most 2 line
segments — in both cases, a contradiction to the selection of our path. �

Note that Lemma 4.20 implies that if we consider the visibility graph of a given set of
terminals and corners and measure the length of each edge in the given λ-metric, then
the shortest path between any two terminals or corners is included in the visibility graph.
Furthermore, given the shortest path between a pair of points in the visibility graph,
one can construct an obstacle-avoiding λ-path of the same length between those points.
Using these observations, one can easily adapt Clarkson’s spanner algorithm [Cla87] to
work for all λ-geometries.
But Clarkson’s spanner is not necessarily planar. Arikati et al. [ACC+96, Zeh02]

show how to find a planar rectilinear (1 + ε)-spanner of the visibility graph among
disjoint polygonal obstacles in the plane that uses at most O(n) Steiner points in time
O(n logn). This spanner might include obstacle-edges that are not rectilinear but their
length is measured in the rectilinear metric. We first show that one can rotate the axes
of the coordinate system to build an arbitrary angle and still obtain such a spanner.
Let d1 and d2 be two distinct directions in the plane, building an angle of ω with each
other. Define a d1d2-geometry to be the geometry where one is allowed to move only in
directions d1 and d2 and call the induced metric a d1d2-metric. We have the following
lemma:
Lemma 4.21. Let a set of terminals and a set of disjoint polygonal obstacles with a
total of n vertices be given. For distinct directions d1 and d2, one can find a planar
(1 + ε)-spanner of the visibility graph with respect to the induced d1d2-metric in time
O(n logn) and of size O(n).
Proof. Let {e1, e2} be the standard orthonormal basis of the plane and assume d1 and d2
are unit vectors in the given directions. Let T be the linear transformation in the plane
that maps d1 to e1 and d2 to e2. For any given vector v = v1e1 + v2e2 = v′1d1 + v′2d2, we
know on one hand, that the length of v in the d1d2-metric is |v′1|+ |v′2| and on the other
hand we have Tv = v′1e1 + v′2e2, i.e. we obtain the d1d2-length of v as the rectilinear
length of Tv. Thus, we may apply T to the plane, find a rectilinear spanner of the
visibility graph using the algorithm of Arikati et al. [ACC+96], and apply T−1 to the
result to obtain a d1d2-spanner of the visibility graph (see Fig. 4.11). �

We need one more observation before we can proceed with the main construction.
The simple lemma below can easily be shown using the law of sines and the fact that
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Figure 4.11: Proof of Lemma 4.21: we transform the input given in (a) and obtain (b);
then we find a rectilinear spanner in (b) and transform it back to obtain
the d1d2-spanner shown in (c).

for 0 ≤ α ≤ π/3, we have sinα ≥ α
2 :

Lemma 4.22. For λ ≥ 3, let d1 and d2 be vectors building an angle of π/λ with each
other. Let d′1 and d′2 be two other vectors with the same property (not necessarily distinct
from d1 and d2). If P is a parallelogram with sides parallel to d1 and d2 and maximum
side length r, then there exists a parallelogram P ′ with sides parallel to d′1 and d′2, so
that P ′ encloses P and each of its sides has length at most 4λ

π · r. �

Now we can use a similar trick to the one used by Arikati et al. to obtain their
Euclidean spanner: let d1, d2, . . . , dλ be the allowed directions, so that two consecutive
ones build an angle of π/λ with each other. For simplicity, define dλ+1 = d1. Find
(1 + ε)-spanners G1, . . . , Gλ, so that Gi uses only edges parallel to di and di+1 using
Lemma 4.21. Let G be the graph obtained by superimposing all these spanners on each
other, i.e. putting them on each other and adding all intersection points as new vertices
to the graph. Now one can adapt the proof of Arikati et al. for the Euclidean case —
published in the thesis of Zeh [Zeh02] — to show that G will still have O(n) vertices
and is computable in O(n logn)-time. This is done by utilizing the special structure of
the spanners. Each spanner is based on a division of the plane into O(n) regions, each
containing a grid of constant size; using Lemma 4.22 and a similar argumentation as
in [Zeh02], one can show that for two of these spanners, the number of regions R′ of one
spanner that overlap with a fixed region R of the other spanner, so that the maximum
side-length of R′ is longer than the maximum side length of R, is bounded by a constant.
Hence, the total number of new vertices is linear in n and since G is planar, the same is
true for the number of edges (assuming λ as a constant, of course).
Also, by Lemma 4.20, G is indeed a (1+ε)-spanner of the visibility graph: an approx-

imate shortest path between each vi and vi+1 of the lemma lies entirely in a spanner Gj .
Thus, we have

Theorem 4.23. Consider a λ-geometry and let a set of terminals and a set of disjoint
polygonal obstacles whose edges are in the allowed directions be given, so that the total
number of terminals and corners is n. Then one can find a planar (1+ ε)-spanner (with
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respect to the metric of the λ-geometry) of the visibility graph of size O(n) in O(n logn)
time that uses only edges in the allowed directions.

4.5 Conclusion and Outlook
We have shown how recent progress in graph algorithms provides new insights and
methods in geometric algorithms by presenting a near linear time approximation scheme
for a geometric version of the Steiner tree problem — namely, the Smt problem among
obstacles in the plane — using the recent PTAS of Borradaile et al. [BKM09] for the
Steiner tree problem in planar graphs. To this end, we applied and modified recent
techniques in the design and analysis of algorithms, most notably from the work of Rao
and Smith [RS98] and that of Arikati et al. [ACC+96], and introduced new ones, see
Sections 4.1-4.3, to obtain a planar graph of small size that still contains a sufficiently
good approximation of the desired solution.
One interesting open question is whether it is possible to further reduce the time

complexity of this problem to obtain an O(n logn)-approximation scheme. Note that
even if the PTAS for planar graphs can be modified to run in linear time, we still need
O(n log2 n) time to construct our planar spanner. One possible way to attack this
problem is trying to intertwine the steps of the PTAS with the steps of our algorithm.
Indeed, with some modifications one can achieve a running time of O(t log t+ k log2 k),
where t is the number of terminals and k is the number of obstacle corners. But achieving
a running time of O(n logn) seems more difficult and is left as a subject for future work.
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5 A Linear-Time Shortest-Paths Algorithm
for H-Minor-Free Graphs1

The single-source shortest-paths problem with nonnegative edge-weights is one of the
most-studied problems in computer science, because of both its theoretical and practical
importance. Dĳkstra’s classical algorithm [Dĳ59] has ever since its discovery been one
of the best choices in practice. Also from a theoretical point of view, until very recently,
it had the best running time in the addition-comparison model of computation, namely
O(m + n logn) using Fibonacci heaps [FT87]. Pettie and Ramachandran [PR05] im-
proved the theoretical running time in undirected graphs for the case when the ratio r
between the largest and smallest edge-weight is not too large. They achieve a running
time of O(mα(m,n) + min{n logn, n log log r}), where α(m,n) is the very slowly grow-
ing inverse-Ackermann function. Goldberg [Gol01] proposed an algorithm that runs
on average in linear time. For the case of integer edge-weights, Thorup [Tho99] pre-
sented a linear-time algorithm in the word RAM model of computation, where the
bit-manipulation of words in the processor is allowed. Hagerup [Hag00] extended and
simplified Thorup’s ideas to work for directed graphs in nearly linear time. But the ques-
tion whether the standard addition-comparison model allows shortest-paths computation
in worst-case linear-time is still open. For a fairly recent survey about shortest-paths
algorithms, see Zwick [Zwi01].
For planar graphs, Henzinger et al. [HKRS97] presented the first linear-time algorithm

to calculate shortest-paths with nonnegative edge-weights. Their algorithm works on di-
rected graphs. It is based on Frederickson’s [Fre85, Fre87] work who gave an O(n

√
logn)-

time algorithm for this case and whose idea was in turn based on Lipton and Tarjan’s
planar separator [LT79] to decompose the graph. Henzinger et al. first decompose the
graph into a recursive division and then use this division to relax the edges in a cer-
tain order that guarantees linear running time. They claim that their algorithm can
be adapted to work for any proper minor-closed family of graphs where small balanced
separators can be found in linear time. Recently, Reed and Wood [RW09] improved
the quadratic-time separator of Alon et al. [AST90] and showed that all proper minor-
closed graph classes can be separated in linear time; so, we should be done. However,
both Frederickson’s algorithm and Henzinger et al.’s algorithm assume that the graph
has maximum degree 3; while this property can be achieved easily for planar graphs, we
argue that it can not be achieved by standard methods for arbitrary minor-closed classes
(in particular, it can not be applied to apex graphs, i.e. planar graphs augmented by a
“super-source”; these graphs have frequent application in the literature). We show how
to build an appropriate recursive division of a graph from a proper minor-closed family
1This chapter is based on joint work with Matthias Müller-Hannemann [TM08, TM09b].
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in linear time by a non-trivial extension of the algorithm in [HKRS97]. Our algorithm
works for graphs with arbitrary degrees. But even after having the recursive division,
the shortest paths algorithm in [HKRS97] depends on the assumption that the graph has
bounded degree (and contains only a single source labeled initially with distance zero,
cf. apex graphs). Using our recursive division, we show how to transform the graph and
its division to have maximum degree 3, so that Henzinger et al.’s shortest-paths algo-
rithm can be applied. Our modifications lead to the first shortest-paths algorithm for all
proper minor-closed classes of graphs that runs in linear time in the addition-comparison
model of computation.
As an application, we show how to implement Mehlhorn’s 2-approximation algorithm

for the Steiner tree problem [Meh88] (see Section 1.2) in linear time on proper minor-
closed graph classes. No better time bound than Mehlhorn’s own implementation of
O(m+n logn) has previously been known even for planar graphs. An important obser-
vation that we made is that Mehlhorn’s distance network is a minor of the given graph,
and thus its minimum spanning tree can be calculated in linear time with the algorithm
of Mares [Mar04] (or that of Cheriton and Tarjan [CT76] in the planar case).

Contribution and Outline of this Chapter
The area of graph minor theory has been constantly evolving in the past three decades,
especially due to the work of Robertson and Seymour [RS04] in the 1980’s. Many impor-
tant algorithms and meta-algorithms have been presented for large problem families on
minor-closed graph classes, see e.g. [Gro03, DFHT05, DH05a, Gro07a]; and numerous
theoretical concepts have been developed to handle them, e.g. the whole graph minor
series and, say, [DGJT99, RW08, RW09]. We present the first linear-time algorithms for
two fundamental graph-theoretic problems in these classes.
Our contribution can be summarized as follows:

• identifying that there is a gap in generalizing Henzinger et al.’s recursive division
and shortest paths algorithms to all proper minor-closed graph classes;

• arguing that the gap can not be closed by standard methods;

• filling in the gap using deep results in graph minor theory;

• (re)proving in detail the correctness of the modified algorithm;

• showing how to modify a graph and its recursive division to obtain a bounded-
degree graph and a recursive division with the same properties, resulting in the
first linear-time shortest-paths algorithm for proper minor-closed graph classes;

• obtaining a useful application, namely, the first linear time Steiner tree approxi-
mation, which was previously not even known for planar graphs.

In Section 5.1, we review some needed concepts and previous work; in Section 5.2,
we present our main result about shortest paths and in Section 5.3, the application to
Steiner tree approximation.
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5.1 Concepts and Algorithms from Previous Work

In this section, we review some concepts and some previous results that are needed
in this chapter. These include graph minors, vertex partitioning, graph decomposition,
and Henzinger et al.’s [HKRS97] single-source shortest-paths algorithm. Unless otherwise
mentioned, n denotes the number of vertices and m the number of edges of a graph G.

5.1.1 Graph Minors

We consider classes of H-minor-free graphs, i.e. graphs that exclude a fixed graph H as
a minor, as introduced in Section A.2. These are exactly the proper minor-closed classes
of graphs, such as planar graphs, bounded-genus graphs, linklessly embeddable graphs,
knotlessly embeddable graphs, and apex graphs. Note that for a proper minor-closed
class of graphs, we can always consider the number of vertices ` of the smallest excluded
minor and conclude that the complete graph K` is a particular excluded minor of the
class. Thus, the class of K`-minor-free graphs includes the considered minor-closed class
of graphs. In the rest of this work, we work with K`-minor-free graphs, where ` is a
fixed constant.
It follows from a theorem of Mader [Mad67] that K`-minor-free graphs have constant

average degree, for some constant depending on `. This, in turn, implies that these
classes of graphs are sparse, i.e. we have m = O(n).

5.1.2 Vertex Partitioning

In [Fre85], Frederickson presented a simple algorithm called FindClusters, based on
depth-first search, that given an undirected graph G of maximum degree 3 and a pa-
rameter z ≤ n, partitions its vertex set into connected components each having at least
z and at most 3z vertices. Since the algorithm gives us connected components, we can
contract each one of them and get a minor of the input graph with at most n/z vertices.
Frederickson used this algorithm to derive fast algorithms for the minimum spanning
tree and shortest-paths [Fre87] problems. If a weighted graph does not have maximum
degree 3, one can apply the following transformation: replace a vertex v of degree deg(v)
with a zero-weight path of length deg(v) such that each edge incident to v is now incident
to exactly one vertex of the path; i.e. we can split v using zero-weight edges. A similar
transformation can be applied to directed graphs, too, using an additional zero-weight
edge to complete a directed cycle. If the given graph is embedded in a surface, one
can order the edges around the path/cycle in the same way they were ordered around
the corresponding vertex in the given embedding. This way, the transformed graph will
also be embedded in the same surface. However, for an arbitrary minor-closed class of
graphs (e.g. apex graphs), it might not always be possible to remain in the class after
transforming the graph this way, see Section 5.2. But Frederickson’s FindClusters
depends on the graph having bounded degree. Any constant bound would suffice for our
purposes but in general such a bound does not exist for arbitrary H-minor-free graphs.
Reed and Wood [RW09] introduced an alternative partitioning concept that can be
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Figure 5.1: (a) Example of a connected H-partition and the result of collapsing its parts;
each set of vertices enclosed by a dotted line is one part of the H-partition;
(b) a balanced separator (A,B, S).

applied to a graph G = (V,E) with arbitrary degrees excluding a fixed minor. Consider
some partitioning P = {P1, . . . , Pt} of the vertex set V . Let H = (VH , EH) be the graph
obtained by collapsing every part Pi of G into a single vertex vi ∈ VH (1 ≤ i ≤ t) and
removing loops and parallel edges. This way, there is an edge between two vertices vi
and vj of H if and only if there is an edge between a vertex of Pi and a vertex of Pj in
G (1 ≤ i < j ≤ t). We say P is a connected H-partition of G if vivj ∈ EH if and only
if there is an edge of G between every connected component of Pi and every connected
component of Pj (see Figure 5.1 (a)). Reed and Wood prove:2

Lemma 5.1 ([RW09]). There is a linear-time algorithm that given a constant z and a
graph G excluding a fixed K`-minor, outputs a connected H-partition P = {P1, . . . , Pt}
of G such that t ≤ n/z, and |Pi| < c0 · z for all 1 ≤ i ≤ t, where c0 is a constant
depending only on `.

Note that by contracting each connected component of each Pi in G to a single vertex,
one gets a graph that contains an isomorphic copy of H as a subgraph; so, H is a minor
of G and in particular, is also K`-minor-free. Hence, when dealing with graphs with
unbounded degree, Lemma 5.1 can be used instead of FindClusters to partition the
graph and reduce its size while keeping it free of some fixed minor.

Corollary 5.2. Let G be a graph with n vertices excluding a fixed K`-minor, and let
c0 = 2`2+1 be a fixed constant. There exists a linear-time algorithm H-Partition(G, z, `)
with the following properties:

• it partitions the vertices of G into at most n/z sets;
• each set has at most c0z vertices;
• it collapses each set into a single vertex, creating a new graph G′;
• G′ is a minor of G with at most n/z vertices.

2We substitute c0 := 2`
2+1 and z := 2k/c0 in [RW09, Lemma 4.1].
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Figure 5.2: (a) An (r, s)-division with 3 regions indicated with different line styles and
colors; the boundary vertices are filled with a red color; (b) a recursive
division tree.

5.1.3 Graph Decomposition

A separator of a graph G is a partition of its vertices into three classes (A,B, S) so that
there are no edges between A and B. The size of a separator is the size of the set S. We
say that a separator is γ-balanced if for every connected component C of G−S, we have
|C| ≤ γ|V |. In this chapter, we use the term balanced separator to refer to a 1

2 -balanced
separator of a graph (see Figure 5.1 (b)). Note that given a balanced separator (A,B, S),
we can rearrange the connected components of G−S so as to obtain a balanced separator
(A′, B′, S) with |A′|, |B′| ≤ 2

3 |V |; hence, we may assume this property without loss of
generality. For a function f : N → N, a subgraph-closed class of graphs is said to be
f -separable if every n-vertex graph in the class has an O(f(n))-size balanced separator.
Reed and Wood [RW09] showed that all K`-minor-free graphs are f -separable in linear
time for f(n) = O(n2/3). For planar graphs, one can use the seminal planar separator
theorem of Lipton and Tarjan [LT79], obtaining an O(

√
n)-size balanced separator in

linear time.
An (r, s)-division of an n-vertex graph is a partition of the edges of the graph into
O(n/r) sets, called regions, each containing rO(1) vertices and each having at most s
boundary vertices (i.e. vertices that occur in more than one region; see Figure 5.2 (a)).
For a nondecreasing positive integer function f and a positive integer sequence r =
(r0, r1, . . . , rk), an (r, f)-recursive division of an n-vertex graph is defined as follows: it
contains one region RG consisting of all of G. If G has more than one edge and r is
not empty, then the recursive division also contains an (rk, f(rk))-division of G and an
(r′, f)-recursive division of each of its regions, where r′ = (r0, r1, . . . , rk−1). A recursive
division can be represented compactly by a recursive division tree, a rooted tree whose
root represents the whole graph and whose leaves represent the edges of the graph (see
Figure 5.2 (b)). Every internal node represents a region, namely, the region induced
by all the leaves in its subtree. The children of a node of the tree are its immediate
subregions in the recursive division.
Using Frederickson’s partitioning [Fre85] and division [Fre87] methods, Henzinger et

al. [HKRS97] present a linear-time algorithm to find certain recursive divisions in planar
graphs: they determine a vector r and an (r, cf)-recursive division of the graph for some
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constant c, such that the inequality

ri
f(ri)

≥ 8if(ri−1) log ri+1(
i+1∑
j=1

log rj) (5.1)

is satisfied for all ri’s exceeding a constant. The obtained recursive division tree has
O(n) nodes and its depth is roughly O(log? n). The idea of the algorithm is as follows:
first, iteratively reduce the size of the graph by partitioning the vertices of the graph
(using Frederickson’s FindClusters) and building minors; then, working backwards,
find (r, s)-divisions of the smaller graphs (for appropriate values of r and s), imposing
divisions on the larger graphs and at the same time building the recursive division tree.
Since the time-consuming calculation of (r, s)-divisions is done on the smaller graphs,
they succeed to prove that the overall time complexity is linear.

5.1.4 Single-Source Shortest-Paths on Planar Graphs
Henzinger et al. prove the following theorem:

Theorem 5.3 ([HKRS97]). Let a graph G be given with maximum in-/outdegree 2 and
assume that G is equipped with an (r, cf)-recursive division tree, for some constant c, so
that inequality (5.1) is satisfied for all ri’s exceeding a constant. Then, the single-source
shortest-paths problem with nonnegative edge-weights can be solved on G in linear time.

To prove this theorem, they use a complicated charging scheme that also depends on
the graph having a single source and bounded degree. Together with the result from
the previous subsection, it follows that single-source shortest-paths with nonnegative
edge-weights can be calculated in linear-time on planar graphs.

5.2 Single-Source Shortest Paths on H-Minor-Free Graphs
In this section, we prove our main theorem about shortest paths:

Theorem 5.4. In every proper minor-closed class of graphs, single-source shortest-paths
with nonnegative edge-weights can be calculated in linear time.

First, we argue that the degree requirement of Henzinger et al.’s algorithm can not be
fulfilled by standard methods for arbitrary minor-closed classes of graphs. By “standard
methods” we mean the following: for a given vertex v in a graph and a permutation πv
of its neighbors (which we think of as an ordering of the neighbors), let the operation
Split0(v, πv) be defined as replacing v by a path Pv of length deg(v) of zero-weight
edges and connecting each of the neighbors of v to exactly one vertex of Pv in the order
specified by πv. This way, every vertex on Pv will have degree exactly 3, and hence this
operation can be applied to every vertex of a given graph to establish a maximum degree
of 3 (while preserving shortest paths).
In Subsection 5.1.2 we discussed a particular choice of the permutation πv for embed-

ded graphs, namely, using the (cyclic) order of the neighbors of a vertex as given by the
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1 2 3 4 5 3 1 4 2 5 1

1 1 4 2 5 135432

(a) (b)

(c) (d)

Figure 5.3: A simplified example for the proof of Proposition 5.5: the apex of the graph in
(a) is split, resulting in the graph (b); the vertices are labeled and connected
according to the disjoint trees in (c); contracting the thick edges in (b) results
in a K5-minor (d).

embedding; this way, we could ensure that after the operation Split0 is applied, the
resulting graph is still embedded on the same surface. In this section, we show:

Proposition 5.5. For every given k ∈ N, there exists a K6-minor-free graph Gk that
contains a vertex v such that for any permutation πv, the graph resulting from applying
Split0(v, πv) contains Kk as a minor.

The key lies in the observation that splitting an apex might introduce arbitrarily
large minors. This is a well-known fact in graph minor theory [RS03]. For the sake of
completeness, we include a short proof below. Apices are a fundamental part of minor-
closed graph classes as is demonstrated by the powerful graph-decomposition theorem
of Robertson and Seymour [RS03]. This theorem shows, in a sense, that at most a
bounded number of apices are allowed in these classes; and intuitively, splitting an apex
with unbounded degree might result in an unbounded number of apices and is thus not
allowed in general.
Proof Sketch of Proposition 5.5. We define Gk to be a sufficiently large planar grid-
graph augmented by an apex as follows: consider a sequence S of numbers between 1
and k such that each possible pair of these k numbers is at least once adjacent in S. Let
t < k2 be the length of this sequence. Choose a set W of t vertices in the grid that are
sufficiently far away from each other and add an apex v connected to these t vertices.
This completes the definition of Gk, which is clearly K6-minor-free.
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Now by applying Split0(v, πv), for any given permutation πv, the apex v becomes a
path Pv of t vertices, each one connected to exactly one vertex of W . This path imposes
an order on the vertices in W . We label the vertices in W according to this order using
the sequence S. Let Wi be the set of vertices in W labeled by i (1 ≤ i ≤ k). For each i,
construct a tree Ti that connects the vertices of Wi in the planar grid. Note that if the
grid is sufficiently large and the vertices in W are sufficiently far away from each other,
it is easily possible to choose the trees Ti to be all disjoint. Let U be the set of edges
connecting the vertices in W with Pv. Now, if we contract the trees Ti and the edges in
U and delete redundant edges, what remains is a Kk-minor (see Figure 5.3). �

5.2.1 Our Generalized Recursive Division Algorithm
Our modified algorithm is given in Algorithm 5.2.1. Our modifications are only in three
places but as we already discussed, they are essential to make the algorithm work for
all proper minor-closed graph classes. In this subsection, we discuss the algorithm and
our modifications thereof in detail and in the next subsection, we present its proof of
correctness.
Let the input graph be G = (V,E). In the first phase of the algorithm, the input graph

is reduced in size by building minors. Specifically, starting with G0 = G, a sequence
of graphs G0, G1, . . . , GI+1 is built, so that for i > j, Gi is a minor of Gj and GI+1
is the first graph in the sequence having less than n/ logn vertices. To this end, a
sequence of parameters zi is used to specify the size of the next graph in the sequence as
follows: let ni be the number of vertices of Gi. In the original algorithm, the sequence is
defined as z0 = 2 and zi+1 = 7z

1/5
i and has the effect that Gi is partitioned into at most

ni/zi connected components, each one having at most 3zi vertices (using Frederickson’s
FindClusters [Fre85]). Each of these components is contracted to construct Gi+1, a
minor of Gi with ni+1 ≤ ni/zi vertices.
Our first two changes occur in this phase of the algorithm. First, instead of using

Frederickson’s FindClusters, we make use of the H-Partition procedure of Reed
and Wood [RW09] to achieve a similar effect without depending on the graph having
bounded degree (cf. Section 5.1.2). Secondly, we had to change the definition of the
zi’s to be z0 = 2 and zi+1 = 14z

1/7
i . This is due to the fact that in order to prove

inequality (5.1) in our case, we need the exponent of zi to be 1
7 instead of 1

5 ; but then, in
order to ensure that the zi’s still grow (extremely fast) towards infinity, the base of the
exponentiation had to be changed from 7 to 14, too. Indeed, 14 is the smallest integer
that can be used, so that the zi’s grow towards infinity. Now, using the H-Partition
procedure as in Corollary 5.2, we still have that ni+1 ≤ ni/zi but now, each vertex of
Gi+1 represents at most c0zi vertices of Gi (instead of the original 3zi).
In the second phase, the algorithm works backwards from GI+1 towards G0, building

(r, s)-divisions and a recursive division tree as follows: it starts with the trivial division
DI+1 of GI+1 as a single region and initializes the recursive division tree T with a single
node vG. Then, for each Gi, it considers each region R of Gi+1 and builds an (r, s)-
division on it (with appropriate values of r and s defined below); each resulting region
R′ of R (of Gi+1) is turned into a region R′′ of Gi by expanding every vertex into the at
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Algorithm 5.2.1: Generalized Recursive Division Algorithm
Input : An undirected graph G = (V,E) excluding a K`-minor.
Output: A recursive division tree T for G satisfying inequality (5.1) for all

ri’s exceeding a constant.
begin

// partition and contract the graph recursively
let n := |V |, G0 := G, z0 := 2, i := 0;
while the number of vertices in Gi > n

logn do
let Gi+1 := H-Partition(Gi, zi, `);
let zi+1 := 14z

1/7
i , i := i+ 1;

let I := i− 1;
// divide the graphs and build recursive division tree
let vG be the root of T ;
let DI+1 be the trivial division of GI+1 consisting of a single region;
for i := I downto 0 do

for each region R of Di+1 do
let SR be the boundary-vertices of R in the division Di+1;
let DR := Divide(R,SR, zi, `);
for each region R′ of DR do

expand R′ into a region R′′ of Gi by expanding every vertex;
assign each boundary edge to one of the regions it occurs in;
create a child vR′′ of vR in T ;

let Di be the decomposition of Gi consisting of the regions R′′ above;

// add the leaves
for each edge e of each region R of D0 do

create a child ve of vR in T ;
return T ;

end

most c0zi vertices it represents in Gi; afterwards, a child vR′′ of vR is added to T . The
division Di is defined to be the decomposition of Gi by the regions R′′ obtained this way.
Note that a boundary vertex is expanded in multiple regions, creating multiple copies
of the edges it expands to; there should be only one copy of these edges and this may
be achieved by assigning them to one of these regions arbitrarily.
It remains to specify how exactly and with what parameters the (r, s)-division is built

in the iteration above. This is the third place where our algorithm differs from the
original. The original algorithm uses a modified version of Frederickson’s (r, s)-division
algorithm [Fre87], called Divide, as follows: it takes three parameters G, S and r and
divides the edges of an n-vertex graph G into at most c2(|S|/

√
r + n

r ) regions, each one
having at most r vertices and at most c1

√
r boundary vertices, where c1 and c2 are

constants; a vertex is considered as a boundary vertex if (i) it belongs to more than
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one region, or (ii) it belongs to the set S. Internally, the linear-time planar O(
√
n)-

size separator of Lipton and Tarjan [LT79] is used to achieve the desired division. We
make use of the linear-time O(n

2
3 )-size separator of Reed and Wood [RW09] instead;

our Divide procedure takes four parameters G, S, r, and ` and has the properties
specified in Lemma 5.7 below; as it can be seen in the lemma, a number of constants
and exponents are changed. The parameter ` is a constant taken to indicate the fixed
excluded K`-minor.
In the last phase of the algorithm, the edges of each region R of D0 are added as

children of the node vR to the recursive division tree T . This completes the description
of our generalized algorithm.

5.2.2 Correctness of our Generalized Recursive Division Algorithm

Theorem 5.6. Algorithm 5.2.1 is a linear-time algorithm that given a K`-minor-free
graph G, finds an (r, f)-recursive division of G that satisfies inequality (5.1) for all ri
exceeding a constant and whose recursive division tree has O(n) nodes.

Our proof of the correctness of the algorithm follows very closely the original proof of
correctness of Henziger et al.’s recursive division algorithm [HKRS97]. For the sake of
completeness, and since a number of subtle details and calculations have to be filled in
and replaced at several places, we have included the full proof in this section. Lemma 5.7
shows the correctness of the Divide procedure and is based on the original proof of
Frederickson [Fre87]; Lemmas 5.8 – 5.10 step-by-step complete the proof of Theorem 5.6.

Lemma 5.7. Replacing the planar separator in Frederickson’s Divide procedure [Fre87]
with the separator algorithm of Reed and Wood [RW09] causes the Divide(G,S, r, `)
procedure to work as follows (where G is a graph with n vertices and excludes K` as a
minor and c1 and c2 are constants depending only on `):

• it divides G into at most c2(|S|/r
2
3 + n

r ) regions;
• each region has at most r vertices;
• each region has at most c1r

2
3 boundary vertices, where the vertices in S also count

as boundary;
• it takes time O(n logn).

Proof. In the following, when we refer to boundary vertices, we mean vertices that belong
to more than one region or vertices that belong to the set S. The Divide procedure
works as follows: assign weight 1

n to each vertex of G and find a O(n
2
3 )-size separator

in G and recursively apply the separation algorithm to each region with more than r
vertices. Now each region has at most r vertices. While there is a region with more
than c1r

2
3 boundary vertices, do the following: if such a region has n′ boundary vertices,

assign weight 1
n′ to each of them, assign weight zero to the other vertices of that region,

and apply the separator theorem. In the end, all regions will have the desired properties
and the algorithm takes time O(n logn). It remains to show the bound on the number
of the regions.
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Consider the division before the regions are further split to enforce the requirement on
the number of boundary vertices (i.e. just when we have achieved that each region has
size at most r). Let VB be the set of vertices that are included in more than one region.
For a vertex v ∈ VB, let b(v) be one less than the number of regions that contain v in
the division. Let B(n, r) be the total of b(v) over all vertices v ∈ VB. Thus B(n, r) is the
sum of the number of vertices v ∈ VB weighted by the count b(v). From the separator
theorem in [RW09], we have the following recurrence:

B(n, r) ≤ d0n
2
3 +B(αn, r) +B((1− α)n, r) for n > r,

B(n, r) = 0 for n ≤ r
(5.2)

where d0 is a constant and 1
2 ≤ α ≤

2
3 . We claim that

B(n, r) ≤ d1
n

r
1
3
− d2n

2
3 for n ≥ r

3
, (5.3)

with some constants d1 and d2. The claim can be shown by induction:
As the base of the induction, we consider the cases r

3 ≤ n ≤ r. Note that since after
splitting a region, each subregion still has at least one-third of the total vertices, it is
sufficient to only consider graphs with at least r/3 vertices. By choosing d1 ≥ 3

1
3d2, we

have
d1n

r
1
3
≥ 3

1
3d2n

3
1
3n

1
3

= d2n
2
3 ⇒ d1n

r
1
3
− d2n

2
3 ≥ 0 = B(n, r) . (5.4)

For the inductive step, i.e. for n > r, we have

B(n, r) ≤ d0n
2
3 + d1

αn

r
1
3
− d2α

2
3n

2
3 + d1

(1− α)n
r

1
3

− d2(1− α)
2
3n

2
3

= d1
n

r
1
3

+ n
2
3 (d0 − d2α

2
3 − d2(1− α)

2
3 )

≤ d1
n

r
1
3
− d2n

2
3

(5.5)

if we choose d2 ≤ d2α
2
3 + d2(1− α)

2
3 − d0. This can be achieved by setting d2 = 5d0 ≥

d0

α
2
3 +(1−α)

2
3−1

.

In particular, we have shown so far that B(n, r) = O(n/r
1
3 ). The sum of the number

of vertices in each region is n+B(n, r) = n+O(n/r
1
3 ) and each region has Θ(r) vertices,

so the number of regions we have so far is Θ(n/r).
Let ti be the number of regions with i boundary vertices (recall that in our definition,

the set of boundary vertices is VB ∪ S). We have∑
i

iti =
∑
v∈VB

(b(v) + 1) + |S \ VB| < 2B(n, r) + |S| = O(n/r
1
3 + |S|). (5.6)

Let s(i) be an upper bound on the number of splits that have to be applied to a graph
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with at most r vertices and i boundary vertices, until each of its regions has at most
c1r

2
3 boundary vertices, for a constant c1 to be determined. We have that

s(i) ≤ s(αi+ d0r
2
3 ) + s((1− α)i+ d0r

2
3 ) + 1 for i > c1r

2
3

s(i) = 0 for i ≤ c1r
2
3

(5.7)

where 1
2 ≤ α ≤

2
3 . We claim that

s(i) ≤ d3i

c1r
2
3
− 2d0d3

c1
− 1 for i ≥ c1r

2
3

3
(5.8)

for some constant d3. We prove our claim by induction. Like in the previous induction,
for the base case we may assume c1r

2
3

3 ≤ i ≤ c1r
2
3 . By choosing d3 = 12 and c1 = 8d0,

we have
d3i

c1r
2
3
− 2d0d3

c1
− 1 ≥ 12 · 1

3
− 24d0

8d0
− 1 = 0 = s(i) . (5.9)

For the inductive step with i > c1r
2
3 , note that αi + d0r

2
3 ≤ 2

3 i + d0
c1
i ≤ (2

3 + 1
8)i < i.

The same way, we have (1−α)i+ d0r
2
3 < i. So, we may apply the induction hypothesis

to (5.7) and a straightforward calculation will prove our claim.
We have shown that for a region with i boundary vertices, where i > c1r

2
3 , at most

d3i

c1r
2
3
splits need be done for some constants c1 and d3. This will result in at most d0r

2
3

new boundary vertices per split and a total of at most d3i/(c1r
2
3 ) new regions. Thus the

total number of new boundary vertices is at most

∑
i

(d0r
2
3 )(d3i/(c1r

2
3 )ti ≤

d0d3
c1

∑
i

iti = O(n/r
1
3 + |S|) . (5.10)

The number of new regions is at most

∑
i

(d3i/(c1r
2
3 ))ti = d3

c1r
2
3
O(n/r

1
3 + |S|) = O(n/r + |S|/r

2
3 ) . (5.11)

�

Recall that we start with the graph G0 = G and repeatedly apply the procedure
H-Partition to each Gi to obtain Gi+1. For each i, let ni denote the number of
vertices of Gi. Afterwards we work our way back from GI+1 to G0 and obtain a division
Di on each Gi. Let ki denote the number of regions of Di. Note that the recursive
division tree T has depth I + 1.
The following proof has four parts. First, we show that each region of the division Di

has at most O(z2
i ) vertices and at most O(z

5
3
i ) boundary vertices. Second, we show that

the number ki of regions is O(ni/z2
i ). Third, we show that Algorithm 5.2.1 takes linear

time and finally, we show that the division fulfills inequality (5.1).
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For notational convenience, let zI+1 = √nI+1, so the single region of the division
DI+1 of GI+1 has z2

I+1 vertices. Consider iteration i ≤ I in the second phase of the
algorithm. By the correctness of Divide, the decomposition DR of a region of Di+1
consists of regions R′ of size at most zi. By the correctness of H-Partition, each vertex
of Gi+1 expands to at most c0zi vertices of Gi. Hence, each region R′′ obtained from R′

by expanding its vertices has size at most c0z2
i . Similarly, each region R′ has at most

c1z
2
3
i boundary vertices by the correctness of Divide, so the corresponding region R′′

has at most c0c1z
5
3
i boundary vertices.

Lemma 5.8. The number ki of regions in the division Di is O(ni/z2
i ).

Proof. We show by reverse induction on i that ki ≤ c3ni/z
2
i for all i ≥ i0, where i0 and

c3 are constants to be determined. For the base case, we have kI+1 = 1.
Consider iteration i ≤ I in the second phase, and suppose i ≥ i0. The regions of

Di are obtained by subdividing the ki+1 regions comprising the division of Gi+1. Since
ni+1 ≤ ni/zi and z2

i+1 ≥ zi, we have by the induction hypothesis that

ki+1 ≤ c3ni+1/z
2
i+1 ≤ c3ni/z2

i . (5.12)

Each region R of the division of Gi+1 has |SR| ≤ c0c1z
5
3
i+1 boundary vertices. Summing

over all regions R in Di+1, we obtain∑
R

nR =
∑
R

(# of non-boundary vertices + # of boundary vertices)

≤ ni+1 +
∑
R

c0c1z
5
3
i+1

≤ ni+1 + c0c1ki+1z
5
3
i+1 .

(5.13)

For each region R, by correctness of Divide, the number of subregions into which R is
divided is at most c2(|SR|/z

2
3
i +nR/zi), which is in turn at most c2(c0c1z

5
3
i+1/z

2
3
i +nR/zi).

Summing over all such regions R and using (5.13) and (5.12), we infer that the total
number of subregions is at most∑

R

c2(c0c1z
5
3
i+1/z

2
3
i + nR/zi) = c0c1c2ki+1z

5
3
i+1/z

2
3
i + c2

∑
R

nR/zi

≤ c0c1c2ki+1z
5
3
i+1/z

2
3
i + c2(ni+1 + c0c1ki+1z

5
3
i+1)/zi

≤ c0c1c2(
c3ni+1
z2
i+1

)z
5
3
i+1/z

2
3
i + c2ni+1/zi + c0c1c2(

c3ni+1
z2
i+1

)z
5
3
i+1/zi

≤ c0c1c2c3ni+1/(z
2
3
i z

1
3
i+1) + c2ni+1/zi + c0c1c2c3ni+1/(ziz

1
3
i+1)

≤ c0c1c2c3ni/(z
5
3
i z

1
3
i+1) + c2ni/z

2
i + c0c1c2c3ni/(z2

i z
1
3
i+1) ,

(5.14)

where in the last line we use the fact that ni+1 ≤ ni/zi. We have obtained an upper
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bound on the total number of subregions into which the regions of Di+1 are divided.
Each subregion becomes a region of Di. Thus we have in fact bounded ki, the number
of regions of Di. To complete the induction step, we show that each of the three terms
in (5.14) is bounded by c3ni/3z2

i .
The second term, c2ni/z2

i , is bounded by c3ni/3z2
i if we choose c3 ≥ 3c2. The third

term is smaller than the first term. As for the first term, recall that zi+1 = 14z
1/7
i . For

sufficiently large choice of i0, we can ensure that i ≥ i0 implies z
1
3
i+1 ≥ 3c0c1c2/z

2
3
i . Thus

the first term is also bounded as desired.
We conclude that ki ≤ c3ni/z

2
i , completing the induction step. We have shown this

inequality holds for all i ≥ i0. As for i < i0, clearly ki ≤ (z2
i )ni/z2

i ≤ (z2
i0)ni/z

2
i . Thus

by choosing c3 to exceed the constant z2
i0 , we obtain the lemma for every i. �

Lemma 5.9. The algorithm runs in linear time.

Proof. The time required to form the graphs G1, G2, . . . , GI+1 is O(
∑
i n/zi), which is

O(n). For i ≤ I, the time to apply Divide to a region R of Gi+1 with nR vertices
is O(nR lognR). Each such region has O(z2

i+1) vertices, so the time is O(nR log zi+1).
Summed over all regions R, we get

∑
RO(nR log zi+1) = O(ni+1 log zi+1). The time to

obtain the induced division of Gi is O(ni). Thus the time to obtain divisions of all the
Gi’s is

∑
iO(ni+1 log zi+1). Since ni+1 ≤ ni/zi ≤ n/zi and log zi+1 = O(z

1
7
i ), the sum is

O(n). �

Lemma 5.10. The recursive division obtained by Algorithm 5.2.1 satisfies inequal-
ity (5.1).

Proof. First, note that combining the inequalities ni+1 ≤ ni/zi, we obtain

ni ≤ n/
∏
j<i

zj . (5.15)

Note moreover that each vertex of Gi expands to at most
∏
j<i c0zj vertices of G.

Consider the division Di of Gi, and the division it induces on G. The division Di

consists of O(ni/z2
i ) regions, each having O(z2

i ) vertices and O(z
5
3
i ) boundary vertices.

This induces O(ni/z2
i ) regions in G, each consisting of O(z2

i

∏
j<i c0zj) vertices and

O(z
5
3
i

∏
j<i c0zj) boundary vertices.

Let ri = z2
i

∏
j<i zj and define

f(ri) = z
5
3
i

∏
j<i

c0zj . (5.16)

Then, by (5.15), the induced division of G has O(n/ri) regions each with O(rici0) vertices
and O(f(ri)) boundary vertices. Since ci0 = O(

∏
j≤i zj), we get that the number of
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vertices per region is O(r2i ). We have

ri
f(ri)

= z2
i

z
5
3
i c

i−1
0

= z
1
3
i

ci−1
0

. (5.17)

Using the definition of zi, one can verify that zi−1 = Θ(log7zi) and
∏
j<i zj = O(log8zi).

Hence
f(ri−1) = ci−2

0 z
5
3
i−1

∏
j<i−1

zj = ci−2
0 O(log

35
3 zi log8 log zi) . (5.18)

We also have

log ri+1 = log(z2
i+1

∏
j≤i

zj) = O(log(z2
i+1 log8 zi+1)) = O(log zi+1) = O(z

1
7
i ) (5.19)

and consequently
∑i+1
j=1 log rj = O(z

1
7
i ). For a sufficiently large constant i0, we have for

all i ≥ i0,

8if(ri−1) log ri+1(
i+1∑
j=1

log rj) ≤ 8ici−2
0 O(log

35
3 zi log8 zi)O(z

1
7
i )O(z

1
7
i )

= 8ici−2
0 O(z

2
7
i log20 zi) ≤

z
1
3
i

ci−1
0

= ri
f(ri)

,

(5.20)

since the zi’s grow much faster than any exponential function having a constant in the
base; specifically, we can see below that z

1
21
i ≥ gi0 log20 zi for any constant g0 ≥ 0 if i is

larger than a constant:

1
21

log zi ≥ i log g0 + 20 log log zi ⇔
1
21

log 14z
1
7
i−1 ≥ i log g0 + 20 log log 14z

1
7
i−1

⇔ z
1
7
i−1 ≥ g1i+ g2 log z

1
7
i−1 + g3 ,

(5.21)

for some constants g1, g2, and g3. And the last inequality is true if i is large enough,
since z

1
7
i grows much faster than i. So, inequality (5.1) is fulfilled for all ri exceeding the

constant ri0 . �

5.2.3 Establishing The Degree Requirement
After having computed a recursive division, we still have to transform the graph to have
maximum degree 3; otherwise, Theorem 5.3 can not be applied, see Subsection 5.1.4.
We can achieve this, using our recursive division, by the following lemma. Note that
according to Proposition 5.5. the resulting graph might not be K`-minor-free but it will
still serve our purpose of finding shortest paths in linear time since it is now accompanied
by a recursive division satisfying inequality (5.1).
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(b)(a)

Figure 5.4: (a) a given graph with 3 regions indicated by different line styles and colors
and red boundary vertices; (b) the transformed graph in which every vertex
has degree at most 3; the number of boundary vertices of each region has
exactly doubled.

Lemma 5.11. Let G be an edge-weighted directed graph excluding a fixed minor and
let T be a recursive division tree representing an (r, f)-recursive division of G. Then
one can replace every vertex of G with a zero-weight cycle to obtain a graph G′ and at
the same time modify T into a tree T ′, so that G′ has in-/outdegree at most 2 and T ′
represents an (r, f)-recursive division of G′. This modification takes linear time.

Proof. Recall that the leaves of T represent the edges of G and that internal nodes
of T correspond to regions of G, namely, the region induced by all the leaves in the
subtree of that node. We modify G and T at the same time. First, for every vertex v
of G with degree deg(v) (the sum of the indegree and outdegree), we add new vertices
v1, . . . , vdeg(v) to G. We do an in-order traversal of T and for every leaf of T representing
an edge e = vw of G, we do the following: let e be the ith edge of v and the jth edge
of w that we encounter. We change the endpoints of e to be the vertices vi and wj and
add two new zero-weight edges vivi+1 and wjwj+1 as siblings of e to T (if i = deg(v),
we use vdeg(v)v1 instead; same for w). This way, every vertex v of G is replaced by a
zero-weight cycle (v1, . . . , vdeg(v)) (see Figure 5.4). The original vertices of G will become
isolated and can be removed. We call the resulting graph G′ and the modified recursive
division tree T ′. Note that since T has size O(n), this procedure takes only linear time.
Also note that we only added new leaves to T , and thus the internal nodes of T and T ′
correspond one-to-one to each other.
Now consider an internal node q′ of T ′. It represents a region R′ of G′ and corresponds

to a node q of T , representing a region R of G. R has rO(1) vertices and O(f(r))
boundary-vertices. The number of edges of R′ is at most three times as large as in R
and the number of vertices is proportional to the number of edges of R. But R is a
subgraph of G and excludes the same fixed minor, and thus the number of its edges is
linear in the number of its vertices. Hence, R′ still has rO(1) vertices and edges. Also,
since R is represented by the subtree rooted at q, its edges were traversed in order while
building T ′ and G′. So, every vertex v in R is replaced by a path vi, vi+1, . . . , vj with
1 ≤ i ≤ j ≤ deg(v) in R′. Thus, if v is a boundary vertex of R, we have vi and vj as
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boundary vertices of R′ instead. So R′ has at most twice as many boundary vertices as
R, i.e. still O(f(r)) (see Figure 5.4). So, T ′ represents an (r, f)-recursive division of G′.
�

Proof of Theorem 5.4. Note that up to the choice of the start- and endvertex inside the
zero-weight cycles of G′, shortest paths in G and G′ correspond one-to-one to each other.
G′ fulfills all the requirements of Theorem 5.3 and combining this with Theorem 5.6,
and Lemma 5.11, we obtain our main theorem, namely, Theorem 5.4. �

5.3 Steiner Tree Approximation in Linear Time on
H-Minor-Free Graphs

Let G = (V,E) be a given graph and R ⊆ V a given set of terminals. Recall from
Section 1.2 that Mehlhorn’s algorithm for finding a 2-approximate Steiner tree [Meh88]
involves the following steps:

(i) decomposing the graph into Voronoi regions using one shortest-paths computation;
(ii) using these regions to build the reduced distance network N?

D of the terminals;
(iii) finding the minimum spanning tree (MST) of N?

D;
(iv) returning the union of the shortest paths in G that correspond to the MST.

We show how to implement this algorithm in linear time on proper minor-closed graph
classes using Theorem 5.4 and the observation that Mehlhorn’s distance network is a
minor of the input graph. In what follows, we prove the following theorem:

Theorem 5.12. There is a linear-time algorithm that calculates a 2-approximation for
the Steiner minimum tree problem in any proper minor-closed class of graphs.

We first show how to find the Voronoi regions in linear time. In graphs excluding
a fixed K`-minor, we observe that the graph with an added super-source will exclude
K`+1; so, Theorem 5.4 applies and shortest paths can be calculated in linear time.
Alternatively, using a similar method as in Subsection 5.2.3, one can first find a recursive
division of G and then add the super-source and its edges to G and to the recursive
division. This could result in much better constants in the running time of the algorithm,
especially for planar graphs. We get

Lemma 5.13. For a graph G excluding a fixed minor and having nonnegative edge-
weights and a given set of terminals R in G, the Voronoi regions of G with respect to R
can be determined in linear time.

Corollary 5.14. In a proper minor-closed class of graphs, the distance network N?
D can

be calculated in linear time for any given set of terminals in a given graph from the class.

The next step of Mehlhorn’s algorithm is to calculate the minimum spanning tree of
N?
D. But notice that N?

D is obtained by contracting the Voronoi regions of the graph
(which are connected) and removing loops and parallel edges, i.e.
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Observation 5.15. For a given graph G and a set of terminals, the distance network
N?
D is a minor of G.

Thus, N?
D belongs to the same proper class of minor-closed graphs as G and one can

apply the linear-time minimum spanning tree algorithm of Mares [Mar04]. When we are
dealing with planar graphs, the algorithm of Cheriton and Tarjan can be used [CT76].
As mentioned before, the last step of Mehlhorn’s algorithm is to replace the edges of
N?
D with the corresponding paths from G and this can clearly be done in linear time.

Hence, Theorem 5.12 is proven.

5.4 Conclusion and Outlook
We showed how to generalize the linear-time shortest paths algorithm of Henzinger et
al. [HKRS97] from planar graphs to H-minor-free graphs. We argued that a straight-
forward generalization of the algorithm cannot work because in general H-minor-free
graphs, the shortest-paths problem cannot be reduced to graphs of bounded degree by
splitting vertices while maintaining the exclusion of a fixed minor. The main issue is
that we do not have an order on the neighbors of each vertex as we have in embedded
graphs; and so the splitting of vertices becomes problematic. Our main idea was to first
find a recursive division and then use that division to define a suitable ordering for the
splitting of vertices. To this end, we had to generalize the recursive division algorithm
of Henzinger et al. to work on H-minor-free graphs of unbounded degree. We achieved
this by using the concept of a connected H-partition and fast separation in H-minor-free
graphs as recently given by Reed and Wood [RW09].
As an application, we showed how to obtain a 2-approximation for Steiner tree in linear

time in H-minor-free graphs. A linear time constant-factor approximation algorithm for
this problem was previously not known on any nontrivial graph classes.
The most important open question that remains is whether a linear time shortest

paths algorithm exists for general graphs; and if not, to identify the classes of graphs
for which this is possible. Similarly, it would be interesting to find out which classes of
graphs admit a linear-time constant-factor approximation of the Steiner tree problem.
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6 Faster PTASes and FPT-Algorithms on
(Odd-)H-Minor-Free Graphs

One of the seminal results in algorithmic graph theory is arguably Baker’s approach
for designing polynomial-time approximation schemes for a wide range of problems on
planar graphs [Bak94]. Ever since its discovery, it has been applied and generalized in
various ways, see e.g. [Epp00a, FG01, Gro03, AFN04, DHK05, DHM07, Kle08, BKM09].
The essence of the idea is the following: for any given t, one can partition a planar
graph into t parts, so that removing any one of the parts results in a graph of bounded
treewidth. Now, to obtain a PTAS, we observe that if t is appropriately chosen, there
must exist a part that contains at most an ε-fraction of an optimal solution; this can
often be combined with the solution in the remainder of the graph to obtain a (1 + ε)-
approximation.
H-minor-free graphs have gained significant attention in the past two decades, es-

pecially due to Robertson and Seymour’s graph minor theory. As already mentioned,
these classes include, e.g. planar graphs, bounded-genus graphs, linklessly embeddable
graphs and apex graphs. Using the deep Robertson-Seymour (RS-) decomposition the-
orem [RS03], Grohe [Gro03] generalized Baker’s technique to H-minor-free graphs and
Demaine et al. [DHK05] showed the partitioning theorem mentioned above for all these
graph classes. However, both their methods result in algorithms with running time
O(nf(|H|)), for some computable function f ; since H is assumed to be fixed, this is
considered polynomial.

Improving Baker’s Decomposition We provide the first algorithm for Baker’s decom-
position of H-minor-free graphs running in time O(g(|H|)nO(1)), for some computable
function g. This is a significant acceleration of the previous results, especially con-
sidering the fact that the constants in graph minor theory, such as the functions f, g
above, are usually huge. This immediately implies similar improvements on all the con-
sequences of this algorithm, especially all the generic approximation algorithms and
schemes in [Gro03, DHK05] and Baker’s original problems [Bak94]. In particular, we
obtain the first 2-approximation for Coloring H-minor-free graphs in the given time
bound and the first PTAS for Independent Set, Minimum Color Sum, Max-Cut,
Maximum P -Matching, and Dominating Set on these graph classes while avoiding
|H| in the exponent of n in their running time. Our main idea is derived from Dawar et
al.’s approach [DGK07] of finding a certain tree decomposition of H-minor-free graphs
that is more tractable than the RS-decomposition. In the language of parameterized
complexity, our result above shows that partitioning H-minor-free graphs in the de-
scribed way is in FPT when parameterized by |H|.
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Guess and Conquer Recall that a parameterized problem of size n with parameter k
is in FPT if it can be solved in time O(f(k)nO(1)), for some computable function f .
Once a problem is shown to be FPT, the challenge is to provide algorithms that have
the smallest dependence on the parameter k, i.e. make the function f in the running
time as small as possible. It is especially desirable to obtain subexponential functions
and thus provide particularly fast algorithms. Whereas this is often not possible in
general graphs, a plethora of results exist that show the existence of such algorithms
on restricted graph classes, such as H-minor-free graphs. Perhaps the most general
technique to obtain subexponential parameterized algorithms on these graph classes
is the theory of bidimensionality [DFHT05] that captures almost all known results of
this type on H-minor-free graphs. Still, this theory does not apply to a number of
prominent problems, such as k-Steiner Tree, Connected k-Dominating Set, and
Directed k-Path.
In this work, we provide a new framework, that we call guess and conquer, to obtain

(nearly) subexponential parameterized algorithms on H-minor-free graphs for an abun-
dant number of parameterized problems. Whenever the problem at hand admits a minor-
monotone subexponential kernel, our method results indeed in a subexponential algo-
rithm; otherwise, we obtain an algorithm with a running time O(2OH(

√
k logn)nO(1)) =

inf0<ε≤1O((1 + ε)k + nOH(1/ε)) which we call nearly subexponential. Note that if
k = O(logn), our running time is fully polynomial in the input and if k = ω(logn),
it is subexponential FPT in k. Hence, except for a “small range” of possible parameter
values, we have a subexponential FPT algorithm. In fact, we show that the problems we
consider, admit a minor-monotone subexponential kernel on H-minor-free graphs if and
only if they admit a subexponential FPT algorithm on these graph classes. Note that in
general graphs, even a linear kernel results only in an exponential FPT-algorithm.
Our technique applies in particular to the Connected k-Dominating Set problem

and k-Steiner Tree (at least) in bounded-genus graphs and Directed k-Path in all
H-minor-free graphs, none of which are known to admit subexponential FPT-algorithms
in H-minor-free graphs; for the latter two, such algorithms are not even known for planar
graphs.
At the time of preparation of this thesis, we became aware that Dorn et al. [DFL+10]

recently and independently obtained similar nearly subexponential algorithms for some
problems, albeit only on apex-minor-free graphs – whereas our techniques apply to
general H-minor-free graphs. The focus of their work is on directed graph problems and
in particular, they obtain a nearly subexponential FPT-algorithm for Directed k-Path
in apex-minor-free graphs (furthermore, they obtain a number of subexponential FPT-
algorithms for problems that we do not consider in this work). The second method they
present in their paper is indeed similar to what we call guess and conquer in this work but
it is only formulated for a specific problem, not in general terms as we do, and also not
for the wide range of problems we consider; in particular, our technique for domination
and covering problems is completely new. Additionally, they present their method only
for problems with a polynomial kernel whereas we also obtain nearly subexponential
algorithms on problems without such a kernel. Furthermore, even on problems with a
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kernel we obtain faster algorithms, having a running time of O(2O(
√
k log k)nO(1)) instead

of O(2O(
√
k log k)nO(1)) of [DFL+10].

Odd-Minor-Free Graphs The class of odd-minor-free graphs has attained extensive
attention in the graph theory literature [Gue01, GGG+04] and recently, in theoretical
computer science [KM08, DHK10, KLR10]. They are strictly more general than H-
minor-free graphs as they include, for example, all bipartite graphs and may contain a
quadratic number of edges. In addition to their role in graph minor theory and structural
graph theory, they bear important connections to the Max-Cut problem [Gue01] and
Hadwiger’s conjecture [Had43, KM08]. We refer to the work of Demaine et al. [DHK10]
for a more thorough introduction to odd-minor-free graphs and their significance.
Demaine et al. [DHK10] prove a decomposition theorem for odd-H-minor-free graphs

that is similar to the RS-decomposition ofH-minor-free graphs and present an O(nf(|H|))
algorithm to compute such a decomposition. From this, they derive a Baker-style decom-
position of odd-minor-free graphs into two graphs of bounded treewidth. We identify
an intermediate decomposition implicit in [DHK10] that is computable in FPT-time
and proves to be very useful algorithmically: on one hand, we deduce the Baker-style
decomposition into two parts and a number of 2-approximation algorithms (most no-
tably for Coloring) in FPT-time as a corollary; on the other hand, we can answer
a question that is posed several times by Demaine et al. in [DHK10], affirmatively:
namely, whether the PTASes and subexponential FPT-algorithms for Vertex Cover
and Independent Set can be generalized from H-minor-free graphs to odd-minor-
free graphs. We show how to obtain such algorithms by introducing a novel dynamic
programming technique on odd-minor-free graphs based on solving a certain weighted
version of the considered problems in bipartite graphs. These are the first PTASes and
subexponential FPT-algorithms developed on odd-minor-free graphs.

Notation and Basic Definitions
We review and collect some relevant concepts from parameterized complexity and graph
theory that were mostly not discussed so far. Recall that H-minor-free graphs have
bounded average degree (depending on |H|), i.e. they fulfill m = OH(n) [Mad67]. We
use the notation OH to denote that the constants hidden in the big-O depend on |H|;
this is necessary since in graph minor theory, the exact dependence is often not known.
We denote the standard parameterization of a problem Π by k-Π, i.e. the problem Π

parameterized by the solution size k, which is usually the number of vertices or edges in
the solution; this applies in particular to k-Steiner Tree.

The Classes SUBEPT and SUBEPT+ Recall that the classes EPT and SUBEPT are
defined to be the bounded parameterized complexity classes 2O(k)-FPT, and 2oeff(k)-FPT.
A problem is subexponential fixed-parameter tractable if it is in SUBEPT. Observe that if
a problem is in SUBEPT then there exists an algorithm for the problem, so that for any
fixed α > 0 the algorithm runs in time O(2αknO(1)). We define nearly subexponential
parameterized algorithms and problems as follows.
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Definition 6.1. A parameterized problem k-Π is said to be in SUBEPT+ if it can be
solved by an algorithm A such that for any fixed α > 0, the running time of A is bounded
by O(2αknO(1/α)). In this case, A is called a nearly subexponential time algorithm.
Observe that we require a single (uniform) algorithm to have this property for the

considered problem. Clearly, SUBEPT ⊆ SUBEPT+ ⊆ EPT. Note that the non-uniform
exponential time hypothesis (ETH) implies that SUBEPT+ 6= EPT.
Note that when we claim that a certain problem k-Π is in SUBEPT or SUBEPT+ on

(odd-)H-minor-free graphs, we mean it is subexponential in k; whenever we would like
to talk about |H| as the parameter, we make it explicit.

Odd Minors Recall that a model of H in G is a map that assigns to every vertex v of
H, a connected subtree Tv of G such that the images of the vertices of H are all disjoint
in G and there is an edge between them if there is an edge between the corresponding
vertices in H. A graph H is a minor of G if and only if G contains a model of H.
Definition 6.2. A graph H is an odd-minor of a graph G if H is a minor of G, and
additionally the vertices of the trees in the model of H in G can be 2-colored in such a
way that
(i) the edges of each tree Tv are bichromatic; and
(ii) every edge eG in G that connects two trees Tu and Tv and corresponds to an edge

eH = uv of H is monochromatic.
A graph is odd-H-minor-free if it excludes H as an odd minor.
For example, bipartite graphs are odd-K3-minor-free.

Tree Decompositions and Dynamic Programming We denote a tree decomposition
of a graph G by a pair (T,B), where T is a tree and B = {Bu|u ∈ V (T )} is the family of
the bags of the tree decomposition. For a vertex v ∈ V (G), we let Tv be the connected
subtree of T whose bags contain v. The adhesion of a tree decomposition is defined as
max{|Bu ∩ Bt| | {u, t} ∈ ET } (see Figure 6.1 (a)). We denote the treewidth of a graph
G by tw(G).
Many NP-hard optimization problems become fixed-parameter tractable when pa-

rameterized by the treewidth of the instance, by using dynamic programming on a
given tree decomposition. The most well-known result in this area is Courcelle’s the-
orem [Cou90] stating that any problem definable in monadic second-order logic is in
FPT when parameterized by the treewidth and the length of the formula. However,
the algorithms obtained by this theorem usually have multiply-exponential dependence
on the treewidth of G. In this work, we are interested in algorithms with singly-
exponential dependence on the treewidth, i.e. problems that are in EPT when param-
eterized by treewidth. Several natural problems have long been known to admit such
algorithms [AP89, Bod88], and for problems with global connectivity requirement such as
Longest Path, Steiner Tree and Connected Dominating Set, EPT-algorithms
on (some classes of) H-minor-free graphs were recently given by Dorn et al. [DFT08] by
utilizing Catalan structures.
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6.1 Partitioning H-Minor-Free Graphs
In [DHK05], Demaine et al. show how to decompose H-minor free graphs into parts, so
that upon removal of any part, the problem at hand becomes tractable. In this section,
we show how this decomposition can be achieved in FPT-time with |H| as parameter;
furthermore, we introduce a refinement of this method.

Theorem 6.3 (Demaine et al. [DHK05]). For every graph H there is a constant cH
such that for any integer p ≥ 1 and for every H-minor-free graph G, the vertices (edges)
of G can be partitioned into p sets such that any p − 1 of the sets induce a graph of
treewidth at most cHp. Furthermore, such a partition can be found in time nOH(1).

The essence of this idea goes back to Baker’s approach [Bak94] for polynomial-time ap-
proximation schemes on planar graphs. That approach has been applied and generalized
in many ways [Epp00a, FG01, Gro03, AFN04, DHK05, DHM07, Kle08, BKM09]. By
now, it is considered a standard technique and it is not hard to see that it is true for
apex-minor-free graphs: we perform breadth-first search (BFS) and label the BFS-layers
periodically by 0, . . . , p − 1; now by removing the vertices of any one label, the graph
falls apart into a number of connected components. If we consider such a connected
component C in the BFS-tree then, by contracting everything preceding C into a single
vertex and deleting everything following C in the tree, we obtain a graph of bounded
diameter. Such a graph has bounded treewidth because of the bounded local treewidth
property of apex-minor-free graphs, and so we obtain a linear time algorithm.
But for general H-minor-free graphs the situation is more complicated; the bounded

local treewidth property does not hold for all H-minor free graphs. To overcome this
difficulty, Demaine et al. [DHK05] apply the Robertson-Seymour decomposition (RS-
decomposition) of H-minor-free graphs [RS03], following some ideas of Grohe [Gro03].
They give an algorithm to compute an RS-decomposition of a given H-minor-free graph
in time nOH(1). For parameter |H|, that algorithm is hence not a fixed-parameter algo-
rithm. We now show how the techniques of Grohe [Gro07a] and Dawar et al. [DGK07]
can be used to establish fixed-parameter versions and extensions of Theorem 6.3.

6.1.1 The Existence of a Fast Partitioning Algorithm

A key observation to obtain an FPT-version of the partitioning algorithm is that an
RS-decomposition is not needed – it suffices to have a tree decomposition of the input
graph that fulfills certain properties. To state these properties, we require the following
classes of graphs as defined by Grohe [Gro03]:

L(λ) = {G | ∀ H � G∀ r ≥ 1 : ltwr(H) ≤ λ · r},
L(λ, µ) = {G | ∃ U ⊆ V (G) : |U | ≤ µ and G− U ∈ L(λ)} .

Since the property of having bounded local treewidth is not inherited when taking mi-
nors, we explicitly require it for all minors of G in the definition of L(λ). A graph
G in the class L(λ, µ) may contain a set U of at most µ apices, so that by removing
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(a) (b) (c)

Figure 6.1: (a) A tree decomposition of adhesion 4; the shaded ovals represent edges of
the tree decomposition and the vertices therein are in the intersection of the
adjacent bags; (b) building the closure of bags; (c) building the companion
of bags; the hat vertices are in green outside the bags.

these apices from G we obtain a graph in L(λ). Note that both of these classes are
minor-closed and hence, by the Graph Minor Theorem and the minor-testing algorithm
of Robertson and Seymour [RS95, RS04], they can be recognized in time OH(n3).
Given a graph G, consider a tree decomposition (T,B) of G and a bag B in B. The

closure ofB, denoted byB, is the graph obtained fromG[B] by adding some edges so that
B ∩B′ induces a clique in B, for every bag B′ 6= B (see Figure 6.1 (b)). We say G has a
tree decomposition (strongly) over a class of graphs C if there exists a tree decomposition
of G so that the closure of each bag is in C. Note that if C is minor-closed then the class
of graphs having a tree decomposition over C is minor-closed, too. Using the Robertson-
Seymour decomposition theorem [RS03], Grohe [Gro03] proved that for every H there
exist computable λ, µ, and κ depending only on |H|, so that any H-minor-free graph
admits a tree decomposition over L(λ, µ) with adhesion at most κ. Later [Gro07a] he
observed that such a tree decomposition can be computed in time OH(n5), provided
that the excluded minors of the class of graphs having such a decomposition are known.
In fact, he proved the existence of such an algorithm for all proper minor-closed graph
classes without presenting it explicitly for any particular class; a common fate when
applying the Graph Minor Theorem. Furthermore, this algorithm is non-uniform in the
sense that for every excluded minor H, we obtain a different algorithm. Nevertheless,
based on that decomposition, the proof of Theorem 6.3 can easily be adapted to obtain

Theorem 6.4. There exists an algorithm that computes a partition as described in
Theorem 6.3 in time OH(n5).

6.1.2 An Explicit FPT-algorithm

The statement of Theorem 6.4 is not quite satisfactory; we would like to know and
furthermore, have a uniform algorithm to compute the desired decomposition. Dawar
et al. [DGK07] attacked this problem in the following way: instead of looking at the
closure of bags in a tree decomposition, they look at the companion of the bags: for a
bag B with neighbors B1, . . . , Bt in a given tree decomposition, we define its companion
B̂ as the graph obtained from G[B] by adding new vertices û1, . . . , ût and connecting
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ûi to all vertices in the intersection B ∩ Bi, for 1 ≤ i ≤ t. We call û1, . . . , ût the hat
vertices of B̂ (see Figure 6.1 (c)). Note that the difference between the closure and the
companion of a bag is that in the closure, the intersections with neighboring bags form
a clique instead of being connected to a hat vertex. We say that a graph G has a tree
decomposition weakly over a graph class C if there exists a tree decomposition of G so
that the companions of all the bags are in C.

Theorem 6.5 (Dawar et al. [DGK07]). There is an explicit uniform algorithm that,
given an H-minor-free graph G, computes a tree decomposition (T,B) of G that is weakly
over L(λ, µ) and has adhesion at most κ, in time OH(nO(1)), where λ, µ, and κ are
computable functions depending only on |H|. Furthermore, the µ apices of the companion
of each bag in B can be computed in the same time bound.

Note that the λ, µ, and κ in the theorem above are much larger than the ones in the
existential version proven by Grohe [Gro03]; but they still depend solely on |H| and are
thus acceptable for our purposes. However, in order to adapt the proof of Theorem 6.3 as
given in [DHK05] for obtaining an FPT-algorithm, we would need the closure of the bags
of the tree decomposition to be in L(λ, µ). We resolve this issue by using Lemma 6.7
below. First, we need some preparation:
Let G be a graph and let (T,B) be a tree decomposition of G with adhesion at most κ

that is weakly over L(λ, µ), for some κ, λ, and µ, and assume T is rooted at some bag.
We say an apex set A of the companion B̂ of a bag B ∈ B is nice, if

(i) for the parent B′ of B in T , we have B ∩B′ ⊆ A; and
(ii) if û is a hat vertex of B̂ belonging to A, then N(û) ⊆ A.

Note that by going from L(λ, µ) to L(λ, µκ+κ) if necessary, we may assume w.l.o.g that
all companions have nice apex sets: simply add the intersection with the parent bag and
all the neighbors of included hat vertices to a given apex set. We proceed with our main
technical lemmas.1

Lemma 6.6. Let G be an H-minor-free graph and let (T,B) be a tree decomposition
of G with adhesion at most κ that is weakly over L(λ, µ). Consider a bag B0 ∈ B with
nice apex set A ⊆ V (B̂0) and closure B0. Define B := B0 − A and B := B0 − A. Let
j ≥ i ≥ 0 be integers, r ∈ B, and Lri,j := {v ∈ B | i ≤ distB(r, v) ≤ j}. Then we have
tw(B[Lrij ]) ≤ 4λκ · (j − i+ 1).

Proof. Let Û be the set of hat vertices of B̂0 and B̂ := B̂0 − A. For v ∈ B, we let d(v)
denote distB(r, v) and define p := j − i+ 1. For a set C ⊆ B, let C := B[C] denote its
closure, and Ĉ := B̂[C]∪ ÛC be its companion, where ÛC denotes the set of hat vertices
in Û that have a neighbor in C. Note that C is connected if and only if Ĉ is connected
and that the diameter of Ĉ is at most twice that of C; furthermore, Ĉ is disjoint from
A because A is nice.
From now on, fix C := Lrij , and let C and Ĉ denote its closure and companion,

respectively. Let R be the set of all v ∈ B with d(v) < i, R its closure, and R̂ its
1Note that Lemma 6.6 is implicitly assumed by Dawar et al. [DGK07].
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companion. Note that R and R̂ are connected; but there exists a (possibly empty) set
Û ′ := V (Ĉ) ∩ V (R̂) of hat vertices that are contained in both R̂ and Ĉ. We claim that
R̂′ := R̂ − Û ′ is still connected: to see this, let û ∈ Û ′ be such a hat vertex and note
that û has only neighbors NR ⊆ R and NC ⊆ C, so that NR ∪ NC induces a clique in
B. But then, it must be that the vertices vR ∈ NR fulfill d(vR) = i − 1 and the ones
vC ∈ NC fulfill d(vC) = i, and therefore the vertices of NR are connected to r via a path
that does not include any of the edges of this clique. Hence R̂− û is connected.
Now let Q := C ∪ R, Q its closure, and Q̂ its companion. Consider the graph Q̂′ :=

Q̂/E(R̂′) obtained by contracting R̂′ in Q̂. Since R̂′ is connected and disjoint from Ĉ,
we observe that Q̂′ is isomorphic to Ĉ augmented by a single vertex r′ that is connected
to all vertices of v ∈ C with d(v) = i – either by a direct edge or by using a hat vertex
from Û ′. Hence, the distance of any vertex v ∈ C from r′ is at most 2p in Q̂′, and so the
diameter of Q̂′ is at most 4p. On the other hand, we have Q̂′ � B̂ ∈ L(λ), and hence
the treewidth of Q̂′ is bounded by 4λ · p.
Let (T ′,B′) be a tree decomposition obtained by (i) considering a tree decomposition

(T0,B0) of Q̂′ of width at most 4λ · p; (ii) removing the vertex r′ from every bag in B0;
and (iii) replacing every hat vertex in each bag in B0 by the set of its neighbors. Clearly,
(T ′,B′) is a tree decomposition of C and its width is at most 4λκ · p, as desired. �

Lemma 6.7. Let G be an H-minor-free graph and let (T,B) be a tree decomposition of
G with adhesion at most κ that is weakly over L(λ, µ), where λ, µ, and κ are computable
functions depending only on |H|. Consider a bag B0 ∈ B with a given nice apex set
A ⊆ V (B̂0). For any integer p ≥ 1 we can label the vertices and edges of the closure
B0 −A by the numbers {0, . . . , p− 1}, so that the following holds:

1. every edge has the label of one of its endpoints;
2. every vertex is incident to at most 2 distinct edge-labels;
3. the vertices or edges of any p−1 labels induce a graph of treewidth at most 4λκ ·p;
4. there exists an explicit uniform algorithm to find such a labeling in time OH(nO(1)).

Proof. Define B := B0 − A and B := B0 − A. W.l.o.g. we may assume that B is con-
nected, since otherwise we can simply repeat the following procedure for every connected
component. We pick an arbitrary vertex r and perform a BFS in B. We assign the label
lab(v) = distB(v, r) mod p to every vertex v ∈ V ; every edge is assigned the label of its
endpoint closest to r. Consider a connected component C of the graph induced by any
p−1 vertex or edge labels. Then C is a subgraph of Lri,i+p−1, for some i ≥ 0, and hence,
by Lemma 6.6 its treewidth is bounded by 4λκ · p. The other claims are easy to verify.
�

Using Theorem 6.5 and Lemma 6.7, it is not hard to extend the proof of Theorem 6.3
in [DHK05] to obtain the following version; on the other hand, this result is implicit in
the proof of Theorem 6.9 as given below:

Theorem 6.8. There exists an explicit uniform algorithm that computes a partition as
described in Theorem 6.3 and runs in time OH(nO(1)).
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6.1.3 Bounding the Number of Label Incidences

In some of our applications, we need a more specific version of Theorem 6.3; we would
like to obtain a partition of the edges while still being able to bound the number of parts
in which each vertex might appear. To this end, we shall bound the number of distinct
edge-labels incident to each vertex in an edge-partition of the graph. A closer look
at Demaine et al.’s [DHK05] proof of Theorem 6.3 reveals that this number is indeed
bounded by OH(1); for the sake of completeness, and since our setting is somewhat
different, we include a proof in this section.
For two graphs G1 and G2 whose intersection E(G1) ∩ E(G2) induces a clique, we

define their clique-sum G1 ⊕ G2 as the graph G1 ∪ G2 with any number of edges in
the clique E(G1) ∩ E(G2) deleted. Note that this operation is not well-defined and can
have a number of possible outcomes. The notion of a clique-sum plays a central role
in graph minor theory and it is well-known that tw(G1 ⊕G2) ≤ max{tw(G1), tw(G2)}.
A key observation is that when considering two neighboring bags B1 and B2 in a tree
decomposition of a graph, the graph induced by B1 ∪ B2 is a subgraph of a clique-sum
B1 ⊕ B2 of the closure of the bags. We use this observation to prove the following
theorem.

Theorem 6.9. For any fixed graph H there are constants cH and dH such that for any
integer p ≥ 1 and every H-minor-free graph G, the edges of G can be partitioned into p
parts such that any p− 1 of the parts induce a graph of treewidth at most cHp and every
vertex appears in at most dH of the parts. Furthermore, such a partition can be found
in explicit uniform FPT-time, i.e. OH(nO(1)).

Proof. First, we compute a tree decomposition (T,B), weakly over L(λ, µ) with adhe-
sion κ as given by Theorem 6.5. We root the tree decomposition at a bag B0 and let
B0, . . . , Bk be a pre-order traversal of the bags of the rooted tree decomposition. For
0 ≤ i ≤ k, let Gi := B0 ⊕ · · · ⊕Bi; note that G = Gk. For each i ∈ {1, . . . , k}, let Ci be
the set of at most κ vertices in the intersection of Bi with its parent bag and C0 = ∅;
also, let Âi be the set of at most µ apex vertices of the companion B̂i and assume w.l.o.g.
that Âi is nice, i.e. in particular, Ci ⊆ Âi; let Ai = Âi ∩Bi. We prove the statement by
induction on i, label the vertices and edges simultaneously, and keep the invariant that
the label of every edge is equal to the label of one of its endpoints. We say that a label
is incident to a vertex v if it is the label of v or the label of an edge that is incident to v.
For G0 = B0, we start with the labeling provided by Lemma 6.7. Next, we assign

the label 0 to all vertices and edges that are included or have an endpoint in A0. Since
Lemma 6.7 guarantees that every vertex in B0 − A0 is incident to at most 2 distinct
labels, we obtain that in G0, every vertex is incident to at most 3 distinct labels. Also,
the treewidth of any subgraph of G0 induced by any p − 1 labels is at most cHp with
cH := 4λκ + µ, as one can simply add all the vertices of A0 to every bag in a tree
decomposition provided by Lemma 6.7.
Now consider Gi for 1 ≤ i ≤ k and let Bj be the parent bag of Bi. We consider the

labeling inductively constructed for Gi−1 and label the vertices and edges of Bi − Ai
using Lemma 6.7. Since Ci = Bi ∩Bj = Bi ∩ V (Gi−1) ⊆ Ai, we let V (Gi−1) and all the
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edges with both endpoints in V (Gi−1) keep the labels obtained for Gi−1 without causing
a conflict; we label the vertices in Ai − Ci by 0, each edge with exactly one endpoint
u in Ci by the same label as u and all remaining edges (which must have an endpoint
in Ai) by 0. Note that the number of incident labels for each vertex in Gi−1 does not
change; and every vertex in Bi − Ci becomes incident to at most dH := κ + 2 different
labels. Hence, this requirement of the theorem is fulfilled by induction.
It remains to show that any subgraph G′i of Gi induced by (at most) p− 1 labels has

treewidth at most cHp. Let G′i−1 := G′i[V (Gi−1)∩V (G′i)] and B
′
i := G′i[Bi]. Let d be the

omitted label and D ⊆ Ci the set of vertices with label d from Ci; define C ′ := Ci −D
and B′′i := B

′
i −D. Note that C ′ induces a clique in both G′i−1 and B′′i and that D has

no neighbors in Bi−Ci in B
′
i because all edges incident to a vertex of D in B′i have label

d by our construction and are deleted. Hence, G′i = G′i−1 ⊕ B
′′
i and so its treewidth is

bounded by the maximum of the treewidth of these two graphs. But by the induction
hypothesis and Lemma 6.7, this number is bounded by cHp. �

6.1.4 Approximation Algorithms and PTAS

We improve all the generic approximation and PTAS results given by Demaine et
al. in [DHK05] (specifically, Theorems 3.3–3.7) and also by Grohe in [Gro03] by re-
moving the dependence on |H| from the exponent of n in the presented algorithms.
This is due to Theorem 6.8 and also the fact that Lemma 6.6 corresponds to [Gro03,
Lemma 16] as applied to tree decompositions that are weakly over L(λ, µ). Nothing else
in the proofs and algorithms needs to be changed. We refrain from re-stating all the
generic results and highlight only some important concrete corollaries below.

Corollary 6.10. There exists a 2-approximation algorithm for Coloring an H-minor-
free graph in time OH(nO(1)).

Corollary 6.11. There exists a PTAS for Independent Set, Minimum Color Sum,
Vertex Cover, Max-Cut, and Maximum P -Matching in H-minor-free graphs run-
ning in time OH,ε(nO(1)).

The following result is of particular interest, as it does not follow from Theorem 6.8
but requires the techniques of [Gro03] using Lemma 6.6:2

Corollary 6.12. There exists a PTAS for Dominating Set in H-minor-free graphs
running in time OH,ε(nO(1)).

For all the problems mentioned above, our method results in the first algorithm with
this running time. The class of problems to which these techniques apply is very large and
includes all the problems originally considered by Baker [Bak94] and also most minor-
bidimensional problems, whereas for the latter, other known techniques also result in
such PTASes [DH05a, FHL08].

2As this lemma is assumed by [DGK07], one can see this as a direct corollary of their work.
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6.2 A Technique for (Nearly) Subexponential FPT-Algorithms
In this section, we introduce the technique of guess and conquer that for a wide range
of problems shows their membership in SUBEPT+. We first present the technique for
the generic problem of finding a subgraph with a property; then we show how the idea
can be used for domination, covering, and further types of problems. At the end of the
section, we discuss the relation of the proposed algorithm to kernels.

6.2.1 The Technique of Guess and Conquer
We state our main technique for a broad class of parameterized problems. Given a
graph property π, which is simply a set of directed or undirected graphs, we consider the
following generic problem:

k-Subgraph with Property π: Given a graph G, does G contain a sub-
graph with at most k vertices that has property π, i.e. is isomorphic to some
graph in π?

The problem is abbreviated as k-sp (π). If we insist on finding induced subgraphs with
property π, we use the notation k-isp (π) and if we want k to be the number of edges
in an edge-induced subgraph then the problem is denoted by k-eisp (π). We allow that
some vertices in the graphs in π have fixed labels, in which case, the task becomes to
find a subgraph of a (partially) labeled graph G isomorphic to a graph in π, so that the
labels match. Another variant is that we are additionally given a set R ⊆ V (G) of roots
(or terminals) in G and we are seeking a subgraph with property π that contains all the
roots. We use the letters l and r to account for the labeled and rooted version of the
problem, respectively, and the letter d to emphasize that we are dealing with directed
graphs. Finally, we might be given a vertex- or edge-weighted graph and our goal is
to find among all subgraphs of G with property π and at most k vertices (or edges),
the one of minimum or maximum weight. We denote this whole class of problems by
({Min,Max})k-{d,r,l,e,i}sp(π).
For example, k-Steiner Tree can be seen as a Min k-rsp(π) problem, where π is

the set of all trees and R is the set of terminals that are to be connected in G. Likewise,
one could look for a biconnected subgraph of size at most k containing a given set of
terminals by taking π to be the set of all biconnected graphs. Also, Directed st-k-Path
is an instance of k-dleisp (π) where π contains only a directed path of length k, in which
the first vertex is labeled s and the last vertex is labeled t. Other interesting choices for
π include being chordal, bipartite, edge-less (Independent Set), of maximum degree
r ≥ 1, a clique, planar, or containing only/avoiding cycles of specified length [DHK05].
We obtain the following general result:
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Theorem 6.13. Let π be a graph property such that on graphs of treewidth t one can
find a (maximum/minimum weight/rooted/labeled/induced) subgraph with property π in
time O(2O(t)nO(1)). For any (directed/partially labeled) H-minor-free graph G, there
exists an algorithm A solving problem ({Min,Max})k-{d,r,l,e,i}sp(π) and that for
any α ≥ 1 and fixed δ > 0 runs in time O(2OH(

√
k logn)nO(1)) = O(2OH(k/α) + nO(α))

= inf0<ε≤1O((1+ ε)k +nOH(1/ε)) = o(nO(1)+δ
√
k). In particular, the considered problem

belongs to SUBEPT+.

Proof. Let p be some fixed integer; apply Theorem 6.8 to G to obtain a partition
V1, . . . , Vp of the vertex set of the graph, so that the graph induced by any p − 1 of
the sets has treewidth at most cHp; such partition can be found in time OH(nO(1)).
Now, consider an optimal subgraph S? fulfilling the requirements of the problem; since
S? is assumed to have at most k vertices, there exists an i? ∈ {1, . . . , p}, so that Vi?
contains at most bk/pc vertices of S?. Since we do not know the value of i?, we simply
guess it; there are at most p possibilities to do so and we try all of them. Hence, for
each i ∈ {1, . . . , p}, we repeat the following (see Figure 6.2 for an illustration):
For a fixed i, we have to determine which vertices of Vi belong to S?; once more, since

we do not know these vertices, we simply guess them; there are at most nbk/pc possible
subsets to try because we assumed that Vi contains at most bk/pc vertices of S?. For
each such subset X ⊆ Vi, we consider the subgraph G′ = G[(V (G) − Vi) ∪ X]. The
treewidth of this subgraph is at most cHp + bk/pc, and hence, we can find an optimal
solution in G′ in time O(2O(cHp+k/p)nO(1)) and we are done.
The algorithm’s total running time is O(2O(cHp+k/p+k logn/p)pnO(1)). This expression

is minimized for p =
⌊√

k logn/cH
⌋
resulting in a running time of O(2OH(

√
k logn)nO(1)).

Since for any fixed δ′ > 0 we have that 2
√

logn = o(nδ′), we can choose δ′ in such a
way that for any given fixed δ > 0, the running time is o(nO(1)+δ

√
k). On the other

hand, for any α ≥ 1, if cHk ≤ α2 logn, we have
√
cHk logn + logn ≤ 2α logn; and

if cHk > α2 logn, we have
√
cHk logn + logn < 2cHk/α. Hence, the running time is

bounded by O(2OH(k/α) + nO(α)). By choosing α = Θ(cH/ ln(1 + ε)) = Θ(cH/ε), we
obtain a running time of inf0<ε≤1O((1 + ε)k + nOH(1/ε)). �

Using the result of Dorn et al. [DFT08] that the following problems are in EPT on
(some) H-minor-free graphs when parameterized by treewidth, we immediately obtain:

Corollary 6.14. For any graph H, the problem Directed k-Path is in SUBEPT+

when restricted to H-minor-free graphs; the same is true for k-Steiner Tree at least
on bounded-genus graphs.3

The two problems mentioned above are prominent problems that were not known to
admit FPT-algorithms with running time better than O(2knO(1)) before, even on planar
graphs. Besides improving on the best known FPT-algorithms for these problems, our
result shows that it is very likely that they indeed admit subexponential FPT-algorithms.
3In [DFT08] it is claimed that Steiner Tree is in EPT on H-minor-free graphs when parameterized
by treewidth; however, I know by private communication that at this time, a proof actually exists
only up to bounded-genus graphs. The same is true for Connected Dominating Set.
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Figure 6.2: Illustration of Guess & Conquer: (a) partition the graph into p parts by
Theorem 6.8; (b) guess which part contains a small part of the solution;
(c) guess this small part of the solution; (d) conquer the remaining graph of
small treewidth.

6.2.2 Guess and Conquer for Domination, Covering, and More
We introduced our technique for the class of k-{d,r,l,e,i}sp (π) problems, where we are
looking for a subgraph with a certain property. Whereas many problems can be formu-
lated as an instance of this generic problem class, some others like k-Vertex Cover,
k-Dominating Set, or k-Leaf Tree and variants can not. We capture another class
of problems by the following theorem.

Theorem 6.15. Let Π be a problem that takes as input a graph G and outputs a set
S ⊆ V of vertices, and let k-Π its parameterization by |S|. Suppose that

(i) on graphs of treewidth t, Π can be solved in time O(2O(t)nO(1)); and

(ii) if for an edge e ∈ E(G) it is known that some solution of S excludes both endpoints
of e then Π can be reduced to finding a solution in G − e; that is, there exists a
k′ ≤ k such that given a solution for (G − e, k′), one can compute a solution for
(G, k) in polynomial time.

Then for any graph G excluding a fixed minor H, there exists an algorithm A solving
k-Π on instance (G, k) such that for any α ≥ 1 and fixed δ > 0, algorithm A runs in
time O(2OH(

√
k logn)nO(1)) = O(2OH(k/α) + nO(α)) = inf0<ε≤1O((1 + ε)k + nOH(1/ε))

= o(nO(1)+δ
√
k) In particular, k-Π belongs to SUBEPT+.

Proof. Let p be a fixed integer and let E1, . . . , Ep be the edge partition obtained by
Theorem 6.9, so that the graph induced by any p− 1 of the parts has treewidth at most
cHp and furthermore, each vertex appears in at most dH of the parts. Let S? be an
optimal solution to P having at most k vertices; then the total number of appearances
of vertices in S? in the parts E1, . . . , Ep is bounded by dHk, where dH is the constant
from Theorem 6.9. It follows that there exists an i? ∈ {1, . . . , p} such that the graph
induced by Ei? contains at most bdHk/pc vertices of S?. We guess the value of i? and
the set of vertices X? := S? ∩ Ei? by trying all pnbdHk/pc possibilities.
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Because of assumption (ii), we can delete all the edges in Ei? that do not have an
endpoint in X?. The graph G − Ei? has treewidth at most cHp and by adding the
vertices of X? to every bag in such a tree decomposition, the width becomes at most
cHp+ bdHk/pc. By choosing p :=

⌊√
k logn

⌋
and repeating the analysis in the proof of

Theorem 6.13, we obtain our result. �

The k-Vertex Cover problem satisfies property (ii) above because if for an edge e,
we know that both endpoints do not belong to the solution, then we can reject, since
e is not covered. For k-Dominating Set, such an edge is simply irrelevant, even for
the connected version. That Connected k-Dominating Set fulfills property (i) was
shown by Dorn et al. [DFT08] (see footnote on page 120). Hence, we have

Corollary 6.16. ({Connected, Independent}) k-Dominating Set and ({Con-
nected, Independent}) k-Vertex Cover (at least) in bounded-genus graphs belong
to the class SUBEPT+.

Still, Theorems 6.13 and 6.15 do not capture all problems to which the basic idea of
our technique applies; for example, a modification of the proof of Theorem 6.15 shows
that the technique also works for the undirected k-Leaf Tree problem. But since this
problem is known to be in SUBEPT by the theory of bidimensionality, we refrain from
presenting the details. It would be interesting to see if (a modification of) our technique
can be used to solve the directed version of this problem.
Another interesting problem is k-Bounded Degree Deletion(d), or k-BDD(d) for

short, where we want to delete a set of at most k vertices so that the remaining graph
has degree at most d. Note that k-BDD(0) is equivalent to k-Vertex Cover. Whereas
we can not ignore edges that are known not to have endpoints in the solution, we can
delete such edges and store at each vertex, the maximum allowed degree that remains;
this information can then be incorporated in the dynamic programming on the bounded
treewidth graph. The problem has a kernel with a linear number of vertices and is thus
in SUBEPT on H-minor-free graphs but for the case where we seek a connected solution,
we obtain that k-BDD(d) belongs to SUBEPT+ only by applying our technique.

6.2.3 Further Analysis and Relation to Kernels
The analysis in the proof of Theorem 6.13 reveals that if k = O(logn), then our algorithm
runs in polynomial time; on the other hand, if k = ω(logn), i.e. if k is known to
be at least Ω(ι(n) logn) for any computable, non-decreasing and unbounded function
ι : N → N, then we have a SUBEPT algorithm with time complexity 2OH(k/

√
ι(k)) (see

proof of Theorem 6.13 with α =
√
ι(n)). But the condition k = ω(logn) is nothing else

but asking for a subexponential kernel; consider the following definition that we use to
state the subsequent corollary (note that a polynomial kernel implies logn ≤ c log k).

Definition 6.17. We say a parameterized problem k-Π admits aminor-monotone subex-
ponential kernel if it can be reduced in polynomial time to an equivalent instance of
size at most 2O(k/ι(k)) via edge contractions and deletions for some computable, non-
decreasing, and unbounded function ι : N→ N.
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Corollary 6.18. Let k-Π be a parameterized problem on H-minor-free graphs that can
be solved in time O(2OH(

√
k logn)nO(1)) and admits a minor-monotone subexponential

kernel. Then k-Π belongs to SUBEPT. In particular, if k-Π admits a minor-monotone
polynomial kernel then it can be solved in SUBEPT-time O(2OH(

√
k log k)nO(1)).

Any parameterized problem that can be solved in time O(f(k)nO(1)) admits a kernel of
size f(k) [Nie02]. It follows that all problems in SUBEPT also have a subexponential ker-
nel. Our corollary above shows the reverse direction of this observation for the problems
that admit our technique on H-minor-free graphs; for these problems, we obtain that
a subexponential FPT algorithm exists if and only if a minor-monotone subexponential
kernel can be constructed.
Note that in the statement of Theorems 6.13 and 6.15, the parameter α is not required

to be fixed; it can be any non-decreasing function from N to N. Hence, the running
time of the algorithm A that is obtained by these theorems cannot only be bounded
subexponentially in k but instead, slightly super-polynomially in n. For example, by
choosing α = log logn, we obtain a bound of O(2O(k/ log log k) + nO(log logn)).

6.3 Algorithms on Odd-Minor-Free Graphs
In [DHK10], Demaine et al. prove a structural decomposition theorem for odd-minor-
free graphs that is very similar to the RS-decomposition theorem for H-minor-free
graphs [RS03]. They also present an algorithm running in time nOH(1) to compute
such a decomposition. However, upon inspecting their proof, we obtain the following
simpler intermediate result that turns out to be more useful for algorithmic purposes
when combined with known results on H-minor-free graphs; in particular, it can be
used to obtain FPT-versions of various algorithms when combined with our results from
Section 6.1. Let B(µ) denote the class of all bipartite graphs augmented by at most µ
additional vertices called apices. We have

Theorem 6.19 (adapted from [DHK10]). Let G be a given odd-H-minor-free graph.
There exists a fixed graph H ′ depending only on H and an explicit uniform algorithm
that computes a tree decomposition with adhesion at most κ of G that is strongly over
the union of B(µ) and the class of H ′-minor-free graphs, where µ and κ are computable
functions depending only on H. Furthermore, we have the following properties:

(i) the H ′-minor-free graphs appear only in the leaves of the tree decomposition;
(ii) if B2 is a bag that is a child of the bag B1 in the tree decomposition and B1 consists

of a bipartite graph W together with at most µ apices then |B2 ∩ V (W )| ≤ 1;
(iii) the at most µ apices of each bag are also computed;
(iv) the algorithm runs in time OH(n4).

Proof. The decomposition algorithm of Demaine et al. [DHK10, Theorem 4.1] basically
works as follows: if the given graph contains a certain fixed bipartite graph H ′ as a
minor, find a bipartite graph with some apices, create one bag out of it, and iterate
this process on the components of the remaining graph; otherwise the graph excludes
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H ′ as a minor and the RS-decomposition can be applied. Now instead of applying
the RS-decomposition at this step (which is Step (7) of the algorithm in [DHK10]), we
simply create a bag containing the current subgraph and connect it as a leaf to the tree
decomposition. All other properties follow directly from [DHK10, Theorem 4.1] and its
proof and analysis. �

Together with Theorem 6.5 we obtain the following corollary:
Corollary 6.20. There is an explicit uniform algorithm that, given an odd-H-minor-
free graph G, computes a tree decomposition (T,B) of G with adhesion at most κ in time
OH(nO(1)) such that for every bag B ∈ B, we have either
(i) the companion of B is in L(λ, µ); or
(ii) the closure of B is in B(µ),

where λ, µ, and κ are computable functions depending only on |H|. The µ apices of
(the companion of) each bag in B can be computed in the same time bound. Moreover,
if B1, B2 ∈ B and B2 is a child of B1 in the tree decomposition and B1 consists of a
bipartite graph W together with at most µ apices then |B2 ∩ V (W )| ≤ 1.
Proof. We first apply Theorem 6.19 to obtain a tree decomposition (T,B) as described.
Then we consider each leaf that contains an H ′-minor-free subgraph G′ of G and apply
Theorem 6.5 to it to obtain a tree decomposition (TG′ ,BG′) that is weakly over L(λ, µ′);
afterwards, we add the intersection of V (G)′ with its parent bag in (T,B) to each bag of
BG′ and replace the leaf of (T,B) containing G′ with this finer tree decomposition. This
way, we make sure that the number of apices in every bag of the global tree decomposition
is the maximum of the value obtained from Theorem 6.19 and µ′ + κ and let µ be this
maximum. �

The proof of the following theorem is analogous to the proof of Theorem 6.9; only
note that the vertex set of a graph from B(µ) naturally has a partition into 2 parts of
bounded treewidth: just take each part of the bipartition together with some apices (see
also the proof of [DHK10, Theorem 1.1]).
Theorem 6.21. For any fixed graph H there is a constant cH such that for every odd-
H-minor-free graph G, the vertices of G can be partitioned into 2 parts such that each
of the parts induces a graph of treewidth at most cH . Furthermore, such a partition can
be found in explicit uniform FPT-time, i.e. OH(nO(1)).
This is the best possible analog to the Baker-style decomposition of Theorem 6.8

for odd-minor-free graphs since these graph classes include all bipartite graphs; and
complete bipartite graphs can not be partitioned into more than 2 parts of bounded
treewidth. A direct corollary is the following:
Corollary 6.22. There exists a 2-approximation algorithm for Coloring an odd-H-
minor-free graph in time OH(nO(1)).
Also, 2-approximations with the same FPT-running time for various other problems,

such as many of the ones mentioned in Section 6.1.4, can be obtained. See [DHK05]
and [DHK10] for more details.
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6.3.1 PTASes on Odd-Minor-Free Graphs
Grohe [Gro03] showed that various problems admit a PTAS on H-minor-free graphs.
Most of these PTASes can not be generalized to odd-minor-free graphs as they would
imply corresponding PTASes on bipartite or even general graphs for APX-hard prob-
lems. However, Demaine et al. ask several times in [DHK10] whether the PTASes for
Vertex Cover and Independent Set can be generalized to odd-minor-free graphs;
this seems plausible since these two problems can be solved in polynomial time on bipar-
tite graphs. Indeed, we are able to answer this question affirmatively in this section. To
this end, we define the take-or-leave version of these problems as follows: every vertex of
the graph is associated with two numbers w+ and w−; if a vertex is chosen to be in the
solution, i.e. in the vertex cover or independent set, it contributes a value of w+ to the
objective function; if it is not included in the solution, it contributes w− to the objec-
tive function (the usual unweighted variants are then special cases of the take-or-leave
version where w+ = 1 and w− = 0 for every vertex).

Lemma 6.23. The take-or-leave versions of Vertex Cover and Independent Set
can be solved in polynomial time on bipartite graphs.

Proof. Just note that the matrices used in the standard linear programming formulations
of the unweighted version of these problems are totally unimodular for bipartite graphs,
and hence all the corners of the corresponding polyhedra are integral. But the only
thing that changes now is the objective function; in particular, the polyhedron is still
the same and integral. Hence, we can find a solution in polynomial time just by solving
these linear programs. �

Theorem 6.24. There exists a PTAS for Vertex Cover and Independent Set in
odd-H-minor-free graphs running in time OH,ε(nO(1)).

Proof. We prove the theorem for Vertex Cover; the case of Independent Set is
analogous. Let G be a given odd-H-minor-free graph. We first compute a tree decom-
position (T,B) of G as specified by Theorem 6.19 and root it at some bag containing a
graph from B(µ); if such a bag does not exist, the graph is actually H ′-minor-free and
we obtain our result by Corollary 6.11. For every bag B ∈ B we define the subproblem
at B to be the considered problem on the subgraph of G that is induced by B and all
of its descendants in T . We perform dynamic programming from the leaves of the tree
decomposition to the root and store at each bag B the following information: for every
subset U of the apices A of B, we compute a solution for the subproblem at B that
must contain U , must not contain A−U , and is within a factor of (1+ ε) of the optimal
solution with these properties; we let ν(B,U) be the value of such a solution minus |U |
and store it in a table; if a solution with these properties does not exist, we store ⊥ to
denote this fact. Here we assume w.l.o.g. that we have nice apex sets that include the
intersection of the current bag with its parent bag; in fact, for leaves of the tree that
contain an H ′-minor-free graph, the apex set is defined to be this intersection. For such
leaves, we can compute the values of the dynamic programming table by invoking 2κ
times the PTAS from Corollary 6.11 – once for each subset U ⊆ A.
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Now suppose we are at a bag B with children B1, . . . , Bt (t ≥ 0) and B contains a
graph from B(µ). Suppose B contains a bipartite graph W together with apices A. For
each fixed selection U ⊆ A of the apices, we have to compute a near optimal solution
ν(B,U). For each child Bi, define Yi = Bi ∩ B and for each set X ⊆ Yi, let ν?(Bi, X)
be the value of a (1 + ε)-approximate solution for the subproblem at Bi that contains
X but not Yi − X, minus |X| (or ⊥ if such a solution does not exist). Note that the
value of ν?(Bi, X) can be looked up in the dynamic programming table of Bi by taking
the minimum over all ν(Bi, U ′) + |U ′| − |X| with U ′ ∩ Yi = X. These values can be
precomputed and stored.
Note that the status of every vertex in Yi, i.e. whether or not it should be in the

solution, is completely specified by the choice of U except for at most one vertex v ∈
Yi∩V (W ). For each vertex v ∈ V (W ), define its taking weight w+ as 1+

∑
ν?(Bi, {v}∪

(U ∩ Yi)) and define its leaving weight w− as
∑
ν?(Bi, U ∩ Yi) where the sums go over

all children Bi that contain v. We solve the take-or-leave version of the problem with
these weights on W using Lemma 6.23 and store it as the solution for ν(B,U) (or ⊥ if
no such solution exists). We return the solution of minimum value stored at the root of
the tree decomposition. This finishes the description of the algorithm.
The correctness is immediate at the leaves of the dynamic program. For a non-leaf bag

B ∈ B with bipartite graph W and apices A and a given selection U ⊆ A of its apices,
let S? be an optimal solution for the subproblem at B that includes U but not A − U ,
and S be the solution corresponding to ν(B,U) as computed by our algorithm. For a
set X ⊆ V (W ), let OPTX denote the optimal solution value for the subproblem at B
given that U ∪X must be in the solution and B−U −X must not be in the solution; let
TOLX denote the objective function value of the take-or-leave problem defined at B if
X is taken as the solution, plus |U |. By our construction and the induction hypothesis of
the dynamic program, for any set X ⊆ V (W ), we have TOLX ≤ (1 + ε) OPTX . Hence,
we obtain |S| = TOLS∩V (W ) ≤ TOLS?∩V (W ) ≤ (1 + ε) OPTS?∩V (W ) = (1 + ε)|S?|. �

Note that Theorem 6.24 holds also for the vertex-weighted versions of these problems;
the proof is analogous.

6.3.2 Subexponential FPT for Odd-Minor-Free Graphs

Another question that is asked by Demaine et al. [DHK10] is whether k-Vertex Cover
and k-Independent Set admit SUBEPT-algorithms on odd-minor-free graphs. As in
the case of the PTASes, these are basically the only problems for which this seems pos-
sible as such algorithms for most other prominent problems would contradict hardness
results in parameterized complexity. Indeed, we can obtain subexponential parameter-
ized algorithms for these problems in a similar way as the PTASes above. First, let us
state the following known result.4

Lemma 6.25 (partly taken from [DH05b, DFHT05]). There exists an algorithm that,
given an H-minor-free graph G and an integer k, runs in time O(2OH(

√
k)nO(1)) and

4I would like to thank Fedor Fomin for a helpful discussion on this matter.

126



6.4 Conclusion and Outlook

(i) decides if G contains a vertex cover of size at most k and in this case, returns a
minimum vertex cover of G; and

(ii) decides if G contains an independent set of size at least k and if this is not the
case, returns an independent set of maximum size in G.

Proof. The algorithm for k-Vertex Cover follows directly from the bidimensionality
theory [DH05b, DFHT05].
As for k-Independent Set, it is a well-known fact that H-minor-free graphs have

bounded average degree [Tho01] and hence, an independent set of size ΩH(n). So, all we
have to do is to count the number of vertices of G; if this is at least cHk, for a suitable
constant cH , the answer is “yes”. Otherwise, the size of the graph is bounded by cHk
and hence has treewidth at most OH(

√
k) [AST90]; an optimal independent set can be

found by standard dynamic programming. �

Theorem 6.26. There exists an algorithm that, given an odd-H-minor-free graph G

and an integer k, runs in time O(2OH(
√
k)nO(1)) and

(i) decides if G contains a vertex cover of size at most k and in this case, returns a
minimum vertex cover of G; and

(ii) decides if G contains an independent set of size at least k and if this is not the
case, returns an independent set of maximum size in G.

Proof. The proof is basically analogous to the proof of Theorem 6.24 above. We start
by computing a tree decomposition as given by Theorem 6.19. For each bag B of and
each selection U ⊆ A of the apices of the bag, we compute a value ν(B,U), specifying if
the subproblem at B contains a vertex cover of size at most k that includes U but not
A− U and if so, the size of the minimum vertex cover with these properties; if not, we
store ⊥ to indicate a negative answer. If all entries for a bag B turn out to be ⊥, the
answer to problem is “no” and we can terminate.
The entries for the leaves that contain an H ′-minor-free graph can be computed using

Lemma 6.25. For a (leaf or non-leaf) bag B that contains a graph from B(µ) we
construct a take-or-leave version of k-Vertex Cover analogously to what we did in
the proof of Theorem 6.24 and solve it in polynomial time. The correctness follows as in
Theorem 6.24 and the running time is dominated by the running time of the algorithm
on the H ′-minor-free leaves and hence is subexponential FPT in k.
The case for k-Independent Set is analogous only that if at any point the answer

to some subproblem is “yes” we may return this answer and terminate; otherwise, we
proceed as above. �

6.4 Conclusion and Outlook
We significantly accelerated one of the main tools in PTAS design – namely, Baker’s
decomposition – on all proper minor-closed graph classes, thereby obtaining the im-
provement for all the applications of this technique. We showed similar results for odd-
minor-free graphs and obtained the first PTAS and subexponential FPT-algorithms for
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k-Vertex Cover and k-Independent Set on these graph classes. Based on Baker’s
approach, we also introduced the technique of Guess & Conquer for designing (nearly)
subexponential FPT-algorithms on these graph classes. We improved the best known
FPT-algorithms for k-Steiner Tree and Directed k-Path in H-minor-free graphs
that were previously only known to be in EPT even on planar graphs (in the case of
Steiner Tree). We actually conjecture that these problems are in SUBEPT on H-
minor-free graphs and repeat this as an important open question for future work.
A further important question in this area is whether k-Subgraph Isomorphism, pa-

rameterized by the size of the subgraph pattern, admits a SUBEPT or at least SUBEPT+

algorithm on H-minor-free or at least planar graphs. The main difficulty is that even if
the host graph has small treewidth, current algorithms still need linear exponential time
in k [Dor10] to decide this problem. But in order to apply our technique, we would need
an algorithm that is in EPT with respect to treewidth but polynomial in k. See [Dor10]
for recent progress on this problem.
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7 On Brambles, Grid-Like Minors, and
Tree-Ordered Webs1

In this chapter, we develop several algorithmic tools – on one hand, for a number of
(well-known) concepts from structural graph theory, and on the other hand, for some
new structures that we introduce in our work. While these algorithms stand in their own
right and are of independent interest, we will exploit them, in particular, to prove lower
bounds for the tractability of monadic second-order logic (MSO2) in the next chapter. .
The concept of treewidth has received immense attention ever since it was intro-

duced, especially because many NP-hard problems can be handled efficiently on graphs
of bounded treewidth (e.g. all problems that can be defined in MSO2 [Cou90]). The dual
notion to treewidth is the concept of a bramble [ST93, Ree97]; a bramble of large order
is a witness for large treewidth.

Definition 7.1 (Bramble). Let G be a graph. Two subgraphs B,B′ of G touch if they
share a vertex or if there is an edge e ∈ E(G) joining B and B′. A bramble in G is a set
B of connected subgraphs of V (G) such that any two B,B′ ∈ B touch. The subgraphs
in B are called bramble elements. A set S ⊆ V (G) is a hitting set for B if it intersects
every element of B. The order of B is the minimum size of a hitting set.

A canonical example of a bramble is the set of crosses (union of a row and a column)
of an `× `-grid (see Figure 7.1). The following theorem shows the duality of treewidth
and brambles:

Theorem 7.2 (Seymour and Thomas [ST93]). A graph G has treewidth at least ` if and
only if G contains a bramble of order at least `+ 1.

It turns out that so far, brambles have received far less attention than tree decomposi-
tions; perhaps the reason is that brambles can look quite complex and do not necessarily
have a “nice” structure to be dealt with reasonably. Indeed, Robertson and Seymour fig-
ured out that there are certain brambles with “very nice” structure that are much more
useful than general brambles: namely, a grid-minor of large order. In fact, Robert-
son and Seymour show that a class of graphs has bounded treewidth if and only if it
excludes a fixed grid as a minor [RS86]. A grid is a canonical planar graph and the
existence of large grids has various algorithmic and non-algorithmic applications and
implications, e.g. [RS95, Epp00a, Gro04, DFHT05, Gro07b, CSH08, Kre09b]. However,
the best known bounds relating treewidth and grid-minors are the following:
1This chapter is based on joint work with Stephan Kreutzer [KT10a, KT10b].
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(a) (b)

Figure 7.1: (a) An example of a bramble of order 2 with 3 elements indicated with the
colors green, blue, and yellow; note that the lowest vertex is both blue and
yellow; (b) the crosses of a grid are a canonical example of a bramble.

Theorem 7.3 (Robertson, Seymour, and Thomas [RST94]). Every graph with treewidth
at least 202`5 contains an ` × `-grid as a minor. There are graphs of treewidth `2 log `
that do not contain an `× `-grid as a minor.

So, there is a huge gap between the known lower and upper bounds of this theorem;
Robertson and Seymour conjecture that the true value should be closer to the lower
bound, i.e. that every graph should have a grid of order polynomial in the treewidth.
Recently, Reed and Wood [RW08] attacked this problem by loosening the requirement
for the bramble to be a grid; instead, they define a structure that they call a grid-like
minor, as a replacement structure for a grid-minor, and prove that every graph does
indeed contain a grid-like minor of order polynomial in the treewidth.
All of the results regarding brambles, grid-minors, and grid-like minors mentioned

above are existential; to the best of our knowledge, it is not known so far how to efficiently
construct any bramble of large order even when a tree decomposition of optimal width
is given. It was not even studied up until recently, how large a bramble of the order
of the treewidth can be; Grohe and Marx [GM09] showed that there exist brambles of
size polynomial in the size of the graph whose order is roughly the square root of the
treewidth (up to log-factors); but they also show that there exist graphs in which any
bramble of order larger than the square root of the treewidth has size exponential in the
size of the graph.

Constructing Brambles We provide the first polynomial-time algorithm to compute a
bramble that is guaranteed to have the order of the square-root of the treewidth, up to
log-factors, hence almost matching the best possible theoretical bound for polynomial-
sized brambles. Our approach is based on the proof given in [GM09] but additionally,
involves the approximation algorithms for treewidth, balanced separators, and sparse
separators, which in turn are based on linear and semi-definite programming methods
to obtain low-distortion metric embeddings of graphs [LR88, BGHK95, FHL08]. Even
though we do not need to get into all of these topics in this work, it is interesting to
note that it is a combination of all of these that finally gives rise to our algorithm. We
also obtain an alternative (simpler) algorithm to construct a bramble of smaller size but
lower order; in order to do so, we introduce the notion of a k-web, a structure that is
similar to what Diestel et al. [DGJT99] denote by a k-mesh, and show that it can be
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computed by a polynomial time algorithm.
Recently, Chapelle et al. [CMT09] presented an algorithm that computes a bramble

of the order of the treewidth in time O(nk+4), where n is the size of the graph and k
the treewidth; hence, they obtain brambles of optimal order but naturally, they need
exponential time in order to do so. We would also like to mention a result by Bodlaender
et al. [BGK05] who provide a polynomial-time heuristic to compute brambles in graphs;
they use their algorithm for some computational experiments but do not prove any
bounds on the order of the bramble they obtain.

Constructing Grid-Like Minors Afterwards, we turn our attention to grid-like minors
and present the first polynomial-time algorithm to construct a grid-like minor of large
order in general graphs. Again, our method is based on the original existence proof
of [RW08] but involves a number of new ideas and techniques, most notably the following:
first, we make use of k-webs instead of brambles, and second, we apply the very recent
result of Moser and Tardos [Mos09, MT09] that provides an algorithmic version of the
Lovász Local Lemma. These two ideas make it possible that the algorithmic bound
that we obtain (i.e. the order of the grid-like minor we construct) is very close to the
existential bound proved by Reed and Wood; if we “just” used our bramble algorithm
and proceeded as in the original proof, the exponents would roughly have tripled.

Perfect Brambles and a Meta-Theorem As a first application of our results, we define
the notion of a perfect bramble as a perhaps somewhat more “handy” replacement for
grid-minors. Most notably, a perfect bramble defines a subgraph that has bounded degree,
large treewidth, and has the property that every vertex appears in at most 2 bramble
elements. We show that every graph contains a perfect bramble of order polynomial
in the treewidth and that such a bramble can be computed in polynomial time. This
shows that if the upper bound in Theorem 7.3 is to be improved to a polynomial, it is
sufficient to prove it for perfect brambles.
Moreover, we present a meta theorem on perfect brambles: we show that essentially

any graph parameter that is subgraph monotone and is large on a perfect bramble can
be decided in time O(2poly(k)poly(n)) and that a witness can be provided in the same
time bound; here n is the size of the input and k is the size of the parameter. Hence, we
show that such parameters are in the class EXPT of singly exponential FPT-parameters.
One of the most important consequences of the graph minor theorem of Robertson

and Seymour [RS95, RS04, FL88] is the following: for a given graph G and parameter
π(G) that is minor monotone, one can decide if π(G) ≤ k, in O(f(k)n3)-FPT time for
some function f . This is a very general and powerful theorem but there is a price to
be paid: (i) for any such parameter, an algorithm is known to exist, but the algorithm
itself can not be known in general; (ii) the theorem gives a non-uniform algorithm,
meaning there is a different algorithm for every value of k; (iii) the function f(k) is, in
general, not computable and can be arbitrarily large. Frick and Grohe [FG01] proved
explicit bounds for certain graph classes and parameters definable in first-order logic,
though the bounds were still non-elementary. Demaine and Hajiaghayi [DH07] proved a
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bound of O(22poly(k)poly(n)) for general graphs, when the considered parameter fulfills
a few additional constraints. They use the grid-minor theorem together with ideas
from the bidimensionality theory [DFHT05] to obtain this bound. By using a perfect
bramble instead of a grid-minor, we can improve this bound to be singly exponential in
k, although the constraints that we require are somewhat stronger than [DH07]; still,
our technique can be applied to many problems to which their technique also applies.

Tree-Ordered Webs A k-web essentially gives us a large grid-like minor attached to a
certain subcubic tree. What we aim at is to find a subgraph of a k-web that still contains
a large grid-like minor attached to a tree but with the property that there exist MSO2
formulas that distinguish the tree from the grid-like minor and furthermore, define a
linear order on the vertices of the tree. This order induces an order on some parts of
the grid-like minor and provides us with the notion of a first row with a unique linear
order on a number of its first columns. This will enable us to interpret this structure
as a certain colored wall and becomes the heart of the main proof of our result on the
complexity of MSO2 in subgraph-closed graph classes in the next chapter.

7.1 Constructing Brambles and k-Webs

In this section, we show two different methods to construct a bramble in a graph. The
first one is based on a randomized construction by Grohe and Marx [GM09]; our second
construction uses a k-web, a concept that we also introduce in this section, and that
results in a bramble whose size does not depend on n.
The following theorem essentially says that if we are looking for a polynomial-sized

bramble, the best order we can hope for is about the square-root of the treewidth:

Theorem 7.4 (Grohe and Marx [GM09]).

(i) Every n-vertex graph G of treewidth k has a bramble of order Ω(
√
k

log2 k
) and size

O(k
3
2 · lnn).

(ii) There is a family (Gk)k≥1 of graphs such that:
• |V (Gk)| = O(k) and E(Gk) = O(k) for every k ≥ 1;
• tw(Gk) ≥ k for every k ≥ 1;
• for every ε > 0 and k ≥ 1, every bramble of Gk of order at least k

1
2 +ε has

size at least 2Ω(kε).

The proof of Theorem 7.4 (i), as given in [GM09], proceeds as follows: first, it is shown
that a large set exists that does not admit sparse separators; afterwards, a maximum
concurrent flow is computed on this set; and finally, a randomized algorithm is presented
that constructs a bramble based on the solution of the flow problem. It turns out the
only step that is not (polynomially) algorithmic is the first step; we show how to obtain
a suitable set of vertices efficiently below.
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7.1 Constructing Brambles and k-Webs

7.1.1 Finding A Large Set Lacking Sparse Separators

Recall that a separator of a graph G is a partition of its vertices into three classes
(A,B, S) such that there are no edges between A and B. We allow A or B to be empty
but require S 6= ∅. The size of a separator is the size of the set S (see Figure 5.1 (a)).
For a subsetW ⊆ V (G), we say that a separator is γ-balanced or just a γ-separator with
respect to W , if for every connected component C of G− S, we have |W ∩ C| ≤ γ|W |.
The treewidth of a graph is closely related to the existence of balanced separators:

Lemma 7.5 (Reed [Ree92, Ree97]).

(i) If G has treewidth greater than 3k, then there is a set W ⊆ V (G) of size exactly
2k + 1 having no 1

2 -balanced separator of size k;

(ii) if G has treewidth at most k, then every W ⊆ V (G) has a 1
2 -balanced separator of

size k + 1.

The sparsity of a separator (A,B, S) with respect to W is defined as

αW (A,B, S) = |S|
|(A ∪ S) ∩W | · |(B ∪ S) ∩W |

.

We denote by αW (G) the minimum of αW (A,B, S) over all separators (A,B, S). It
is easy to see that for every connected G and nonempty W , 1

|W |2 ≤ αW (G) ≤ 1
|W | .

We are interested in a set W with no sparse separator, i.e. where the sparsity of the
sparsest vertex cut is close to the maximum. Grohe and Marx [GM09] showed that the
non-existence of balanced separators can guarantee the existence of such a set W :

Lemma 7.6 (Grohe and Marx [GM09]). If |W | = 2k + 1 and W has no 1
2 -balanced

separator of size k in a graph G, then αW (G) ≥ 1
4k+1 .

The proof of Lemma 7.5 is algorithmic, but the algorithm is not polynomial-time
since deciding if a (set in a) graph has a balanced separator of size k is an NP-complete
problem. Hence, we have to work with approximations. On the other hand, Grohe and
Marx note that Lemma 7.6 does not remain true for larger W by showing an example
with |W | = 4k and αW (G) = O(1/k2); so, if we work with approximations, we can not
use this lemma directly. We show in this section how to circumvent these problems by
presenting a polynomial-time algorithm to find a large set W with no sparse separator.
Our algorithm follows the framework of approximating balanced separators by using
sparse separators, as introduced by Leighton and Rao [LR88]. Additionally, we make
use of the following two results:

Lemma 7.7 (Feige et al. [FHL08]). Let G be a connected graph, W ⊆ V (G), and T
be the optimal 2

3 -separator of W in G. There exists a polynomial-time algorithm that
computes a separator (A,B, S) of G such that αW (A,B, S) ≤ β0α

W (G)
√

log |T |, for
some constant β0.
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Lemma 7.8 (adapted from Bodlaender et al. [BGHK95]). Let G be a graph and s ∈ N
be given. Suppose that for any connected subset U of V (G) and given set W ⊆ U with
|W | = 4s, there exists a 3

4 -separator ofW in U of size at most s and that such a separator
can be found in polynomial time. Then the treewidth of G is at most 5s and an according
tree decomposition can be found in polynomial time.

Corollary 7.9. Given a graph G of treewidth k?, there is a polynomial-time algorithm
that constructs a tree decomposition of width k1, such that for constants c0, c1, c2, we
have

(i) k1
c0
√

log k1
≤ k? ≤ k1 ≤ c0k?

√
log k?;

(ii) by setting k2 =
⌊

k1
c0
√

log k1

⌋
, we also obtain k?

c1
√

log k?
≤ k2 ≤ k? ≤ c2k2

√
log k2.

Now we can state our main technical lemma of this section; the proof is based on a
technique from [LR88]:

Lemma 7.10. Let G be a graph of treewidth k?, U0 a connected subset of V (G) and
W0 ⊆ U0 with |W0| = 4β1k, where β1 is a constant and k a parameter. Then there exists
a polynomial-time algorithm that either finds a 3

4 -separator of W0 in U0 of size at most
β1k; or determines that k < 4

3k
?
√

log k? and returns a connected subset U of U0 and a
subset W ⊆ U with |W | ≥ 3β1k such that αW (U) ≥ 1

β2k? log k? , where β2 is a constant.

Proof. We denote by |X|W , the number of elements of W in a set X. In our algorithm,
we maintain a current component U initialized to U0, a current set W ⊆ U , W ⊆ W0
initialized to W0, and a current separator S initialized to ∅. We keep the invariant
that |W | ≥ 3

4 |W0| = 3β1k. In each iteration, we do the following: first, we find a
separator (A′, B′, S′) of W in U as guaranteed by Lemma 7.7. Then, we know that
αW (A′, B′, S′) ≤ β0α

W (U)
√

log |T |, where (AT , BT , T ) is the optimal 2
3 -separator of W

in U . Note that T is at most the size of the optimal 1
2 -separator and hence is at most

k? + 1 by Lemma 7.5. Now, we have

|S′|
|A′ ∪ S′|W · |B′ ∪ S′|W

≤ β0
|T |
√

log |T |
|AT ∪ T |W · |BT ∪ T |W

≤ β1
k?
√

log k?
|W |2

,

where the first inequality follows from the fact that T is some separator of W in U
and thus not sparser than the sparsest separator of W in U ; and the second inequality
from |AT ∪ T |W , |BT ∪ T |W ≥ 1

3 |W | by requiring β1 ≥ 18β0. It follows that |S′| ≤
β1k

?
√

log k? |B
′∪S′|W
|W | . We distinguish two cases:
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Case 1: |S′| > β1k
|B′∪S′|W
|W0| . Then it must be that k < 4

3k
?
√

log k? and we have

αW (A′, B′, S′) = |S′|
|A′ ∪ S′|W · |B′ ∪ S′|W

>
β1k

|A′ ∪ S′|W · |W0|
≥ β1k

|W0|2

= β1k

16β2
1k

2 = 1
16β1k

,

and hence

αW (U) ≥ αW (A′, B′, S′)
β0
√

log |T |

≥ 1
22β0β1k?

√
log k?

√
log k? + 1

≥ 1
β2k? log k?

,

for a constant β2 ≥ 44β0β1.
Case 2: |S′| ≤ β1k

|B′∪S′|W
|W0| . We update our overall separator S to be S ∪S′ and check

if there exists a connected component U ′ of U \ S that still has more than a 3
4 -fraction

of the elements of W0. If so, we set U = U ′ and W = W0 ∩U and repeat our algorithm.
Otherwise S is a 3

4 -separator of W0 in U0 and we claim that |S| ≤ β1k: w.l.o.g we may
always assume that |A′ ∪ S′|W ≥ |B′ ∪ S′|W and hence, after each iteration, the set
B′ ∪ S′ is discarded. So, the total sum, over all iterations, of the |B′ ∪ S′|W is at most
|W0| and the claim follows. �

By setting s = β1k in Lemma 7.8, we obtain a polynomial-time algorithm that given a
graph G and a parameter k, either finds a tree decomposition of G of width at most 5β1k
or returns sets U and W as specified in Lemma 7.10. Now, we can apply this algorithm
with parameter k = 2i for i = 0, 1, 2, . . . to find the first i such that it still fails on i
(meaning that a tree decomposition is not constructed) but succeeds in returning a tree
decomposition on i+ 1. Hence, we have

Lemma 7.11. There is a polynomial-time algorithm that given a graph G of treewidth
k?, returns a number k ∈ N with k?

10β1
≤ k < 4

3k
?
√

log k? together with a connected subset
U of V (G) and a set W ⊆ U with 3β1k ≤ |W | ≤ 4β1k such that αW (U) ≥ 1

β2k? log k? ,
where β1, β2 are constants.

7.1.2 Randomized Construction of Brambles
Once we are able to find a large set with no sparse cuts in a graph, the rest of the
probabilistic proof of Theorem 7.4 (i) in [GM09] becomes algorithmic. Given a set W
of vertices, a concurrent vertex flow of value ε is a collection of |W |2 flows such that
for every ordered pair (u,w) ∈ W × W , there is a flow of value ε between u and w,
and the total amount of flow going through each vertex is at most 1. More precisely,
such a flow is defined as follows: for each pair of vertices (u,w) ∈ W × W , let Puw
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be the set of all paths between u and w; a flow between u and w is a function f that
assigns a nonnegative flow value f(P ) to each path between u and w; we further require
that (i)

∑
P∈Puw f(P ) ≥ ε for each pair u,w; and (ii) for each vertex v ∈ V (G), we

have
∑
v∈V (P ),P∈Puw,(u,w)∈W×W f(P ) ≤ 1. A maximum concurrent vertex flow can be

computed in polynomial time using linear programming techniques [FHL08].
The algorithm FindBramble is given below; steps (2)–(8) are reproduced from the

proof of Theorem 7.4 (i) in [GM09]. The basic ideas are as follows: first, we find a number
k and sets U and W0 as in Lemma 7.11; then we compute a maximum concurrent vertex
flow on W0; we select an arbitrary set W ⊆ W0 of size k; afterwards, Grohe and Marx
define a certain probability distribution on the paths between the vertices of W , based
on the solution to the flow problem, and specify how to randomly pick and combine a
number of these paths to construct, with high probability, a bramble B.

Algorithm FindBramble(G).
Input. an arbitrary graph G
Output. a bramble B in G

1. apply Lemma 7.11 to obtain a number k, and sets U,W0 ⊆ V (G) as specified;
2. compute a maximum concurrent vertex flow on W0; let puv denote the

amount of flow that is sent from u to v along a path P ∈ Puv;
3. select W ⊆W0 with |W | = k arbitrarily;
4. let d :=

⌊
k3/2

⌋
and s :=

⌊√
k ln k

⌋
; select sets S1, . . . , Sd ⊆ W , each of size

s, uniformly and independently at random; let Si = {ui,1, . . . , ui,s};
5. for each Si, select a vertex zi ∈W − Si at random;
6. for each (u, v) ∈W ×W , define a probability distribution on Puv by setting

the probability of P ∈ Puv to be puv∑
P ′∈Puv

(p′)uv ;
7. for i = 1, . . . , s and j = 1, . . . , blnnc do

• select one random path from each of Pzi,ui,1 , . . . ,Pzi,ui,s according to
the probability distribution defined above; let Bi,j be the union of these
paths;

8. return B :=
⋃
i,j Bi,j .

Note that all the steps of the algorithm can be performed in polynomial time; in
particular, the puv are also variables in the linear programming formulation of the maxi-
mum concurrent flow problem and only a polynomial number of them will have nonzero
value (cf. [FHL08]).

Lemma 7.12 (adapted from Grohe and Marx [GM09]). With probability at least 1−1/k,
the set B constructed above is a bramble. With probability at least 1− 1/n, the order of
this bramble is at least k3/2αW0 (U)

β3 ln k ln |W0| , for a constant β3.

Theorem 7.13. There exists a randomized polynomial time algorithm that, given a
graph G of treewidth k?, constructs with high probability a bramble in G of order Ω(

√
k?

ln3 k?
)

and size O(k?3/2 ln k? lnn).
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Proof. We apply the algorithm FindBramble and use Lemma 7.11 and Lemma 7.12
to bound the order and size of the bramble. For the size of the bramble, we know that
|B| =

⌊
k3/2

⌋
blnnc = O((k?

√
log k?)3/2 lnn) = O(k?3/2 ln k? lnn). The order is at least

≥ k3/2 · αW0(U)
β3 ln k ln |W0|

≥ k?
3/2

β4k? ln k? ln2 k
≥

√
k?

β5 ln3 k?
,

for appropriate constants β4, β5 > 0. �

Note that by a slight modification of the algorithm above, one can also construct a
bramble of size O(k?3/2 lnn) and order Ω(

√
k?

ln4 k?
).

7.1.3 Weak k-Webs

Definition 7.14 (Weak k-Web). A weak k-web of order h in a graph G is a set of h
disjoint trees T1, . . . , Th such that for all 1 ≤ i < j ≤ h there is a set Pi,j of k disjoint
paths connecting Ti and Tj . If the trees T1, . . . , Th are all paths, we denote the resulting
structure by a weak k-web of paths of order h.

In [RW08], it is shown that any bramble of order at least hk, contains a weak k-web of
paths of order h. They use this structure to show the existence of grid-like minors. Even
though we provide a different proof for grid-like minors, we still include the following
lemma as it might be of independent interest:

Lemma 7.15. There is a polynomial-time algorithm that given a bramble B of order
at least chk

√
log k in a graph G, computes a weak k-web of paths of order h in G, where

c is a constant.

Proof. First, as in [BBR07, RW08], we observe that one can find a simple path P in G
that hits every element of B by a simple greedy algorithm: suppose by induction, that
we have already constructed a path P ′ that hits some elements of B and that there
is one element B ∈ B that intersects P ′ in only an endpoint v. If there is an element
B′ ∈ B that is not hit by P ′, we extend P ′ by a path Pvu ⊆ B, such that Pvu∩B′ = {u};
this is always possible, since B and B′ touch. Furthermore Pvu is otherwise disjoint from
P ′ and the extended path intersects B′ in only one vertex. Hence, our claim follows by
induction.
Now, we move on P from left to right and at each vertex v, we consider the subpath

Pv and the subbramble Bv ⊆ B that is hit by Pv. We can use the duality of brambles
and tree decompositions and Corollary 7.9 to find a number kv, such that kv ≤ k?v ≤
c′kv
√

log kv, where k?v is the order of Bv and c′ is a constant. Now, let uv be an edge of
P such that ku < k ≤ kv. Note that k?v ≤ k?u + 1, and hence we obtain that the order of
the subbramble Bv is at least k and at most ck

√
log k, for a properly defined constant

c. We set P1 = Pv and P ′ = P − P1 and B′ = B \Bv and iterate this process on P ′
and B′. Since the order of the bramble Bv that is cut away in each iteration is at most
ck
√

log k and since the order of B is at least chk
√

log k, we indeed obtain at least h
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Figure 7.2: Schematic illustration of a 4-web of order 3.

disjoint paths P1, . . . , Ph and brambles B1, . . . ,Bh, each of order at least k, such that
for all i, Pi hits Bi and for i < j, Pi does not intersect any element of Bj . Reed and
Wood [RW08] show that in this case, there exist at least k disjoint paths between Pi
and Pj for each i < j, and hence the lemma is proven. �

Corollary 7.16. For any ε > 0, there is a constant c such that if for a graph G, we
have tw(G) ≥ ch2+εk2+ε, then G contains a weak k-web of paths of order h that can be
constructed in randomized polynomial time.

7.1.4 k-Webs
In the definition of a weak k-web, we allow that the disjoint paths that connect two of
the trees Ti and Tj intersect some other tree(s) T`. It turns out that if we can manage
to keep the trees disjoint from the paths interconnecting them, we obtain a structure
that is sometimes much more useful. This leads us to the definition of k-webs below;
but first we need some preparation:

Definition 7.17. A tree T is subcubic if its maximum degree is at most 3. A set
X ⊆ V (T ) is called flat if every vertex v ∈ X has degree at most 2 in T .

A slight adaption of Fredericson’s FindClusters algorithm [Fre85] gives us the fol-
lowing simple lemma:

Lemma 7.18. Let T be a subcubic tree and X ⊆ V (T ) be a set of 2k` vertices, where
k, ` ∈ N. Then there are ` disjoint subtrees T1, . . . , T` of T such that |X ∩ V (Ti)| = k,
for all 1 ≤ i ≤ `.

Definition 7.19 (k-Web). A k-web of order h in a graph G is a collection of subgraphs
(T, (Ti)1≤i≤h, (Ai)1≤i≤h, B) of G such that

(i) T is a subcubic tree and V (B ∩ T ) =
⋃

1≤i≤h V (Ai);

(ii) T1, . . . , Th are disjoint subtrees of T and for 1 ≤ i ≤ h, Ai ⊆ Ti is flat in T ;

(iii) for 1 ≤ i < j ≤ h there is a set Pi,j of k disjoint paths in B connecting Ai and Aj .

See Figure 7.2 for an illustration of a k-web. Note that the main restriction of a k-web
compared to a weak k-web is that the paths Pi,j are required to be disjoint from the
trees T1, . . . , Th (except for their endpoints); on the other hand, the advantage of a weak
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k-web of paths is that all its trees are paths. The notion of a k-web is similar to the
notion of a k-mesh introduced by Diestel et al. [DGJT99] with the difference that in
a k-mesh, we have a tree and a collection of vertices of the tree such that there exist
disjoint paths between each two k-element subsets of these vertices; but in a k-web,
we have predefined subsets of k-vertices and only require to have paths between these
sets. It is this distinction that makes k-webs efficiently computable. Adapting a proof
by Diestel et al. [DGJT99, Die05] we show that any graph of large enough treewidth
contains a k-web of large order that can be computed in polynomial time.

Lemma 7.20 (adapted from Diestel et al. [DGJT99]). Let h, k ≥ 1 be integers. If G has
treewidth at least (2 ·h+1) ·k−1 then G contains a k-web of order h. Furthermore, there
is a polynomial time algorithm which, given G, k, h either computes a tree decomposition
of G of width at most (2 · h+ 1) · k − 2 or a k-web of order h in G.

Proof. W.l.o.g. we assume that G is connected. Let l := 2 ·k ·h. A pre-web is a collection
W :=

(
U,D, {TC : C is a component of G−U}

)
where U ⊆ V (G), D := (D, (Bt)t∈V (D))

is a tree decomposition of G[U ] of width at most l+ k− 2 and for each component C of
G− U , TC is a subcubic tree in G− C such that

(i) there is a bag B of D with N(C) ⊆ B;
(ii) N(C) is a flat subset of V (TC);
(iii) TC has a leaf in N(C) or |TC | = 1 and TC ⊆ N(C).

U is called the domain of the pre-web. The order of W is |U |. Inductively, we will
construct a sequence of pre-webs of growing order until we either find a k-web of order h
or a pre-web with domain V (G) and hence a tree decomposition of G of width at most
l + k − 2.
To initialize the algorithm choose a vertex v ∈ V (G) and let U := {v}, D :=
{{0}, B0 := {v}) and TC := v for each component C of G − v. Clearly, (U,D, {TC : C
component of G− v}) is a pre-web.
Suppose we have already constructed a pre-web (U,D, {TC : C component of G−U}).

If U = V (G) we are done. Otherwise, let C be a component of G− U and let T := TC .
By assumption, there is a node t ∈ V (D) with bag Bt, where D is the tree underlying
D, such that X := N(C) ⊆ Bt.
If |X| ≤ l then let v be a leaf of T in X, which exists by assumption. Let u ∈ V (C)

be a neighbor of v and set U ′ := U ∪{u}. Let T ′ := T +{u, v} be the tree obtained from
T by adding u as a new vertex joined to v. Further, let D′ be the tree decomposition
of G[U ′] obtained from D by adding a new vertex s with bag Bs := X ∪ {u} joined
to t in D′. Now let C ′ be a component of G − U ′. If C ′ ∩ C = ∅ set T ′C′ := TC′ .
Otherwise, C ′ ⊆ C and we set T ′C′ to be the minimal subtree of T ′ containing N(C ′).
By construction, N(C ′) contains v. Further, as X = N(C) was flat in T , N(C ′) is flat
in T ′C′ . Hence, (U ′,D′, {T ′C′ : C ′ component of G− U ′}) is a pre-web of order |U |+ 1.
Now suppose |X| = l. Let T1, . . . , Th be a collection of disjoint subtrees of T with
|V (Ti) ∩ X| = k, which exist by Lemma 7.18, and let Ai := V (Ti) ∩ X. For each
1 ≤ i < j ≤ h compute a maximal set Pi,j of disjoint paths in H := G[V (C) ∪
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Ai ∪ Aj ] − E(G[Ai ∪ Aj ]) joining Ai and Aj . If all Pi,j contain at least k paths then
(T, (Ti)1≤i≤h, (Ai)1≤i≤h, C ∪N(C)) is a k-web of order h and we are done. Otherwise,
let Ai, Aj be such that k′ := |Pi,j | < k. By Menger’s theorem, there is a set S ⊆ V (H)
of k′ vertices separating Ai, Aj in H. Clearly, S contains one vertex of each P ∈ Pi,j .
We denote by Ps ∈ Pi,j the path containing s ∈ S.
Let X ′ := X ∪ S and U ′ := U ∪ S and let D′ be the tree decomposition of G[U ′]

obtained from D by adding a new vertex r with bag X ′ joined to t. By construction,
|X ′| ≤ |X|+|S| ≤ l+k−1. Let C ′ be a component of G−U . If C ′∩C = ∅ set T ′C′ := TC′ .
Otherwise, C ′ ⊆ C and N(C ′) ⊆ X ′. Furthermore, C ′ must have at least one neighbor
v in S ∩ C since X does not separate C ′ from S ∩ C. By construction of S, C ′ cannot
have neighbors in both Ai \ S and Aj \ S. W.l.o.g. we assume that N(C ′) ∩ Ai = ∅.
Let T ′C′ be the union of TC with all Ai − S-subpaths of Ps for s ∈ C ∩N(C ′). As these
subpaths start in Ai \ S and have no inner vertices in X ′, they do not meet C ′. We
claim that W ′ := (U ′,D′, {T ′C′ : C ′ component of G − U ′}) is a pre-web. Clearly, D′ is
a tree decomposition of G[U ′] of width at most l+ k − 2. Furthermore, each tree T ′C′ is
clearly subcubic. Now let C ′ be a component of G− U ′. If C ′ ∩ C = ∅, then C ′ is also
a component of G − U and hence T ′C′ = TC′ and therefore there is a bag Bt in D with
N(C ′) ⊆ Bt and the additional conditions on TC′ are met. Otherwise, N(C ′) ⊆ X ′. Let
T := T ′C′ . Then T contains a leaf in X ′ (the vertex v constructed above). The degree
conditions imposed on T are clearly met as well. Furthermore, N(C ′) is a terminal
subset of T ′C′ . It follows that W ′ is a pre-web of order |U ′| > |U |.
Obviously, the algorithm takes only a linear number of steps. Furthermore, each step

can be computed in polynomial time. This concludes the proof. �

Lemma 7.21. Let k ≥ 1. If G contains a (k+ 1)-web of order k+ 1 then the treewidth
of G is at least k.

Proof. Let (T, (Ti)1≤i≤k+1, (Ai)1≤i≤k+1, Z) be a (k+1)-web of order k+1 in G. Towards
a contradiction, assume G has a tree decomposition (D, (Bt)t∈V (D)) of width < k. For
an edge st ∈ E(D), we denote by Ds−t the subtree of D − st that contains s and
by B(Ds−t), the union of the bags of Ds−t. We orient the edges of D as follows. If
st ∈ E(D), let Is := {Ti : Ti ⊆ B(Ds−t)} and define It analogously; we orient the edge
towards s if |Is| ≥ |It| and otherwise orient the edge towards t. As D is acyclic, there
must be a node s? ∈ V (D) such that all incident edges are oriented towards s?. Now,
for each edge s?t ∈ E(D), B(Ds?−t) contains at least one Ti completely; on the other
hand, as |Bs? | ≤ k, Bs? can not contain a vertex of every Ti and there must be an edge
s?t? ∈ E(D) such that B(Dt?−s?) also contains some Ti completely. Let Ti ⊆ B(Ds?−t?)
and Tj ⊆ B(Dt?−s?); but then, there are k + 1 disjoint paths between Ti and Tj and
each of these must have an inner vertex in Bs? ∩Bt? , which is impossible. �

Corollary 7.22. There is a polynomial time algorithm which, given a graph G either
computes a (k + 1)-web of order k + 1 and thereby proves that tw(G) ≥ k or a tree
decomposition of G of width O(k2).
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7.1.5 Constructing a Bramble from a k-Web
In this subsection, we briefly mention an alternative bramble construction that differs
from Section 7.1.2 in that its size does not involve n but instead, its order is less2.

Lemma 7.23. Given a k2-web of order k, one can construct a bramble of size k3 and
order k.

Proof. Let (T, (Ti)1≤i≤k, (Ai)1≤i≤k, B) be a k2-web of order k and Pi,j = {P 1
ij , . . . , P

k2
ij }

be the k2 disjoint paths between Ai and Aj . Let P̂ tij be the path P tij without the last
edge that connects it to Aj . Define Bt

i = Ti ∪
⋃k
j=1 P̂

t
ij , for 1 ≤ i ≤ k and 1 ≤ t ≤ k2,

and let B =
⋃
i,tB

t
i . Then B is clearly a bramble of size k3. Suppose there is a hitting

set of B of order less than k; then there is an i, such that Ti is not covered. Hence, for
1 ≤ t ≤ k2, Bt

i must be covered using vertices in
⋃
t,j P̂

t
ij ; but note that any vertex in

this union has degree at most k, and so at least k vertices are needed to cover all these
k2 sets. �

Theorem 7.24. There exists a polynomial time algorithm that, given a graph G of
treewidth k?, constructs a bramble in G of size O(k?) and order Ω(( k?√

log k?
)1/3).

Proof. By Corollary 7.9, we can compute an integer k2 with k?

c1
√

log k?
≤ k2 ≤ k?. We

set k = k
1/3
2
2 and use Lemma 7.20 to obtain a k2-web of order k in G. Our claim then

follows by Lemma 7.23. �

7.2 Constructing Grid-Like Minors
Let P and Q each be a set of disjoint connected subgraphs of a graph G. We denote by
I(P,Q) the intersection graph of P and Q defined as follows: I(P,Q) is the bipartite
graph that has one vertex for each element of P and Q and an edge between two vertices
if the corresponding subgraphs intersect.

Definition 7.25 (Grid-Like Minor). Let P and Q be each a set of disjoint paths in
a graph G. (P,Q) is called a grid-like minor of order ` in G if I(P,Q) contains the
complete graph K` as a minor. If the K`-minor is, in fact, a topological minor, we call
the structure a topological grid-like minor of order `.

Theorem 7.26 (Reed and Wood [RW08]). There exists a constant c such that every
graph with treewidth at least c`4

√
log ` contains a grid-like minor of order `. Conversely,

every graph that contains a grid-like minor of order ` has treewidth at least
⌈
`
2

⌉
− 1.

The proof given in [RW08] is existential and proceeds as follows: first, using a large
bramble, a weak k-web of paths is constructed; then for each pair of sets of disjoint paths
2The existence of such a bramble is briefly mentioned in [GM09] but it is not presented; I would like
to thank Dániel Marx for a helpful discussion on this matter.
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(1)

(2)

(3)

(a) (b) (c)

(a) (b) (c)

(1) (2) (3)

Figure 7.3: A grid-like minor of order 3; (a) two sets of disjoint paths: blue vertical ones
and red horizontal ones; (b) their intersection graph is bipartite and includes
K3 as a minor.

in the k-web, it is checked whether their union contains a grid-like minor of large order;
if this is not true for any pair, one can obtain a grid-like minor using the Lovász Local
Lemma. In this section, we make their proof algorithmic by showing how the individual
major steps of the proof can be performed in polynomial time. We show

Theorem 7.27. There are constants c1, c2, c′1, and c′2 such that if a graph G has

(i) tw(G) ≥ c1`5, then G contains either a model of K` or a topological grid-like minor
(P,Q) of order ` together with a k-web of order t, (T, (Ti)1≤i≤t, (Ai)1≤i≤t, B),
where k = O(`6), t is either 3 or 4, P is a set of disjoint paths between T1 and T2,
and Q is a set of disjoint paths between Ti and Tj with (i, j) = (1, 3) for t = 3 and
(i, j) = (3, 4) for t = 4.

(ii) tw(G) ≥ c2`8, G contains a topological grid-like minor of order `.

Furthermore, the corresponding objects can be constructed by a randomized algorithm
with expected polynomial running time. If the bounds on the treewidth are loosened to
c′1`

7 and c′2`12, respectively, then a deterministic algorithm can be used.

The first step of the proof in [RW08] is to find a weak k-web of paths; instead, we
make use of a k-web as described in Section 7.1.4. We proceed with the second main
step of the algorithm.

7.2.1 Finding Complete Topological Minors
Once we have a k-web, we need to determine if the intersection graph of any pair of the
disjoint paths contains a large complete graph as a minor. Thomason [Tho01] showed
that if the average degree of a graph is at least cp

√
log p, then the graph contains Kp as

a minor (and that this bound is tight). His proof is very complicated and it is not clear
if it can be turned into a polynomial-time algorithm. However, if we are looking for a
topological minor, the necessary and sufficient bound is cp2 as shown by Bollobás and
Thomason [BT98]. Furthermore, it turns out that their proof is algorithmic:

Theorem 7.28 (adapted from Bollobás and Thomason [BT98]). If a graph G has av-
erage degree at least cp2, for a constant c, then G contains Kp as a topological minor.
Furthermore, a model of Kp can be found in G in polynomial time.
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7.2 Constructing Grid-Like Minors

Note that by the definition of a grid-like minor, we do not necessarily need a topo-
logical minor but we use them for two reasons: first, we know we can compute them in
polynomial time; second, it is much more convenient to work with topological minors in
MSO2 in Chapter 8. The algorithm for Theorem 7.28 is given by Algorithm TopMinor
below. We refer for the full proof of correctness to the original paper [BT98] and just
argue briefly that each of the steps can be performed in polynomial time. We call a set
of vertices linkable if for any pairing of its elements, there exist disjoint paths between
the given pairs. A graph is said to be (k, `)-linked if every set of k vertices contains a
subset of size ` which is linkable.
The first step of the algorithm is due to a theorem of Mader [Mad72] (see also [Die05,

Theorem 1.4.3]) and can be computed as follows: we select G1 as a minimal subgraph G,
such that |V (G1)| ≥ 256p2 and |E(G1)| ≥ 256p2(|V (G1)|−128p2); we can start by setting
G1 = G and deleting vertices and edges and finding minimum cuts to reduce G1 as long
as the desired properties are still satisfied. Clearly, these operations can all be performed
in polynomial time and Mader shows that in the end, G1 will be 128p2-connected.

Algorithm TopMinor(G, p).
Input. a graph G with |E(G)| ≥ 256p2n
Output. a topological minor Kp in G

(in the following, the index i ranges appropriately)
1. find a subgraph G1 of G that is at least 128p2-connected;
2. select an arbitrary set X = {x1, . . . , x3p} in G1 and let G2 = G1 −X;
3. let H1 be a minimal minor of G2 subject to |E(H1)| ≥ 63p2|V (H1)|;
4. let z be a vertex of H1 of minimum degree and H2 := H1[N(z)];
5. let H3 be a minimal minor of H2 subject to
|V (H3)| ≥ 23p2 and |E(H3)| ≥ 23p2

2 (log |V (H3)|
23p2 + 1)|V (H3)|;

6. let u be a vertex of minimal degree of H3 and H := H3[N(u)];
7. select 3p arbitrary disjoint sets Y1, . . . , Y3p in G2 each of size 5p such that Yi

consists of neighbors of xi;
8. using the model of H in G, find a set Z ⊆

⋃
Yi of size 7p2 which is linkable;

9. let Zi = Z ∩ Yi and select indices j1, . . . , jp such that |Zji | ≥ p− 1;
10. return {xj1 , . . . , xjp} and the disjoint paths that exist between the Zji .

The graphs H1 and H3 can easily be constructed by starting with G2 (respectively
with H2) and contracting and deleting edges as long as the given conditions are satisfied.
The only major difficult step of the algorithm, is the 8th step. By using the model of
H in G, Bollobás and Thomason show that G2 is (15p2, 7p2)-linked, and hence that the
set Z exists. In order to do so, they use Menger’s theorem to find disjoint paths from⋃
Yi to the model of H in G and show that at least half the paths can be modified in

such a way that they are linkable through the model of H. The modifications are of a
simple nature and we refer to [BT98, Theorem 1] for the details. Since the application of
Menger’s theorem amounts to a maximum-flow computation, all of the steps can indeed
be performed in polynomial time.
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7.2.2 Algorithmic Application of the Lovász Local Lemma

Recall that a graph G is called d-degenerate if every subgraph of G has a vertex of
degree at most d and note that Theorem 7.28 implies that if G does not contain Kp as
a topological minor, then G is cp2-degenerate, for a constant c. Reed and Wood proved
the following lemma, where e denotes the base of the natural logarithm:

Lemma 7.29 (Reed and Wood [RW08]). For some r ≥ 2, let V1, . . . , Vr be the color
classes in an r-coloring of a graph H. Suppose that |Vi| ≥ n := 2e(2r − 3)d for all
1 ≤ i ≤ r and assume H[Vi ∪Vj ] is d-degenerate for 1 ≤ i < j ≤ r. Then there exists an
independent set {x1, . . . , xr} of H, such that each xi ∈ Vi.

The proof of this lemma in [RW08] is existential and uses the Lovász Local Lemma
(LLL) [EL75]. Reed and Wood note that if n ≥ r(r− 1)d+ 1, a simple minimum-degree
greedy algorithm will find such an independent set, and pose as an open question if
this algorithmic bound can be improved. Very recently, Moser [Mos09] and Moser and
Tardos [MT09] proved in their breakthrough work that the LLL can be actually made
algorithmic by a randomized algorithm with expected polynomial running time. Hence,
we obtain that there exists such a randomized algorithm with expected polynomial
running time that finds the independent set specified by Lemma 7.29.

Corollary 7.30. For some r ≥ 2, let V1, . . . , Vr be the color classes in an r-coloring of
a graph H. Suppose that |Vi| ≥ n := 2e(2r− 3)d for all 1 ≤ i ≤ r and assume H[Vi ∪Vj ]
is d-degenerate for 1 ≤ i < j ≤ r. Then there exists a randomized algorithm that finds
an independent set {x1, . . . , xr} of H with xi ∈ Vi for all 1 ≤ i ≤ r, in expected time
polynomial in n. Furthermore, if, instead, we have n ≥ r(r−1)d+1, then a deterministic
polynomial-time algorithm can be used.

7.2.3 Putting Things Together

Starting with a (weak) k-web of order h, we consider the disjoint paths Pi,j between the
pairs of trees from the web; note that these paths can be found by a simple max-flow
computation in polynomial time. For each pair of these paths, we check if the average
degree of the intersection graph is large; if so, we find a topological grid-like minor by
Theorem 7.28; otherwise, we consider the intersection graph I of all the r :=

(h
2
)
sets

of paths; i.e. I is an r-partite graph, having a vertex for each path out of Pi,j , for
1 ≤ i < j ≤ h, and an edge between two vertices if the corresponding paths intersect.
Now we can invoke Corollary 7.30 with I, r and d := c1p

2. We obtain

Lemma 7.31. Let G be a graph and let T1, . . . , Th be the disjoint trees of a (weak)
k-web of order h in G with k ≥ ch2p2, for a suitable constant c. Then there exists a
randomized algorithm with polynomial expected running time that finds in G either a
topological grid-like minor of order p or a set of

(h
2
)
disjoint paths Qij , 1 ≤ i < j ≤ h,

where Qij is a path connecting Ti and Tj. If k ≥ c′h4p2, for a suitable constant c′, a
deterministic polynomial-time algorithm also exists.
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By using the k-web of order h that is guaranteed by Lemma 7.20 and setting k = ch2p2,
we immediately obtain a randomized algorithm that given a graph G of treewidth at
least ch3p2 computes in G either a model of Kh or a topological grid-like minor of order
p; a deterministic variant is obtained if tw(G) ≥ c′h5p2. This observation, in turn,
immediately proves Theorem 7.27 (i) by setting h = p = `. As for claim (ii), we set
h = `2 and p = `, and hence obtain either a topological grid-like minor of order ` or
a model of K`2 ; but then, consider the following: let H be a graph that consists of `
“horizontal” paths and

(`
2
)
“vertical” edges, one connecting each pair of the horizontal

paths. Then H has less than `2 vertices, has maximum degree 3, and any subdivision of
H is a topological grid-like minor of order `; now, any graph that has K`2 as a minor,
has H as a topological minor, and hence contains a topological grid-like minor of order
` (recall that if a graph H has maximum degree 3 and is a minor of a graph G, then it
is also a topological minor of G).
Note that by using the weak k-web of paths that is given by Corollary 7.16, one can

also directly obtain a topological grid-like minor of order h but the bounds would be
worse than those obtained in Theorem 7.27.

7.3 Perfect Brambles and a Meta-Theorem
In this section, we define perfect brambles and show that certain parameterized problems
can be decided efficiently using this notion as a replacement for grid-minors.

Definition 7.32 (Perfect Bramble). A bramble B in a graph G is called perfect if

1. any two B,B′ ∈ B intersect;
2. for every v ∈ V (G) there are at most two elements of B that contain v;
3. every vertex has degree at most 4 in

⋃
B.

See Figure 7.4 for some examples of perfect brambles. Perfect brambles have some
interesting properties, such as the ones given below.

Lemma 7.33. Let B = {B1, . . . , B`} be a perfect bramble and H =
⋃

B. Then we have

(i) every element B ∈ B has at least `− 1 vertices;
(ii) every element B ∈ B has at least ` − 2 edges that do not appear in any other

element of B;
(iii) H has at least `(`−1)

2 vertices and at least `(`− 2) edges;
(iv) the order of B is exactly

⌈
`
2

⌉
and hence, can be computed in linear time;

(v) the treewidth of H is at least
⌈
`
2

⌉
− 1.

Proof. Claim (i), (ii), and (iii) follow from the fact that B intersects `−1 other elements
of B and because of property (2) in Definition 7.32, an extra vertex is needed for each;
also, at least `− 2 edges are needed to connect these at least `− 1 parts of B together.
Since each vertex covers at most two elements of B, at least `

2 vertices are needed for a
complete hitting set; on the other hand, since each two elements of B meet at a vertex,
`
2 vertices are also sufficient. This proves (iv), and by Theorem 7.2 also (v). �

147
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(a) (b)

Figure 7.4: Two examples of perfect brambles. The bramble elements are indicated with
different colors; vertices with different boundary and inner color belong to
two bramble elements.

Using Theorems 7.26 and 7.27, we obtain

Theorem 7.34. There are constants c1, c2, c3, such that for any graph G, we have

(i) if tw(G) ≥ c1`4
√

log `, then G contains a perfect bramble of order `;

(ii) if tw(G) ≥ c2`
5, there is randomized algorithm with expected polynomial running

time that finds a perfect bramble of order ` in G;

(iii) if tw(G) ≥ c3`7, a deterministic algorithm for the same purpose exists.

Proof. Consider a grid-like minor of order 2` in G; let P,Q be the sets of disjoint
paths such that I = I(P,Q) contains K2` as a minor. Let I1, . . . , I2` be the connected
subgraphs of I that define a model of K2`. For each of these subgraphs Ij , we define a
subgraph Bj of G that consists of the set of paths out of P and Q that are contained
in Ij . Then B = {B1, . . . , B2`} is a perfect bramble of order `; this can be checked
straightforwardly by noting that (i) P and Q are each a set of disjoint paths; (ii) the
sets I1, . . . , I2` are disjoint in I and there is an edge between any two of them; (iii) when
there is an edge between two sets Ii and Ij , it means that there is a path in Bi and a
path in Bj , one from P and one from Q, such that these two intersect3.
On the other hand, consider a model of K2` in G that is obtained as one possible

outcome of applying Theorem 7.27 (i), which, in turn, is obtained from Lemma 7.31.
It consists of a number of subcubic trees T1, . . . , T2` and a number of disjoint paths
Qij , 1 ≤ i < j ≤ 2`. For 1 ≤ i ≤ 2`, we define a set Bi to be the union of Ti with “the
first half” of each of the paths Qij , 1 ≤ j ≤ `, j 6= i, where “the first half” is defined as
follows: for each path Qij , we select an arbitrary vertex vij on Qij ; the first half of a
path Qij , starting at the tree Ti, is then the part of the path up to and including vij .
Then, one can easily check that B = {B1, . . . , B2`} is a perfect bramble of order `.
Now our claim follows by invoking Theorems 7.26 and 7.27, respectively. �

3A similar proof is also given in [RW08].
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Corollary 7.35. For any graph G of treewidth k, there exists a subgraph H of G with
treewidth polynomial in k and maximum degree 4. Furthermore, H can be computed in
polynomial time.

An interesting consequence of this corollary is that if the relation between treewidth
and grid-minors is indeed polynomial (see Theorem 7.3), then it suffices to prove it only
for graphs of bounded degree, in fact, only for perfect brambles.
Next, let G denote the set of all graphs; we obtain the following meta theorem:

Theorem 7.36. Let c, α > 0 be constants, G be a graph, and π : G → N be a parameter,
such that

(i) if H is a subgraph of G, then π(H) ≤ π(G);

(ii) on any graph H =
⋃

B, where B is a perfect bramble of order `, π(H) ≥ c`α;

(iii) given a tree decomposition of width ` on a graph H, π(H) can be computed in time
O(2poly(`)poly(n));

then there is an algorithm with running time O(2poly(k)poly(n)) that decides if π(G) ≤ k.
Furthermore, if in (i), (ii), and (iii) above, a corresponding witness can be constructed
in time O(2poly(k)poly(n)), then a witness, proving or disproving π(G) ≤ k, can also be
constructed in the given time.

Proof. If the treewidth of G is large enough, i.e. at least c′k4/α√log k, for a suitable
constant c′, then, by Theorem 7.34 (i), G contains a perfect bramble of order k1/α

c ;
hence, by condition (ii), π(G) ≥ k. Otherwise, G has treewidth at most poly(k); a
tree decomposition can be computed in time O(2poly(k)poly(n)) using the algorithm of
Bodlaender [Bod96], and π(G) can be computed using condition (iii) above. If the
exponents are slightly increased, as specified in Theorem 7.34 (ii) and (iii), a perfect
bramble can actually be constructed, and hence a witness can be provided. �

Using Lemma 7.33 one can see that our meta-theorem above can be applied to a variety
of problems, such as vertex cover, edge dominating set (= minimum maximal matching),
feedback vertex set, longest path, and maximum-leaf spanning tree. Whereas there
already exist better FPT-algorithms for these problems, we do not know of a unifying
argument like in Theorem 7.36 that provides singly-exponential FPT-algorithms for all
these problems; also, this technique might be applicable to other problems, for which
singly-exponential FPT-algorithms are not known yet. But the main significance of the
theorem resides in the reasons discussed in the introduction of this work, regarding the
graph minor theorem. Also, the algorithmic nature of Theorem 7.34 makes it possible
to actually construct a witness, as specified by Theorem 7.36; this was, in general, not
achieved by previous results.

149



7 On Brambles, Grid-Like Minors, and Tree-Ordered Webs

Figure 7.5: A labeled tree-ordered web encoding 010.

7.4 Labeled Tree-Ordered Webs
Our aim in this section is to show that any graph of large enough treewidth either
contains a large clique minor or a grid-like minor attached to a special tree that can be
completely defined and ordered by MSO2 formulas; in both cases, we want the structure
to be of order polynomial in the treewidth. Our basis is given by Theorem 7.27 (i)
that provides us either with a large clique minor or a certain k-web of order 3 or 4 that
contains a large grid-like minor. What we need to do is to consider one of the subcubic
trees of the k-web and prune it appropriately, so that the tree and a linear order on its
vertices become definable in MSO2.
The structure we are after, which we call a labeled tree-ordered web, is indicated in

Figure 7.5. The oval gray area schematically represents a grid-like minor; some of its
paths are attached to the tree T . We would like to think of these paths as the first
columns of the first row of the grid-like minor, ordered from left to right by the tree.
In Chapter 8, we would like to label these columns by a binary word; we accomplish
this by using what we call single crosses and double crosses. These are small subgraphs
adjacent to some leaves of the tree T such that each path of the grid-like minor that
starts at a leaf of T is preceded by a single cross, if it is to be labeled by 0, and by a
double cross, if it is to be labeled by 1. In Figure 7.5, the paths of the grid-like minor
starting in T are adjacent to the leaves v1, v2, and v3 and the corresponding crosses are
adjacent to the leaves x1, x2, and x3, and encode the word 010.
It turns out to be more convenient to work with walls instead of grid-minors in MSO2.

Hence, we start by reviewing walls and then proceed to show step-by-step how to define
and obtain a labeled tree-ordered web in graphs of large treewidth.

7.4.1 Topological Minors and Walls
We start by recalling some crucial definitions:

Definition 7.37. A subdivision of a graph H is a graph H ′ obtained from H by iter-
atively replacing some edges by paths of length 2. The original vertices of H in H ′ are
called the nails of H in H ′. If a graph G contains a subdivision of H as a subgraph, we
call H a topological minor of G.
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Figure 7.6: Elementary 4× 6-wall.

If H is a topological minor of G, then H is also a minor of G. However, the reverse is
not true in general unless H is of maximum degree 3; in this case, H is a minor of G if
and only if it is a topological minor of G.
For two sets of disjoint paths P and Q in a graph G, we defined (P,Q) to be a topolog-

ical grid-like minor of order ` if their intersection graph I(P,Q) contains a subdivision
of K`. We define the nails of (P,Q) to be those paths from P ∪Q that are nails of the
subdivision of K` in I(P,Q).

Definition 7.38. Let n,m > 0 be integers. An elementary n×m-wall is a graph with
vertex set V := {(1, 2j − 1) : 1 ≤ j ≤ m+ 1} ∪ {(i, j) : 1 < i ≤ n, 1 ≤ j ≤ 2m+ 2}∪
{(n+ 1, 2j − t) : 1 ≤ j ≤ m+ 1 and t := (n mod 2)} and edge set

E := {(1, 2j − 1), (1, 2(j + 1)− 1) : 1 ≤ j ≤ m} // horizontal edges in row 1
∪ {(n+ 1, 2j − t), (n+ 1, 2(j + 1)− t) : 1 ≤ j ≤ m and t := (n mod 2)}

// horizontal edges in row n+ 1
∪ {(i, j), (i, j + 1) : 2 ≤ i ≤ n, 1 ≤ j < 2m+ 2} // further horizontal edges
∪ {(i, j), (i+ 1, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ 2m+ 2, i and j even } // vertical edges
∪ {(i, j), (i+ 1, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ 2m+ 2, i and j odd }. // vertical edges

An n×m-wall is a subdivision of an elementary n×m-wall. The nails of a wall are
the nails of the subdivision of the elementary wall it is obtained from. An elementary
wall is a graph as illustrated in Figure 7.6.

We will always think of the vertices of a wall as being numbered in such a way that
(1, 1) is the vertex in the “bottom-left corner”. The “bottom row” of an n×m-wall is then
the row 1. Note that since an elementary wall has maximum degree 3, any graph that has
an elementary n×m-wall as a minor contains an n×m-wall as a subgraph. Furthermore,
any n ×m-wall contains an n ×m-grid as a minor; conversely, any n × (2m + 1)-grid
contains an elementary n×m-wall as a subgraph.

7.4.2 Tree-Webs
The notion of a tree-web, defined below, is central to this part of our work; in the subse-
quent sections, we will gradually refine this notion until we finally obtain the structure
that we need.
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Definition 7.39. A tree-web of order ` is a tuple W = (G,T, r, A,P,Q), so that

1. T is a subcubic tree rooted at r,
2. (P,Q) is a topological grid-like minor of order `2 whose nails are paths from P,
3. G is a graph of maximum degree 4 with T ∪

⋃
P ∪

⋃
Q ⊆ G,

4. T only intersects with nails of (P,Q),
5. the paths from P that are nails are either disjoint from T or intersect T in exactly

one endpoint, and
6. A = V (T ) ∩ V (

⋃
P) is flat in T .

The vertices of A are called the good vertices of W. The paths in P that start at a
vertex in A are called good paths.

In case G = T ∪
⋃
P ∪

⋃
Q and all the nails in P are good, and hence intersect

T , i.e. |A| = `2, we call the structure a full tree-web. A sub-tree-web of a tree-web
W = (G,T, r, A,P,Q) is a tree-web W ′ = (G′, T ′, r′, A′,P ′,Q′) with G′ ⊆ G. In this
case, we writeW ′ ⊆ W. A full subtree of a rooted tree (T, r) is the connected component
of T − e not containing r, for some e ∈ E(T ).

Definition 7.40. A tree-web W = (G,T, r, A,P,Q) is nice if

1. T ∪
⋃
P ∪

⋃
Q has no vertex of degree 1 except maybe r,

2. if P = v0, . . . , vk is a good path with v0 ∈ A, v1 does not lie on any other path,
3. every full subtree of T with at least 2 vertices contains at least 2 good vertices.
4. every leaf of T is good, and
5. the neighbor of every leaf of T in T is good.

Note that the last two conditions are implied by the third. The proof of Lemma 7.42
below is based on the combinatorial Lemma 7.41.

Lemma 7.41. Let G := Kk be a clique on k vertices and assume at most k edges of G
are colored red and the rest are colored blue. Then G contains a blue clique H of size
bk/3c that can be found in polynomial time.

Proof. We prove our claim by induction on k. Let k ≥ 3 and consider the following
cases:
(i) Assume the red degree of every vertex is at most 1; then we can obviously take

half the vertices into H.
(ii) Assume the red degree of every vertex is exactly 2. Then the red subgraph consists

of a number of cycles. From each cycle of size t, we can include every second vertex in
H, hence obtaining at least bt/2c ≥ t/3 vertices (t ≥ 3).
(iii) Otherwise G has a vertex u of red degree at most 1 and a vertex v of red degree at

least 2. If u has red degree 1, let w be its red neighbor, otherwise let w be an arbitrary
vertex (note that it might be v = w). Define D := {u, v, w}, d := |D|, and G′ := G−D.
Note that d is 2 or 3 and G′ is a clique on k − d vertices having at most k − d red
edges. By the induction hypothesis, we can find a blue clique H ′ in G′ of size at least
b(k − d)/3c. But since u has only blue edges to G′, we can add u to H ′ to obtain H of
size at least b(k − d)/3c+ 1 ≥ bk/3c. �
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Lemma 7.42. Given a (full) tree-web W of order `, one can construct a nice (full)
tree-web W ′ of order at least b`/2c with W ′ ⊆ W in polynomial time.

Proof. Vertices of degree 1 are irrelevant to a tree-web and can be always removed;
hence, we obtain and can always maintain property (1) of a nice tree-web. If a full
subtree contains only one good vertex, we can extend the good path starting at that
vertex to the root of the subtree and remove the rest of the subtree. Thus, we can always
guarantee property (3), which implies properties (4) and (5). None of these operations
changes the order of the tree-web.
It remains to show property (2). If a good path P = v0, . . . , vk intersects another

path, i.e a path Q ∈ Q at vertex v1, we co lour Q red. Since the number of good paths
is at most `2, we obtain at most `2 red paths in Q. Now, consider the subdivision H
of K`2 that is contained in I(P,Q); at most `2 of the paths in H that correspond to
a subdivided edge of K`2 contain a red vertex Q ∈ Q; by Lemma 7.41, we can find
a subdivision H ′ of Kb`2/3c in H that contains no red vertices and whose nails are a
subset of the nails of H. Hence, by considering only the paths P ′ := P ∩ V (H ′) and
Q′ = Q∩ V (H ′), we still have a subdivision of Kb`2/3c in I(P ′,Q′). �

Using Theorem 7.27 (i) and Lemma 7.42, we can easily prove:

Lemma 7.43. There is a constant c and a polynomial-time algorithm that given a graph
G of treewidth at least c`14 finds an `× `-wall or a full nice tree-web of order ` in G.

Proof. By choosing the constant c appropriately, theorem 7.27 (i) implies that G contains
either K8`2 as a minor or a topological grid-like minor of order 8`2. In the former case
we are done, since an elementary `× `-wall has maximum degree 3, is contained in K8`2 ,
and is thus a topological minor of G implying that G contains an `×`-wall as a subgraph.
In the latter case, let (T, (Ti)1≤i≤t, (Ai)1≤i≤t, B) be the k-web of order t (t = 3 or

4) and (P,Q) the topological grid-like minor returned by the algorithm. The theorem
states that P is the set of paths connecting T1 and T2. Let N be the set of nails in the
model of K8`2 in I(P,Q). W.l.o.g. we may assume that P contains at least half of N ;
hence, by just considering the nails in P, we still have a subdivision of K4`2 . By deleting
T2,T3, and T4 (if existent), we almost obtain a full tree-web of order 2`, except that the
paths in P that are not nails also intersect with T1; but we can delete the first edge of
these paths and obtain the desired full tree-web. The root of the tree can be chosen
arbitrarily. Finally, we obtain our claim by appealing to Lemma 7.42. �

The following operation is essential for the proofs that follow.

Definition 7.44. Given a tree-web W = (G,T, r, A,P,Q) and a good vertex v ∈ A,
starting a path P = vv1 . . . vk of P, the operation Cut(v) is defined as removing the edge
v1v2 from G, adding the edge vv1 to T , removing the vertex v from A, and iteratively
removing vertices of degree 1 from P .

See Figure 7.7 for an illustration. Note that by starting with a nice tree-web, this
operation does not affect the order of the tree-web. Next, we would like to identify a
unique root for a tree-web:
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v1 v2 kv v2 vkP

v

v1P

v

Figure 7.7: Illustration of the operation Cut(v).

Definition 7.45. A tree-web W = (G,T, r, A,P,Q) admits a definable root if it con-
tains exactly one vertex r ∈ V (T ) with degT (r) = 1 and degG(r) = 3 such that two
components of G− r are single vertices s1, s2 and the third contains at least one edge.

Lemma 7.46. Given a full nice tree-web W = (G,T, r, A,P,Q) with at least 3 good
vertices, one can construct a sub-tree-web W ′ = (G′, T ′, r′, A′,P ′,Q′) of the same order
in polynomial time such that W ′ is nice, admits a definable root, and |A′| ≥ |A|/3.

Proof. If T has a vertex v of degree 3, one of the components of T − v contains at least
1/3 of the good vertices; we prune the other two to become a single vertex each to obtain
W ′ with root v. If, on the other hand, T is a path, one of its endpoint v1 is a good vertex
connecting a path P1 and its neighbor v2 is a good vertex connecting a path P2. By
deleting the first edge of P1 and applying the operation Cut(v2), v2 becomes a definable
root while losing only 2 good vertices. Since W is nice, these operations do not change
the order of the tree-web; and by deleting redundant vertices of degree 1, we can make
sure that W ′ is nice, too. �

7.4.3 Trees admitting a definable ordering
In this section we show how to prune a given rooted tree T with maximum degree 3,
so that there is an MSO2-formula (not depending on T ) which at each branching node
of the tree distinguishes between the left and the right subtree. Assume we are given a
subcubic tree T with a root r and a set X of vertices of the tree marked as good and
we would like to retain as many good vertices as possible. Throughout this section, X
will always denote the set of good vertices; and we assume degT (r) = 1. We use the
following notation (see Figure 7.8 for illustrations):

• If v ∈ V (T ) then the children of v are all neighbors of v not on the unique path
from v to r.
• A leaf of T is a node of degree 1 in T , except r. A good leaf is a leaf that is good.
• A vertex is called leafy if it has degree 3 and is adjacent to a leaf.
• A branching vertex of T is a vertex of degree 3 in T . A proper branching vertex is

a branching vertex that is not leafy.
• An artificial leaf is a leaf that is not good and is adjacent to a branching vertex.
• Let v ∈ V (T ) be a vertex with child u ∈ V (T ) and e = {v, u}. The subtree Tu of
T rooted at u is the component of T − e containing u. The extended subtree of u
is defined as Tu ∪ e.
• subtreei(v) denotes the extended subtree of the ith child of v, where we number
the children arbitrarily.
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u

w
v

z

Figure 7.8: The vertices u, v, and w are properly marked; v is leafy and z an artificial
leaf; u and w are proper branching vertices.

• cbv(T, v) : closest branching vertex to v in Tv; or the leaf of Tv if Tv is a path; is
defined only if v has degree 1 in Tv.
• gX(T ) := |X ∩ V (T )| is the number of good vertices in T . We omit the index ·X

if it is clear from context.

Definition 7.47. Let (T, r) be a rooted subcubic tree;

• two vertices u, v ∈ V (T ) are topological neighbors if they are linked by a path
whose inner vertices all have degree 2 in T ;
• a branching vertex v is called properly marked if it has a leaf or a leafy vertex as
a topological neighbor in the subtree rooted at v; and
• T is called properly marked if every branching vertex of T is properly marked.

We now define a pruning algorithm Prune(T, r) which, given a rooted subcubic tree
(T, r) outputs a tree (T ′, r) that is properly marked (see Figure 7.9).

Algorithm Prune(T, r).
Input. subcubic rooted tree (T, r) with degT (r) = 1.
Output. a properly marked subcubic rooted tree (T ′, r) with T ′ ⊆ T .

If T is a simple path than return T . Otherwise, let v := cbv(T, r), R be the path
from r to v, T1 := subtree1(v), and T2 := subtree2(v) with g(T1) ≤ g(T2).

1. If one of T1, T2 is a path, say Ti, return the tree obtained from T by replacing
T3−i by Prune(T3−i).

2. Otherwise, let u1 := cbv(T1, v). Let T11 := subtree1(T1, u1) and
T12 := subtree2(T1, u1) with g(T11) ≤ g(T12). Let T ′1 be the tree ob-
tained from T1 by cutting T11 down to a single edge and replacing T12
by T ′12 := Prune(T12, u1). Finally, return T ′ as the union of R, T ′1, and
T ′2 := Prune(T2).

Lemma 7.48. Let (T, r) be a rooted subcubic tree and X ⊆ V (T ). T contains a properly
marked subtree T ′ such that gX(T ′) ≥ gX(T )

2
3 . Furthermore, T ′ can be computed in

polynomial time on input (T, r).
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Proof. Let T ′ := Prune(T, r). We claim that (T ′, r) fulfills the requirements of the
lemma. We prove the claim by induction on the order n := |T | of T . If T is a path
there is nothing to show. Otherwise, the fact that T ′ is properly marked is immediate
from our recursive construction by induction. It remains to bound the number of good
vertices that remain after the pruning. We first observe that for all 1

2 ≤ β ≤ 1

(1− β
2

) 2
3

+ β
2
3 ≥ 1 . (7.1)

If q, q1, q2 are non-negative integers with q = q1 + q2 and q1 ≤ q2, we have q2 = βq and
q1 = (1− β)q, for some β ≥ 1

2 . Hence, we obtain with Inequality (7.1)

q
2
3
1 + q2 ≥ q1 + q

2
3
2 ≥ q

2
3
1 + q

2
3
2 ≥ (q1

2
)

2
3 + q

2
3
2

= q
2
3 · ((1− β

2
)

2
3 + β

2
3 )

≥ q
2
3 = (q1 + q2)

2
3 .

(7.2)

Let v, R. T1, and T2 be defined as in the algorithm. Define q0 := g(R−v), q1 := g(T1−v),
q2 := g(T2), q := q1 + q2, and q′ := g(T ′v). First, note that it suffices to show q′ ≥ q

2
3

since this implies

g(T ′) = q0 + q′ ≥ q0 + q
2
3 ≥ (q0 + q)

2
3 = g(T )

2
3

by Inequality (7.2). Consider the following cases:

(i) If T1 is a path, then q′ ≥ q1 + q
2
3
2 ≥ q

2
3 by Inequality (7.2). Similarly, if T2 is a

path, then q′ ≥ q
2
3
1 + q2 ≥ q

2
3 .

(ii) Otherwise, let T ′12 and T ′2 be defined as in Step 2 of the algorithm and let q′2 := g(T ′2)
and q′12 := g(T ′12). Furthermore, let P be the path from u to v excluding u and v
and let qP := g(P ). Using Inequality (7.2) twice more, we obtain

q′ = qP + q′12 + q′2 ≥ qP +
(
q1 − qP

2

) 2
3

+ q
2
3
2

≥
(
q1
2

) 2
3

+ q
2
3
2 ≥ q

2
3 .

�

Once we have a properly marked tree, it is possible to identify left and right subtrees
in a proper way using parity considerations, as follows.

Definition 7.49. Let (T, r) be a subcubic tree rooted at vertex r of degree 1 and X
a set of good vertices that lies flat in T . We say the tuple (T, r,X) admits a definable
order if all leaves are artificial or good and for all branching vertices v with extended
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Figure 7.9: (a) Case (1) of algorithm Prune; (b) case (2) of algorithm Prune.

subtrees Ti := subtreei(v), for i = 1, 2, exactly one of the following is true. Along with
the following conditions we will label some subtrees as left and others as right.

1. At least one of T1, T2 is a single edge, say T1. If T2 is also a single edge, then
exactly one of T1 and T2 contains a good leaf, say T1; in either case, T1 is left and
T2 is right.

2. Exactly one of T1, T2 is a simple path, say T1. Then T1 is left and T2 is right.
3. Let ui be the closest proper branching vertex to v in Ti if one exists; otherwise let
ui be the good leaf of Ti farthest away from v. Let Pi the path connecting v and
ui in Ti. We define gi to be the number of vertices on Pi− v that are good or leafy.
We require that exactly one of g1, g2 is odd, say g1; then T1 is left and T2 is right.

The canonical order ≤T of (T, r) is defined as follows. Let x 6= y ∈ V (T ) and let v be
the closest common ancestor of x, y. Then x ≤T y if and only if v = x or x is in the left
subtree of v and y in the right.

Lemma 7.50. Let (T, r) be a subcubic tree rooted at vertex r of degree 1 and X ⊆ V (T ) a
given set of good vertices that lies flat in T . T contains a subtree T ′ and a set X ′ ⊆ X∩T ′
with |X ′| ≥ |X|

2
3 /2 such that (T ′, r,X ′) admits a definable order and X ′ is totally ordered

by the canonical order ≤T ′. Furthermore, T ′ can be computed in polynomial time.

Proof. W.l.o.g. we assume all the leaves of T are good; otherwise we go from T to the
smallest subtree of T containing the root and all good vertices; hence, all the leaves of
T are good leaves. Then we apply Lemma 7.48 to obtain a properly marked subtree
T ′′ of T and a set X ′′ := X ∩ T ′′ with |X ′′| ≥ |X|

2
3 . Note that when counting the

number of good vertices of T ′′ in Lemma 7.48, we do not consider the leaf that replaces
a subtree in step (2) of algorithm Prune a good vertex, even though it might happen to
be one; hence, we consider all these leaves artificial leaves and are free to remove them
without losing good vertices. All other leaves are still good vertices. Now we consider
each branching vertex v of T ′′ in a bottom-up fashion, i.e. in a post-order traversal of the
tree, and consider the following cases; let Ti,ui, and gi be defined as in Definition 7.49:

(i) If both of T1, T2 are single edges, ignore v.
(ii) Suppose T1 and T2 are both simple paths of length at least 2 and g1 and g2 have the

same parity. Then u1 and u2 are both good leaves. If there is no other good vertex
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in T1, we cut T1 down to a single edge, i.e. make it an artificial leaf. Otherwise,
let w be the good vertex closest to u1 and replace T1 by the path from v to w. In
either case, we lose exactly one good vertex in the subtree rooted at v; and our
construction ensures that case (ii) does not occur for any ancestor of v in the tree.

(iii) Otherwise, if at least one of T1, T2 is a simple path, ignore v.
(iv) Otherwise v is a proper branching vertex and Lemma 7.48 guarantees that v has

a leafy vertex, adjacent to an artificial leaf w, as a topological neighbor in one of
its subtrees. If g1 and g2 are of the same parity, we simply remove w and obtain
our desired property without losing any good vertex.

We let T ′ be the tree obtained after the traversal above is finished andX ′ := T ′∩X−D,
where D contains one of every two good leaves that are siblings as in case (i). Then, it
is evident by our construction that (T ′, r,X ′) admits a definable order and all leaves are
either good or artificial. Furthermore, X ′ contains at least half the vertices of X ′′, since
the subtrees on which case (i) or (ii) apply are all disjoint and at most half of their good
vertices are not included in X ′. �

7.4.4 Tree-Ordered Webs
We show how to prune the tree T of a given nice full tree-web (G,T, r, A,P,Q), so that
there is an MSO2-formula which can detect the nodes of T in G and at each branching
node of the tree distinguishes between the left and right subtree.

Definition 7.51. Let W = (G,T, r, A,P,Q) be a tree-web:

• a leaf-mark of W is a path v1v2v3 in G such that v1 is a good leaf of T , v2 is of
degree 2 in G and v3 is of degree 1 in G (see Figure 7.10);
• we use the notions topological neighbor and properly marked with respect to degrees
in G (as opposed to degrees in T in the previous subsection; this does make an
important difference, as good vertices have degree 2 in T but degree 3 in G);
• a vertex v ∈ V (G) is special in G if it has degree 3 or 4 and is not properly marked,
i.e. does not have a leaf or a leafy vertex as a topological neighbor;
• we let spec(G) denote the set of special vertices in G.

Definition 7.52. A tree-ordered web of order ` is a tuple (G,T, r, A,P,Q) such that

1. (G,T, r, A,P,Q) is a tree-web of order ` admitting the definable root r;
2. A is the set of vertices of degree 3 in G not in spec(G) but having a topological

neighbor in spec(G);

Figure 7.10: Turning a good leaf with a good neighbor into a leaf with a leaf-mark.
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3. T is contained in the component of G− spec(G) containing r;
4. every leaf of T is either artificial or incident to a leaf-mark;
5. (T, r, A) admits a definable order;
6. G consists only of T ∪

⋃
P ∪

⋃
Q, the marking of r, and the leaf-marks; and

7. no vertex of V (
⋃
P) ∪ V (

⋃
Q) has degree 1 in G.

A main ingredient of the proof of Lemma 7.53 below is the observation that Defini-
tion 7.49 allows us to cut a good path and make it an artificial leaf without destroying
the definable order; this is because in the third case of Definition 7.49, we consider ver-
tices that are good or leafy and the operation Cut only turns a good vertex into a leafy
vertex. Hence, we can cut away about every second good path to ensure that vertices
of the tree do not land in spec(G). We also observe that if the number of the leaves of
the tree is large enough, we can just keep the good paths starting at the leaves; and
otherwise, the number of proper branching vertices is small and we do not need to cut
away too many good paths.

Lemma 7.53. There exists a constant c such that if W0 = (G0, T0, r0, A0,P0,Q0) is a
given nice full tree-web of order c`, then there exists a tree-web W = (G,T, r, A,P,Q)
with W ⊆ W0 and a vertex r ∈ V (G) such that (G,T, r, A,P,Q) is a tree-ordered web
of order ` with |A| ≥ 15`; furthermore, W can be computed in polynomial time.

Proof. First, we apply Lemma 7.46 to obtain a nice tree-webW1 = (G1, T1, r, A1,P1,Q1)
with definable root r. The lemma guarantees that |A1| ≥ |A0|/3. Recall that this way,
r is of degree 1 in T but is never considered a leaf.
SinceW1 is nice, every leaf of T1 is good and is adjacent to another good vertex of T1.

Let T ′1 ⊆ T1 be the subtree of T1 obtained by removing all the leaves of T1. Note that
all the leaves of T ′1 are still good. Let A′1 = A1 ∩ V (T ′1) and observe that |A′1| ≥ |A1|/2.
Next, we invoke Lemma 7.50 on (T ′1, r) and A′1 to obtain a tuple (T2, r, A2) admitting
a definable order with |A2| ≥ |A′1|

2
3 /2. The lemma guarantees that every leaf of T2 is

either artificial or good.
Let v be a good leaf of T2. By our construction above, there must exist an edge

vu ∈ E(T1)− E(T2). Now (i) if u is not a good vertex of T1, then u cannot be a leaf of
T1, and hence there must exist another edge uw ∈ E(T1) − E(T2) with w 6= v; in this
case, vuw is a leaf-mark for v; (ii) otherwise, u is a good vertex of T1 starting a path
P = uw1w2 . . . ; we delete the edge w1w2 as in the Cut operation to obtain the leaf-mark
vuw1 for v (see Figure 7.10); since we started with a nice tree-web, this operation does
not change the order of the tree-web.
We apply the procedure above to every good leaf of T2, remove all edges of T1 from G

that do not appear in T2 or in leaf-marks, and iteratively remove redundant vertices of
degree 1 appearing in (P,Q). LetW2 = (G2, T2, r, A2,P2,Q2) be the resulting tree-web.
Let b be the number of proper branching vertices of T2 and t the number of good leaves.

Since T2 is subcubic, we have b ≤ t. We obtain the tree-webW3 = (G3, T3, r, A3,P3,Q3)
as follows:

(i) If t ≥ |A2|/4, we let A3 be the set of good leaves of T2 and obtainW3 by performing
the operation Cut on every good vertex not in A3.
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(ii) Otherwise, consider each proper branching vertex v of T2 and let P1, P2 be the
paths from v to the closest proper branching vertex or good leaf of each of the two
extended subtrees of v. Let u1, . . . , up be the good vertices on P1, in this order, and
similarly, w1, . . . , wq the good vertices on P2. If one of p, q is 1, we assume w.l.o.g.
that p = 1; if both are 1, then we let w1, . . . , wq belong to the subtree that contains
an artificial leaf (note that there is such a subtree, since the parities of the total
number of good or leafy vertices must be different). Apply the operation Cut(ui)
for every odd 1 ≤ i ≤ p and the operation Cut(wi) for every even 1 ≤ j ≤ q.
This way, it is guaranteed that v retains a leafy vertex as a topological neighbor
and still, at least b(p+ q)/2c good vertices on P1 ∪ P2 are left. If p + q is odd,
we charge one unit of penalty to v. Let T3 and A3 be the tree and good vertices
after this operation is performed on every proper branching vertex. Since every
proper branching vertex is charged to at most once, the number of good vertices
that remain is at least |A2|/2−b; but we have b ≤ t ≤ |A2|/4, and hence we obtain
|A3| ≥ |A2|/4.

We claim that W := W3 is the desired tree-ordered web specified in the lemma.
Indeed, note that since we started with a nice tree-web, none of the operations above
changed the order of the tree-webs we worked with; also every branching vertex and
every good vertex in T is properly marked by a leafy topological neighbor while vertices
of P ∪Q do not have this property and thus belong to spec(G); furthermore, (T3, r, A3)
admits the same definable order as (T2, r, A2) because the Cut operation only changes
good vertices into leafy vertices, which does not make a difference in the definable order.
Hence, all the properties of Definition 7.52 are fulfilled. Finally, recall that |A0| = c2`2;

we have |A3| ≥ |A0|
2
3

27 = c
4
3

27 · `
4
3 , and so |A3| ≥ 15` is also fulfilled if the constant c is

large enough (if ` is larger than a constant, then c = 1; otherwise c ≤ 91 suffices). �

7.4.5 Labeling Tree-Ordered Webs
We will show next how to encode a word w := w1 . . . wt ∈ {0, 1}? in a tree-ordered web
of order 2t. We first need the following simple combinatorial lemma.

Lemma 7.54. Let G be a directed graph on k vertices with maximum outdegree d. Then
G contains an independent set of size

⌈
k

2d+1

⌉
which can be computed in polynomial time.

Proof. As the maximal outdegree of each vertex is at most d, the graph contains at most
kd edges, i.e. in the underlying undirected graph, the sum of the vertex degrees is at

Figure 7.11: A (a) single and a (b) double cross.
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most 2kd. Hence, there is a vertex of total degree at most 2d. We can add it to the
independent set and remove all its in- and out-neighbors. Proceeding in this way we
find an independent set of size

⌈
k

2d+1

⌉
. �

A single cross is a subcubic tree with four leaves having the shape depicted in Fig-
ure 7.11 (a); a double cross is a subcubic tree with five leaves having the shape depicted
in Figure 7.11 (b) (where the dashed lines indicate paths). The right-most vertex of
each cross, as drawn in Figure 7.11, is called the base of the cross.

Definition 7.55. A labeled tree-ordered web of order ` and length k is a tuple W :=
(G,T, r, A,P,Q, X,C) where

1. (G[V (G − C) ∪ X], T, r, A,P,Q) is a tree-ordered web of order ` except that we
require (T, r, A ∪X) to admit a definable order instead of (T, r, A),

2. the root r does not have a leafy vertex as a topological neighbor,
3. C is a set of disjoint single and double crosses,
4. X = V (T ) ∩ V (C) is the set of bases of the crosses in C and lies flat in T ,
5. |X| = |A| = k,
6. if X = {x1, . . . , xk} and A = {v1, . . . , vk} then x1 ≤T v1 ≤T x2 · · · ≤T xk ≤T vk.

The word encoded by W is w := w1 . . . wk ∈ {0, 1}k with wi := 0 if xi is the base of
a single cross in C and wi := 1 if xi is the base of a double cross of C. W is called
configurable if C consists only of double crosses.

A labeled tree-ordered web encoding the word 010 is indicated in Figure 7.5.

Lemma 7.56. For ` ≥ 3, let W = (G,T, r, A,P,Q) be a given tree-ordered web of
order 2` with |A| ≥ 30`. There exists a configurable labeled tree-ordered web W ′ =
(G′, T ′, r′, A′,P ′,Q′, X ′, C ′) of order ` and length ` with G′ ⊆ G that can be computed
in polynomial time.

Proof. First, note that any good path P ∈ P can be easily transformed to a double cross:
since P is a nail of the grid-like minor (P,Q) of order 4`2, P intersects with at least 3
paths of Q if ` ≥ 1. The first 3 of these paths can be cut in a way to create one of the
double crosses depicted in Fig. 7.11 (b). By doing so, we could destroy at most 7 other
paths: 3 paths of Q and 4 paths of P that might have intersected the 4 leaves of the
double cross (the base is part of the tree T ). Each path R ∈ P ∪ Q that is not a nail
might be used on at most one subdivided edge connecting the nails P1, P2 ∈ P in the
image of K4`2 in I(P,Q). Assign R arbitrarily, say, to P1. If R is destroyed by building
a cross, we consider P1 being destroyed, instead.
Consider a digraph D having a vertex uP for each good path in P and a directed edge

from uP to uP ′ if turning P into a double cross destroys P ′. The maximum outdegree
of this digraph is 7 and hence, by Lemma 7.54, there exists a set Y0 ⊆ A of size at least
|A|
15 ≥ 2` of good vertices such that the vertices in D that correspond to the good paths
starting at Y0 form an independent set in D.
Let Y := {y1, . . . , y2`} be a subset of exactly 2` vertices of Y0 such that y1 ≤T y2 ≤T
· · · ≤T y2`. We define X ′ := {yi | i is odd} and A′ := {yi | i is even}. We transform every
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good path starting at a vertex in X ′ into a double cross and remove all the paths that get
destroyed. Let C ′ be the set of double crosses we obtain this way. We also perform the
operation Cut(v) on every good vertex that is not in Y . If the root r has a leafy vertex
with leaf w as a topological neighbor, we remove w and repeat this process, if necessary;
note that such leaves are irrelevant to the tree-order and can be safely removed. Finally,
we repeatedly remove all redundant vertices of degree 1 of (P,Q).
Let P ′ and Q′ be the (parts of) the paths that remain, T ′ the tree obtained from T

after the cut operations, r′ := r, and G′ be the union of T ′ ∪ C ′ ∪ P ′ ∪ Q′ with the
marking of the root and the leaf-marks. We claim W ′ = (G′, T ′, r′, A′,P ′,Q′, X ′, C ′) is
the desired configurable labeled tree-ordered web of order ` and length `.
The fact that (T ′, r′, A′ ∪X ′) admits a definable order follows on one hand, from the

observation that Definition 7.49 allows turning a good vertex into a leafy vertex by the
Cut operation without changing the canonical order of the tree; and on the other hand,
from the fact that the good vertices that started good paths that are now turned into
crosses are now in X and thus still count as good vertices. Hence, the canonical order
of (T ′, r′, A′ ∪X ′) is indeed the same as the canonical order of (T, r, A). The number of
destroyed paths is at most 8|X ′| = 8`, i.e. we lose at most 8` nails of the subdivision of
K4`2 in I(P,Q); hence I(P ′,Q′) still contains a subdivision of K`2 if ` ≥ 3. All other
requirements of Definition 7.55 are immediate from our construction. �

The definition below is needed in Chapter 8:

Definition 7.57. If W is a labeled tree-ordered web of order `d and length ` encoding
a word w = w1 . . . w`, we say that W encodes w with power d.

Theorem 7.58 sums up the main result of this section and, indeed, of this lengthy chapter:

Theorem 7.58. Let a word w = w1 . . . w` ∈ {0, 1}?, a graph G, and an integer d be
given. There is a constant c such that if the treewidth of G is at least c`14d then G
contains either an `d × `d-wall or a labeled tree-ordered web W that encodes w with
power d. Furthermore, either outcome can be computed in polynomial time.

Proof. By applying Lemma 7.43 to G, we obtain either an `d× `d-wall or a full nice tree-
web of order c′`d, for a suitable constant c′ if c is chosen appropriately. In the former
case, we are done and in the latter case, we invoke Lemma 7.53 and Lemma 7.56 in order
and obtain a configurable labeled tree-ordered web W ′ = (G′, T ′, r′, A′,P ′,Q′, X ′, C ′) of
order `d and length `d. We apply the operation Cut(v) to all but the first ` good paths
in A′, remove all but the first ` double crosses in C, and cut some double crosses to
single crosses according to w. The labeled tree-ordered web W that remains fulfills our
requirements. Since all the Lemmas that we used require only polynomial time, the
whole procedure does, too. �
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8 Parameterized Intractability of Monadic
Second-Order Logic1

In 1990, Courcelle proved a fundamental result stating that every property of graphs de-
finable in monadic second-order logic with edge set quantification (MSO2), the extension
of first-order logic by quantification over sets of vertices and edges, can be decided in
linear time on any class C of graphs of bounded treewidth. This theorem has important
consequences both in logic and in algorithm theory. In the theory of efficient algorithms
on graphs, it can often be used as a simple way of establishing that a property can be
solved in linear time on graph classes of bounded treewidth. Besides being of inter-
est for specific algorithmic problems, results such as Courcelle’s and similar algorithmic
meta-theorems lead to a better understanding how far certain algorithmic techniques,
such as dynamic programming on bounded treewidth graphs, range; and also establish
general upper bounds for the parameterized complexity of a wide range of problems. See
[Gro07a, Kre09a] for recent surveys on algorithmic meta-theorems.
From a logical perspective, Courcelle’s theorem establishes a sufficient condition for

tractability of MSO2 formula evaluation on classes of graphs or structures: whatever the
class C may look like, if it has bounded treewidth, then MSO2-model checking is tractable
on C. An obvious question is how tight the theorem actually is, i.e. whether it can be
extended to classes of unbounded treewidth and if so, how large the treewidth of graphs
in the class can be in general. Given the considerable interest in Courcelle’s theorem,
and the far-reaching consequences that extensions of this result to interesting classes
of graphs of unbounded treewidth would have, it is surprising that not much is known
about such limits for MSO2-model checking. To fully understand the (parameterized)
complexity of monadic second-order logic with respect to particular classes of graphs, we
need to understand necessary conditions for tractability as much as sufficient conditions;
but for some reason necessary conditions have so far not been studied in much depth.
In order to formally state and further discuss our results, also in relation to previous

work, we need the following notion; it basically states that a class of graphs of unbounded
treewidth actually contains sufficiently many graphs witnessing the large treewidth of
the class and that these witnesses can be constructed efficiently.

1This chapter is based on joint work with Stephan Kreutzer [KT10a].
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8 Parameterized Intractability of Monadic Second-Order Logic

Definition 8.1. The treewidth of a class C of graphs is strongly unbounded by a function
f : N → N if there is ε < 1 and a polynomial p(x) such that for all n ∈ N there is a
graph Gn ∈ C with

1. the treewidth of Gn is between n and p(n) and is not bounded by f(|Gn|) and
2. given n, Gn can be constructed in time 2nε .

The degree of the polynomial p is called the gap-degree of C (with respect to f). The
treewidth of C is strongly unbounded polylogarithmically if it is strongly unbounded by
logc n, for all c ≥ 1.

A first lower bound for the complexity of monadic second-order logic was recently
given by [Kre09b]. He showed that under the exponential time hypothesis MSO2-model-
checking is not fixed-parameter tractable on any class of colored graphs where

(i) the treewidth is strongly unbounded by logc n, for a suitable constant c;
(ii) which are closed under recolorings for a fixed set Γ of colors, i.e. if G ∈ C and G′

is obtained from G by coloring some vertices or edges with colors from Γ, then
G′ ∈ C; and

(iii) where a grid-like minor of order polynomial in the treewidth can be constructed
in polynomial time.

This paper establishes powerful logical tools for proving such intractability results and we
will resort to some of these tools below. However, condition (iii) seems quite unnatural
and makes the result somewhat artificial. But as we saw in the previous chapter, we
proved in Theorem 7.27 that condition (iii) is fulfilled for all graphs! Hence, with our
work in Chapter 7, we immediately obtain the following much more natural result:

Theorem 8.2. Let C be a class of colored graphs closed under recoloring from a fixed
set of colors Γ.

(i) If the treewidth of C is strongly unbounded by log28γ n, where γ > 1 is larger than
the gap-degree of C, then MC(MSO2, C) is not in XP, and hence not fixed-parameter
tractable, unless Sat can be solved in subexponential time.

(ii) If the treewidth of C is strongly unbounded polylogarithmically then MC(MSO2, C)
is not in XP unless all problems in the polynomial-time hierarchy can be solved in
subexponential time.

Still, closure under colorings is from a logical perspective quite a strong condition as
it allows to “mark” bad substructures in a graph. In this chapter we aim for an even
stronger intractability result for MSO2:

Theorem 8.3. Let C be a class of graphs closed under subgraphs, i.e. G ∈ C and H ⊆ G
implies H ∈ C.

1. If the treewidth of C is strongly unbounded by log28γ n, where γ > 1 is larger than
the gap-degree of C, then MC(MSO2, C) is not in XP, and hence not fixed-parameter
tractable, unless Sat can be solved in subexponential time.
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2. If the treewidth of C is strongly unbounded polylogarithmically then MC(MSO2, C)
is not in XP unless all problems in the polynomial-time hierarchy can be solved in
subexponential time.

Recall that MC(MSO2, C) refers to the parameterized model-checking problem for
MSO2 as defined in Section A.4. We will give a justification for the two conditions
in Definition 8.1 below, once we have discussed some more related work. To give an
example, the theorem implies that the class C of all (or all planar, bipartite, etc.) graphs
G of treewidth tw(G) ≤ log29 |G| does not have fixed-parameter tractable MSO2 model-
checking unless Sat can be solved in subexponential time.

Related Work

Theorem 8.3 complements the intractability result of Theorem 8.2 and [Kre09b, KT10b]
in that it refers to classes of graphs closed under subgraphs and does not require any
colors, a much more natural condition.
In [Gro07a, Conjecture 8.3], Grohe conjectures 2 the following.

Conjecture 8.4 (Grohe [Gro07a]). Let C be a class of graphs that is closed under taking
subgraphs. Suppose that the treewidth of C is not polylogarithmically bounded, that is,
there is no constant c such that tw(G) ≤ logc |G| for every G ∈ C. Then the model-
checking problem of MSO2 is not fixed parameter tractable on C.

Clearly, with current technology there is no hope to prove any such conjecture without
relating it to assumptions in complexity theory (as the conjecture implies P 6= PSPACE).
In this sense, our result only proves Grohe’s conjecture modulo complexity theoretical
assumptions and the additional conditions on strongly unboundedness necessitated by
this. On the other hand, our result is stronger than the conjecture in that we only
require a fixed log-power rather than polylog.
In [MM03], Makowsky and Mariño study similar questions in relation to classes of

graphs closed under topological minors. They show that any such class must have
bounded treewidth for MSO2 model-checking to be in FPT. Closure under topological
minors is a much stronger condition simplifying the proof significantly. However, in the
same paper, the authors give examples for classes of graphs of unbounded cliquewidth
but with tractable MSO1 model-checking. These examples can be adapted to examples
of classes of graphs which are closed under subgraphs, whose treewidth is only bounded
logarithmically (but which almost have logarithmic treewidth) and on which MSO2
model-checking is tractable. This shows that in full generality, our results can not be
strengthened much beyond the log28γ n bound postulated in Theorem 8.3.

On Strongly Unbounded Treewidth

Let us give some justification for the two conditions in Definition 8.1. The first condition
is a consequence of the fact that we prove our main result by reducing an NP-hard
2The original conjecture is formulated in terms of branchwidth but this is equivalent.
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8 Parameterized Intractability of Monadic Second-Order Logic

problem to MC(MSO2, C). Without this condition there could simply be too few graphs
of high treewidth in C to define a reduction. To give an example, fix a constant c and let
Hn be the graph constructed from the n× n-grid by replacing every edge by a path on
1
m ·2

c√n vertices, where m = n2. The resulting graph has O(2 c√n) vertices and treewidth
n. Now let C′ := {Hn : n = 22i , i > 0} and let C be the subgraph closure of C′. If
c > 29, then the treewidth of C is unbounded by log29 n but not strongly unbounded
by this function, while being closed under taking subgraphs. To see this, take a graph
Hn ∈ C′, for some n = 22i , i > 2. Any subgraph H ⊆ Hn is either acyclic, and therefore
has treewidth 1, or it contains a path of length 1

m · 2
c√n. Thus, Hn does not contain

any subgraph H ⊆ Hn of treewidth 2i ≤ tw(H) ≤ p(2i) such that tw(H) > logc |H|,
for any fixed polynomial p. It follows that if we wanted to use C for a reduction as
outlined below, there wouldn’t be enough graphs of large treewidth to reduce to: given
an instance of Sat of length 2i for an i that is not close to a power of 2, we would
have no chance in identifying a graph in C to perform a reduction in polynomial time.
Therefore, as long as we have to rely on reductions to prove results as in this work, a
condition similar to Condition 1 seems necessary. The second condition is necessary to
prevent artificial cases where constructing a graph in the class C is already so expensive
that any reduction would take too much time.

Overview of the Proof

Let us briefly sketch the main ideas of the proof, the basic framework of which is adapted
from [Kre09b]. Let C be a class of graphs with treewidth strongly unbounded by logc n,
for some suitable c.
We aim at reducing the propositional satisfiability problem Sat to MC(MSO2, C).

Towards this aim we will first construct an MSO2-formula ϕ, depending only on a Turing
machine deciding Sat, and then, given a Sat-instance w, construct a graph Gw ∈ C such
that Gw |= ϕ if and only if w is satisfiable. The idea is to encode the instance w in the
graph Gw so that (i) the instance can be decoded by the MSO2-formula ϕ and (ii) the
graph Gw contains enough structure so that the formula ϕ can simulate the run of a
Turing machine deciding SAT on input w.
Similar ideas in connection with treewidth have been employed in the past and the

usual approach is to use the the Excluded Grid Theorem 7.3 of Robertson, Seymour, and
Thomas [RST94] that there is a function f : N→ N such that every graph of treewidth
f(k) contains a k×k-grid as a minor. Such a grid provides enough structure to simulate
runs of Turing machines in MSO2 and encoding the Sat instance w in a grid can easily
be done by deleting certain edges (see Section 8.2).
However, the best known bound for the function f known to date is exponential and

as we are dealing with graphs of treewidth only logarithmic in the number of vertices,
the grids we are guaranteed to find in this way are essentially only of order log log |Gw|
which is much too small for any reduction to work.
Instead of using grids, therefore, we will use a new structural characterization of

treewidth developed by Reed and Wood [RW08] and made algorithmic in Chapter 7 of
this work which replaces grids by grid-like minors. It was shown in [RW08] that any
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graph contains a grid-like minor of order polynomial in its treewidth and we showed
in Theorem 7.27 that these are computable in polynomial time. The main problem
with grid-like minors is that they do not occur as minors of the graph itself but only of
the intersection graph of sets of pairwise disjoint paths (see Section 7.2). As indicated
above, we would like to encode a Sat-instance w in a grid by deleting certain edges.
But as grid-like minors only occur as minors of intersection graphs, deleting an edge in
a graph G has no predictable implication for the grid-like minor which makes encoding
Sat-instances using grid-like minors extremely difficult.
Therefore, instead of encoding Sat-instances in grid-like minors directly, we will en-

code them in a labeled tree-ordered web as defined in Section 7.4 and illustrated in Fig-
ure 7.5. Such a structure essentially consists of a grid-like minor attached to a special
tree T such that there is an MSO2-formula defining a linear order on the vertices of T
(see Section 8.1). Furthermore, the particular structure of the tree allows us to encode
the letters wi of a Sat-instance w := w1 . . . wl as crosses and double crosses attached to
some vertices of T . Hence, the order imposed on T together with the ability to encode
letters allows us to encode the Sat-instance w in T . This labeling can, in turn, be trans-
ferred to a unique labeling of the grid-like minor. Hence, we will use this external tree
to encode the Sat-instance and the grid-like minor as the structure we need to simulate
the run of a Turing machine on the encoded input.
Finally, as we assume that the class C of graphs we work in is closed under subgraphs,

this labeled tree-ordered web occurs as a graph in C. Hence, if evaluating the MSO2-
formula which decodes the encoded Sat-instance and simulates the run of a Turing
machine on it was fixed-parameter tractable, we could solve Sat in subexponential time.

Outline of this Chapter
We start by showing how to define the various parts and the order of a labeled tree-
ordered web in MSO2. Afterwards, we review the notion of MSO2−MSO2-interpretations
and the hardness of MSO2 on colored walls before showing its hardness on uncolored
walls. Finally, we show how to define an interpretation of a labeled tree-ordered web in
a colored wall and present the proof of Theorem 8.3.
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8 Parameterized Intractability of Monadic Second-Order Logic

8.1 Defining a Labeled Tree-Ordered Web in MSO2

In this section, we aim at defining the various parts of a labeled tree-ordered web in
MSO2. We start by stating some auxiliary formulas that we need in our construction
of the main formulas. We make use of the notation and basic formulas introduced in
Section A.4 using the incidence structure encoding of graphs.

• adj(v, w,H) := v 6= w ∧ ∃e ∈ H(v ∈ e ∧ w ∈ e) says v and w are adjacent in H;
• pathends(v, w, P ) := path(P ) ∧ deg=1(v, P ) ∧ deg=1(w,P ) says P is a path with

endpoints v and w;
• topneigh(v, w, P,H) := P ⊆ H ∧ pathends(v, w, P ) ∧ ∀z ∈ V (P )(z 6= v ∧ z 6= w →
deg=2(z,H)) says u and w are topological neighbors connected by P in H;
• leaf(v, T ) := deg=1(v, T ) says v is a leaf of T ;
• leafy(v, T ) := deg=3(v, T ) ∧ ∃w(adj(v, w, T ) ∧ leaf(w, T )) says v is leafy in T ;
• pbranch(v, T ) := deg=3(v, T ) ∧ ¬leafy(v, T ) says v is a proper branching vertex;

Henceforth, we assume T is a tree and that a formula root(r, T ) is given.

• ancstr(v, a, T ) := ∃r
(
root(r, T ) ∧ (r = a ∨ ∃P ⊆ T

(
pathends(v, r, P ) ∧ a ∈ V (P ))

))
says a is an ancestor of v in T ;
• cca(v, w, a, T ) := ancstr(v, a, T ) ∧ ancstr(w, a, T ) ∧ ¬∃a′

(
a 6= a′ ∧ ancstr(v, a′, T ) ∧

ancstr(w, a′, T ) ∧ ancstr(a′, a, T )
)
says a is the closest common ancestor of v and

w in T ;
• parent(v, p, T ) := ancstr(v, p, T ) ∧ adj(v, p, T ) says p is the parent of v in T ;
• child(v, c, T ) := adj(v, c, T ) ∧ ¬parent(v, c, T ) says c is a child of v in T ;
• subtree(v,H, T ) := H ⊆ T ∧ v ∈ V (H) ∧ ∀p

(
parent(v, p, T )→ p 6∈ V (H) ∧

∀e ∈ T (p 6∈ e ∧ e ∩ V (H) 6= ∅→ e ∈ H
)
expresses for any vertex v other than the

root of T that H is the subtree of T rooted at v.
• extsubtree(v,H, T ) := ∃c, e,H ′ child(v, c, T ) ∧ subtree(c,H ′, T ) ∧ c ∈ e ∧ v ∈ e ∧
H = H ′ ∪ e says H is the extended subtree of a child of v in T ;

Lemma 8.5. There exists a uniform MSO2-formula ϕ�(x, y, T ) which defines the canon-
ical order ≤T on any rooted subcubic tree (T, r) and set X ⊆ V (T ) in a graph G, assum-
ing that (T, r,X) admits a definable order and that MSO2-formulas ϕR(v, T ) and ϕX(v)
defining the root of T and the set X, respectively, are given.

Proof. We have to define the conditions of Definition 7.49 in MSO2. The first two
conditions are easily captured by the following formula:

left1(T1, T2) :=
(
∃=1e(e ∈ T1) ∧ ∃≥2e(e ∈ T2)

)
∨
(
path(T1) ∧ ¬path(T2)

)
∨(

∃=1e
(
e ∈ T1 ∧ ∃v(v ∈ e ∧ ϕX(v))

)
∧ ∃=1e(e ∈ T2)

)
For two subgraphs T1 and T2, this formula says that if T1 is a single edge but T2 is not,
or if T1 is a simple path and T2 is not, or T1 and T2 are both single edges and T1 contains
a good vertex, then T1 is left of T2. To capture the third condition, we need to compare
the parity of good or leafy vertices on a path. So, let gl(v) := ϕX(v) ∨ leafy(v). First,
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8.1 Defining a Labeled Tree-Ordered Web in MSO2

we define an auxiliary formula expressing that a vertex v has a topological neighbor w
such that none of the internal vertices of the subpath from v to w are good or leafy:

topneighgl(v, w, T ) :=
∃P ⊆ T

(
pathends(v, w, P ) ∧ ¬∃z ∈ V (P ) (z 6= v ∧ z 6= w ∧ gl(z))

)
Consider the following formula that guarantees that a path P from v to w contains an
odd number of good or leafy vertices, where we assume v is neither good nor leafy:

oddgl(P, v, w) := ∃C1, C2 ⊆ V (P )(
C1 ∩ C2 = ∅ ∧ ∀x ∈ C1 ∪ C2 gl(x) ∧ ∀x ∈ V (P )(x 6= v ∧ gl(x)→ x ∈ C1 ∪ C2)∧
∀x ∈ C2∃y1, y2 ∈ C1

(
y1 6= y2 ∧ topneighgl(x, y1, P ) ∧ topneighgl(x, y2, P )

)
∧

∀x ∈ C1∃y1, y2
(
(y1 = v ∨ y1 ∈ C2) ∧ (y2 = w ∨ y2 ∈ C2) ∧ y1 6= y2∧
topneighgl(x, y1, P ) ∧ (topneighgl(x, y2, P ) ∨ x = w)

)
∧

v 6∈ C1 ∪ C2 ∧ ∃x ∈ C1 topneighgl(v, x)
)

The idea is to color the good or leafy vertices on P with two colors C1 and C2, such
that a vertex of one color has only vertices of the other color as a direct topological
neighbor. Now if we guarantee that the first and last vertex are colored C1, we have an
odd number of good or leafy vertices on P . The next formula says that w is the closest
proper branching vertex to v in a given subtree H connected to v by the path P :

closest-pbv(v, w, P,H) := pathends(v, w, P ) ∧ pbranch(w,H)∧
¬∃z ∈ V (P )

(
z 6= v ∧ z 6= w ∧ pbranch(z,H)

)
Similarly, we can define the property that w is the farthest good leaf from v if no proper
branching vertex occurs in H:

farthest-leaf(v, w, P,H) := pathends(v, w, P ) ∧ leaf(w,H) ∧ ϕX(w)∧
∀z ∈ V (P )

(
z 6= v ∧ deg=3(z,H)→ ∃y(y 6= w ∧ leaf(y,H) ∧ adj(z, y,H)

))
Now if T1 and T2 are the extended subtrees of the children of a branching vertex v, we
can determine if T1 is left of T2 according to Definition 7.49 as follows:

left(v, T1, T2) := left1(T1, T2) ∨
(
¬left1(T2, T1)∧

∃w,P ⊆ T1
(
(closest-pbv(v, w, P, T1) ∨ farthest-leaf(v, w, P, T1)) ∧ oddgl(P, v, w)

))
Finally, we can define the canonical order ≤T :

ϕ≤(x, y, T ) := ∃v
(
cca(x, y, v, T ) ∧

(
v = x ∨

(
v 6= y∧

∃T1, T2 ⊆ T (extsubtree(v, T1, T ) ∧ extsubtree(v, T2, T )∧
x ∈ V (T1) ∧ y ∈ V (T2) ∧ left(T1, T2))

)))
�
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8 Parameterized Intractability of Monadic Second-Order Logic

Lemma 8.6. Given a labeled tree-ordered web W = (G,T, r, A,P,Q, X,C), there exist
MSO2-formulas ϕT (H), ϕR(v), ϕA(v), ϕX(v), ϕCr1(H), ϕCr2(H),ϕPQ(H), and ϕ�(x, y)
defining the tree T , its root r, the set of good vertices A, the bases of the crosses X, the
single and double crosses C, the edge set of the grid-like minor

⋃
P ∪

⋃
Q, and the

canonical order ≤T , respectively. These formulas are uniform and do not depend on W
in any form.

Proof. We construct the required formulas gradually, occasionally using auxiliary formu-
las; for formulas that we defined previously as ϕ(·, H), we sometimes write simply ϕ(·)
for ϕ(·, E):

• rootish(v) := deg=3(v)∧∃x, y (leaf(x)∧ leaf(y)∧ adj(v, x)∧ adj(v, y)) says that v is
of degree 3 and has two neighbors of degree 1;

• ϕR(v) := rootish(v) ∧ ∃w,P
(
topneigh(v, w, P ) ∧ pbranch(w)

)
uniquely defines the

root of the tree T ;

• leafytopneigh(v, w, P ) := topneigh(v, w, P )∧leafy(w) says that w is leafy topological
neighbor of v connected by path P ;

• cross1(x, y, b, P1, P2) := rootish(x) ∧ leafytopneigh(x, y, P1) ∧ topneigh(y, b, P2) ∧
pbranch(b) says that b is the base of a single cross, x its tail, y its leafy vertex in
the middle, and P1 and P2 the paths connecting x, y, and b, respectively;

• ϕCr1(H) := ∃x, y, b ⊆ V (H)∃P1, P2 ⊆ H (cross1(x, y, b, P1, P2) ∧ ∀e ∈ H
(e ∈ P1∨ e ∈ P2∨x ∈ e∨ y ∈ e)∧∀e(x ∈ e∨ y ∈ e→ e ∈ H)

)
defines a single cross

of W; the formula ϕCr2(H) defining a double cross can be obtained analogously;
note that since the leaves of T are marked with leaf-marks and X lies flat in T , the
bases of the crosses are not leafy – this is crucial for making the crosses definable;

• the formula ϕX(v) defining the bases of the crosses is immediately derived using
cross1 and its analog cross2;

• spec(v) := deg=4(v) ∨ deg=3(v) ∧ ¬∃w,P
(
topneigh(v, w, P ) ∧ leafy(w)

)
defines the

set of special vertices of G, i.e. the vertices of degree 4 or 3 that do not have a
leafy vertex as a topological neighbor;

• ϕA(v) := deg=3(v)∧¬spec(v)∧∃w,P
(
topneigh(v, w, P )∧spec(w)

)
defines the good

vertices of the tree as given in Definition 7.52;

• ϕPQ(H) := ∀v, e
(
ϕA(v) ∧ v ∈ e →

(
∃u, P (topneigh(v, u, P ) ∧ spec(u) ∧ e ∈ P ) ↔

e ∈ H
))
∧ ∀v, e

(
¬ϕA(v)∧ v ∈ e∧ v ∈ V (H)→ e ∈ H

)
∧ conn(H) defines the edges

of the grid-like minor (P,Q) by specifying that of the edges adjacent to a good
vertex exactly the one that starts a good path belongs to (P,Q); the definition is
completed by taking a maximal connected subgraph that includes these edges;

• leafmark(H) := ∃e1, e2, x, y, z
(
H = {e1, e2} ∧ e1 = {x, y} ∧ e2 = {y, z} ∧ leaf(x) ∧

deg=2(y)
)
defines a leaf-mark according to Definition 7.52;
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• rootmark(H) := ∃e1, e2, r, x, y
(
H = {e1, e2} ∧ e1 = {r, x} ∧ e2 = {r, y} ∧ leaf(x) ∧

leaf(y)) defines the marking of the root;

• ϕT (H) := ∀e
(
e ∈ H ↔ ¬∃H ′

(
e ∈ H ′ ∧ (rootmark(H ′) ∨ leafmark(H ′) ∨ ϕCr1(H ′) ∨

ϕCr2(H ′)∨ ϕPQ(H ′))
))

uniquely defines the tree T as the set of edges that do not
belong to markings, crosses, or the grid-like minor.

Finally, we obtain ϕ≤(x, y) := ∃T (ϕT (T ) ∧ x ∈ V (T ) ∧ y ∈ V (T ) ∧ ϕ≤(x, y, T )) where
ϕ≤(x, y, T ) denotes the formula obtained from Lemma 8.5. �

8.2 MSO2 Interpretations and Walls
In this section, we first show the intractability of MSO2 on walls and then lift this
to show the general result. For this, we first recall the well-known fact that MSO2 is
intractable on colored walls. Recall that from the results of the previous chapter, given a
word w and a graph G of large enough treewidth, we construct either a wall encoding w
or a labeled tree-ordered web encoding w. For either outcome we will define an MSO2-
interpretation of colored walls in these structures which will allow us to transfer the
intractability results from colored walls to these structures.

8.2.1 MSO2-Interpretations
We first recall briefly the concepts of interpretations (see e.g. [Hod97]). In logic, they
play a similar role to many-one reductions in complexity theory.

Definition 8.7. Let σ and τ be signatures and let X be a tuple of monadic second-order
variables. An interpretation of τ in σ with parameters X is a tuple Θ :=

(
ϕvalid, ϕuniv(x),

ϕ∼(x, y), (ϕR(x))R∈τ
)
of MSO2[σ∪̇X]-formulas, where the arity of x in ϕR(x) is ar(R),

such that for all σ-structures A and assignments Y ⊆ U(A) to X with (A, Y ) |= ϕvalid,
ϕ∼ defines an equivalence relation on ϕuniv(A).

For an interpretation Θ we will denote ϕvalid by ϕvalid(Θ). With any interpretation Θ
we associate a map taking a σ-structure A and Y ⊆ U(A) such that (A, Y ) |= ϕvalid to a
τ -structure H with universe U(H) := ϕuniv(A, Y )|ϕ∼(A,Y ) := {[v]∼ : (A, Y ) |= ϕuniv(v)}
where [v]∼ denotes the equivalence class of v under ϕ∼(A, Y ). For R ∈ τ of arity
r := ar(R) we define R(H) := {([a1], . . . , [ar]) : (A, Y ) |= ϕR(a1, . . . , ar)}. For given
(A, Y ), we denote the resulting τ -structure by Θ(A, Y ).
Furthermore, any interpretation Θ also defines a translation of MSO2[τ ]-formulas ϕ

to MSO2[σ]-formulas Θ(ϕ) by replacing occurrences of relations R ∈ τ by their defining
formulas ϕR ∈ Θ in the usual way (see [Hod97] for details) so that the following lemma
holds. From now on we will always let σ and τ be σgraph or expansions thereof and
therefore speak about interpretations without any reference to specific signatures.

Lemma 8.8 (Interpretation Lemma). Let Θ be an MSO2-interpretation with parameters
X. For any σgraph-structure A and assignment Y ⊆ U(A) to X s.t. (A, Y ) |= ϕvalid(Θ),
and any MSO2-sentence ϕ we have Θ(A, Y ) |= ϕ if, and only if, (A, Y ) |= Θ(ϕ).
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(a) (b)

Figure 8.1: (a) A wall-encoding of 0110 and (b) the colored wall it is interpreted as.

8.2.2 MSO2 on Colored Elementary Walls
The signature σwall of colored walls is defined as σwall := {V,E,∈, C0, C1}, where
V,E,C0, C1 are unary relation symbols and ∈ is a binary relation symbol. A σwall-
structure W is a colored elementary ` × `-wall if its σgraph-reduct W|{V,E,∈} is an ele-
mentary `× `-wall according to Definition 7.38. W encodes a word w := w1 . . . wn ∈ Σn

with power d if ` > nd and if {v1,i : 1 ≤ i ≤ `} are the vertices on the bottom row then
v1,i ∈ C0 if and only if wi = 0 and v1,i ∈ C1 if and only if wi = 1, for all 1 ≤ i ≤ n, and
C0 ∪ C1 = {v1,i : 1 ≤ i ≤ n} (see Figure 8.1 (b)).
The following lemma, whose proof is standard, is part of the folklore and immediately

implies Theorem 8.10 below.

Lemma 8.9. Let M be a nondeterministic nd-time bounded Turing machine. There is
a formula ϕM ∈ MSO2 such that for all words w ∈ Σ?, if W is a colored elementary wall
encoding w with power d, then W |= ϕM if, and only if, M accepts w. Furthermore,
the formula ϕM can be constructed effectively from M . The same holds if M is an
alternating Turing machine with a bounded number of alternations, as they are used to
define the polynomial-time hierarchy.

Theorem 8.10. For d ≥ 2 let Wd be the class of colored elementary walls encoding
words with power d. Then MC(MSO2,Wd) is not in XP unless P = NP.

8.2.3 MSO2 on Uncolored Walls
The previous paragraph stated the intractability of MSO2 on colored elementary walls.
As one possible outcome of Theorem 7.58 we get an uncolored wall W , not necessarily
elementary, of sufficient size. In the absence of colors we will encode a word w in W by
taking a suitable subgraph Wenc ⊆W as follows.
Let w := w1, . . . , wn ∈ {0, 1}∗ be a word of length n, let d ≥ 1 and let m := nd + 1.

The aim is to encode w in a wall W of order at least m ×m. Let v1, . . . , vm+1 be the
nails (see 7.38) on the bottom row B ⊆ W of W and, for 1 ≤ i ≤ m, let Pi ⊆ B be
the subpath connecting vi and vi+1. Let Wenc ⊆ W be the subgraph obtained from
W by deleting the vertices vn+2, . . . , vm+1 and the internal vertices and edges of Pi for
each 1 ≤ i ≤ n with wi = 0. All other paths remain unchanged. We say that W ′ is a
wall-encoding of w with power d. Figure 8.1 (a) shows a wall-encoding of the word 0100
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with power 1. Note that by deleting the vertices vn+2, . . . , vm+1 we ensure that the left
side of Wenc is uniquely identified.
It is well-known, see e.g. [Kre09b], that a wall W can be defined by an MSO2-formula

ϕwall(W,R, C, B, L, T,R,N) expressing that

(i) R and C are sets of edges consisting of disjoint paths such that W = R ∪ C; we
think of R as the set of rows and of C as the set of columns of W ; note that an
m × n-wall has exactly m + 1 rows and n + 1 columns and each column and row
have exactly two nails in common, except on the top and bottom rows, where they
intersect in only one nail;

(ii) B, T ⊆ R are the bottom and top row of W and L,R ⊆ C are the leftmost and
rightmost column of W , respectively; and

(iii) N ⊆ V (W ) is the set of nails of W .

Sometimes we use ϕwall(W ) := ∃R, C, B, L, T,R,N ϕwall(W,R, C, B, L, T,R,N) as a
shortcut. Furthermore, we need the formula dpaths(H) := ac(H)∧∀v ∈ V (H) deg≤2(v),
which expresses that H is a set of edges consisting of a number of disjoint paths, and
the formula pathof(P, u, v,H) := P ⊆ H ∧ pathends(u, v, P ) ∧ leaf(u,H) ∧ leaf(v,H) ex-
pressing that P is a path with endpoints v and w of degree 1 in H; in particular, if H is
a set of disjoint paths, this formula asserts that P is one of the disjoint paths in H; we
use the shortcut pathof(P,H) := ∃u, v pathof(P, u, v,H). We can now prove

Theorem 8.11. There is an MSO2-interpretation Θ of σwall in σgraph such that if Wenc
is an uncolored wall-encoding of order at least 4 of w ∈ Σ∗ with power d then Θ(Wenc)
is a colored elementary wall encoding w with power d.

Proof. We can think of an m×m wall-encoding Wenc of w = w1 . . . wn as an (m−1)×m
wall W augmented by a set of edges M that we call the marking of the wall. We require
that the marking is attached only to the bottom row and only to nonnail vertices or to
the first, i.e. leftmost vertex on the bottom row. We define the interpretation Θ with
parameters W , B, L, R, N , and M as follows. To this end, we make use of a formula
ϕbwall expressing that W is a wall in which the left and right columns each contain 3 or
more nails of global degree 2:

ϕbwall(W,B,L,R,N) := ∃R, C, T ϕwall(W,R, C, B, L, T,R,N)∧
∃≥3v ∈ N ∩ V (L) deg=2(v) ∧ ∃≥3v ∈ N ∩ V (R) deg=2(v)

If the given graph is a wall-encoding, this makes sure that the wall spans from the left
side to the right side of the wall-encoding and furthermore, cannot contain any edge of
the marking of the wall, since any wall that contains such edges cannot contain 3 or
more nails of degree 2 on its right boundary. Again, we define the shortcut ϕbwall(W )
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similar to the case of ϕwall(W ). Now we can define the formula ϕvalid(Θ):

ϕvalid(W,B,L,R,N,M) := ϕbwall(W,B,L,R,N)∧
∀W ′(ϕbwall(W ′)→W ′ ⊆W )∧
∀e(e ∈M ↔ e 6∈W )∧
∀v ∈ V (M) ∩ V (W )

(
v ∈ V (B) ∧ (v ∈ V (L) ∨ v /∈ N)

)
Let Wcol := Θ(Wenc) be the colored wall we aim at in the interpretation. We define the
set of vertices of Wcol simply as the set of nails of W : ϕV (x) := x ∈ N .
The edges of Wcol are the equivalence classes of subdivided edges of W :

ϕE(x) := e ∈W
ϕeeq(x, y) := ∃u, v ∈ N ∃P ⊆W

(
x ∈ P ∧ y ∈ P ∧ pathends(u, v, P )∧

∀z ∈ V (P ) (z = u ∨ z = v ∨ z /∈ N)
)

Now, we obtain the universe, equivalence relation, and incidence relation of Θ as:

ϕuniv(x) := ϕV (x) ∨ ϕE(x)
ϕeq(x, y) := ϕeeq(x, y)
ϕ∈(v, e) := ϕV (v) ∧ ϕE(e) ∧ ∃e′ ∈W

(
v ∈ e′ ∧ ϕeeq(e, e′)

)
It remains to define the colors of Wcol. For a nail v on the bottom row of the wall,
consider the closest vertices u and w to its left and right that are incident to an edge of
the marking, if existent. Now v is to be interpreted as a 0 if and only if u and w belong
to different connected components of the marking; and v is to be interpreted as a 1 if u
and w belong to the same connected component of the marking. In formulas, we have

markingof(x,X, Y ) := x ∈ N ∩ V (B) ∃u, v ∃P ⊆ B(
pathends(u, v, P ) ∧ u 6= v ∧ x ∈ V (P )
components(X,M) ∧ components(Y,M) ∧ u ∈ V (X) ∧ v ∈ V (Y )∧
∀z ∈ V (P ) (z = v ∨ z = u ∨ ¬∃e ∈M z ∈ e)

)
ϕC0(x) := ∃X,Y (markingof(x,X, Y ) ∧X 6= Y )
ϕC1(x) := ∃X,Y (markingof(x,X, Y ) ∧X = Y )

This finishes the definition of the interpretation Θ. �

8.2.4 MSO2 on Labeled Tree-Ordered Webs
The aim of this section is to show that we can define a colored elementary wall encoding
a word w in a labeled tree-ordered web encoding w. The proof follows the basic ideas of
a related proof by Kreutzer [Kre09b].
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Theorem 8.12. There is an MSO2-interpretation Θ such that if (G,T, r, A,P,Q, X,C)
is a labeled tree-ordered web encoding a word w with power d, then Θ(G) is a colored
elementary wall encoding w with power d.

Proof. We will define the interpretation in a sequence of steps and will illustrate the
formulas by a labeled tree-ordered web W = (G,T, r, A,P,Q, X,C) encoding a word w
of length n with power d. The actual formulas will not depend on W in any form.
By Lemma 8.6, there exist MSO2-formulas ϕT (X), ϕR(x), ϕA(x), ϕX(x), ϕCr1(X),

ϕCr2(X), ϕPQ(X), and ϕ�(x, y) defining T , r, A, X, the single and double crosses of
C, the edges of the grid-like minor (P,Q), and the canonical order ≤T , respectively.
Essentially, we now have formulas which, on G as above, define the labeled tree-ordered
webW. As a shortcut, we define ϕeT (x) := ∃TϕT (T )∧x ∈ T and ϕvT (x) := ∃TϕT (T )∧v ∈
V (T ) and do similarly for ϕCr1 , ϕCr2 , and ϕPQ.
What is left to do is to define formulas which generate a wall from the grid-like minor

(P,Q) so that the bottom row of the wall is connected to the vertices in A = {v1, . . . , vn}
in the correct order, where n is the length of the word w. Our interpretation Θ is defined
with main parameters P, Q, and H that are intended to be the disjoint paths of the grid-
like minor (P,Q) and a wall in the intersection graph I(P,Q), respectively; furthermore,
we require parameters B,L,N defining the bottom row, leftmost row, and the nails of
H, respectively. Note that here we regard P and Q as sets of edges comprising disjoint
paths each.
We start by defining I := I(P,Q) as follows. The vertices of I are equivalence classes

of edges ofG in the grid-like minor that appear in exactly one of P orQ and are equivalent
if they belong to the same path in P or Q. The edges of I are equivalence classes of
vertices of G where two vertices are equivalent if they belong to the intersection of the
same pair P ∈ P and Q ∈ Q. Formally, let pathofPQ(P ) := pathof(P,P) ∨ pathof(P,Q)
and

ϕIV (x) := (x ∈ P ∧ x 6∈ Q) ∨ (x ∈ Q ∧ x 6∈ P)
ϕIE(x) := x ∈ V (P) ∩ V (Q)

ϕI,Veq (x, y) := ∃P
(
pathofPQ(P ) ∧ {x, y} ⊆ P

)
ϕI,Eeq (x, y) := ∃P,Q

(
pathofPQ(P ) ∧ pathofPQ(Q) ∧ {x, y} ⊆ V (P ) ∩ V (Q)

)
ϕIeq(x, y) := ϕI,Veq (x, y) ∨ ϕI,Eeq (x, y)
ϕI∈(x, y) := ϕIV (x) ∧ ϕIE(y) ∧ ∃x′, y′

(
ϕeq(x, x′) ∧ ϕeq(y, y′) ∧ y′ ∈ x′

)
We would like to express that H is a wall in I(P,Q). As described in the previous

subsection, we have a formula ϕwall that asserts a graph to be a wall; if in this formula,
we replace every occurrence of x ∈ V by ϕIV (x), every occurrence of x ∈ E by ϕIE(x),
and every occurrence of v ∈ e by ϕI∈(v, e), we can derive a formula ϕIwall(H,B,L,N)
that asserts that H is a wall in I with bottom row B, leftmost row B, and nails N ; the
formula can be slightly adapted in such a way that for each equivalence class that is to
be included in one of these sets, all representantives are present. Note that B and L are
sets of vertices of G, and N is a set of edges of G.
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Similarly, let ϕIpathends(x, y, P ) be a formula derived from the formula pathends defined
earlier expressing that P is a path in I with endpoints x and y; here, x and y are edges of
G is P is a set of vertices of G. For notational convenience, let us also write x ∈I V (Y )
for the formula ∃y ∈ Y ϕI∈(x, y) if x is a vertex of I and Y is a set of edges of I. Now,
we can define that a nail in B is left of another nail in B as follows;

ϕIleft(x, y) := ∃z ∃P ⊆ B(z ∈ B ∩ L ∧ ϕIpathends(z, y, P ) ∧ x ∈I V (P ))

Next, we would like to define that a nail of H is attached to a good vertex v ∈ A:

ϕattached(x, v) := x ∈ N ∧ ϕA(v) ∧ ∃u, P (pathof(P, v, u,P) ∧ x ∈ P )

Now we are ready to define ϕvalid(Θ):

ϕvalid(P,Q, H,B, L,N) := dpaths(P) ∧ dpaths(Q) ∧ ∃Z (ϕPQ(Z) ∧ P ∪Q ⊆ Z)∧
ϕIwall(H,B,L,N) ∧ ∀v (ϕA(v)→ ∃x

(
x ∈ N ∧ x ∈ V (B) ∧ ϕattached(x, v)

)
∧

∀x, y ∈ N
(
x ∈ V (B) ∧ ∃v ϕattached(x, v) ∧ ϕIleft(y, x)→ ∃wϕattached(y, w)

)
∧

∀x, y ∈ V (B) ∀u, v
(
ϕattached(x, u) ∧ ϕattached(y, v)→

(
ϕIleft(x, y)↔ ϕ≤(u, v)

))
The first line says that P and Q are each sets of edges consisting of disjoint paths and
that they are included in the grid-like minor of G; the second line asserts that H is a wall
in the intersection graph I(P,Q) and that all good vertices of the labeled tree-ordered
web are attached to some nails of the first row of this wall; the third line ensures that for
any nail that is attached to the tree, all the nails to its left are also attached; since there
are exactly n good vertices and different nails can only be attached to different good
vertices, this implies that exactly the first n nails on the bottom row of H are attached
to the tree; finally, the last line asserts that attachments respect the order of the tree.

Now we can easily define the following parts of the interpretation Θ:

ϕV (x) := x ∈ N
ϕE(x) := x ∈ H

ϕuniv(x) := ϕV (x) ∨ ϕE(x)
ϕeq(x, y) := ϕIeq(x, y) ∨ ∃u, v ∈ N ∃P ⊆ H

(
ϕIpathends(u, v, P )∧

∀z (z ∈ V (P )→ z = u ∨ z = v ∨ z /∈ N) ∧ x ∈ V (P ) ∧ y ∈ V (P )
)

ϕ∈(x, y) := ϕV (x) ∧ ϕE(y) ∧ ∃x′, y′
(
ϕeq(x, x′) ∧ ϕeq(y, y′) ∧ y′ ∈ x′

)
Finally, it remains to define the colors, which we do as follows:

ϕcrossbase(x, b) := x ∈ N ∧ x ∈ V (B) ∧ ϕX(b) ∧ ∃v
(
ϕattached(x, v)∧

ϕ≤(b, v) ∧ ∀u
(
ϕA(u) ∧ ϕ≤(u, v)→ ϕ≤(u, b)

))
ϕC0(x) := ∃b∃C (ϕcrossbase(x, b) ∧ ϕCr1(C) ∧ b ∈ V (C))
ϕC1(x) := ∃b∃C (ϕcrossbase(x, b) ∧ ϕCr2(C) ∧ b ∈ V (C))
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The formula ϕcrossbase determines if the given element x is a nail on the bottom row of
the interpreted wall and is attached to some good vertex v; in this case, it ensures that
b is the base of the cross immediately to the left of v in the tree. Then the formulas ϕC0

and ϕC1 simply check if this base b is incident to a single or a double cross. �

8.3 Proof of the Main Theorem

In this section we complete the proof of Theorem 8.3. We first prove Part 1.
Suppose, MC(MSO2, C) ∈ XP, i.e. there is a computable function f : N → N such

that given G ∈ C and ϕ ∈ MSO2 we can decide G |= ϕ in time O(|G|f(|ϕ|)). Let M be
a nondeterministic Turing machine deciding Sat in quadratic time and let ϕM be the
formula constructible from M as defined in Lemma 8.9.
Let Θ1 be the interpretation from the Theorem 8.11 and let Θ2 be the interpretation

from Theorem 8.12. Define ϕ1
M := Θ1(ϕM ) and ϕ2

M := Θ2(ϕM ).
Let w ∈ {0, 1}∗ be a word of which we want to decide whether w ∈ Sat, let ` := |w|

and t := 2c`28, where c is the constant from Theorem 7.58. As the treewidth of C is
strongly unbounded by log28γ n, there are ε < 1 and a polynomial p(n) of degree less
than γ such that C contains a graph G with tw(G) ≥ log28γ |G| and t ≤ tw(G) ≤ p(t)
and G can be computed in time 2|w|ε ; note that this implies that

|G| ≤ 2p(2c`28)
1

28γ ≤ 2|w|δ , for some δ < 1 .

By Theorem 7.58, G either contains a) a wallWw encoding w with power 2 as a subgraph
or b) a labeled tree-ordered web W = (H,T, r, A,P,Q, X,C) encoding w with power
2. Note that we need an encoding with power 2 because M needs |w|2 space cells and
computation steps to decide w ∈ Sat.
In case a), as C is closed under subgraphs, Ww ∈ C and we can therefore decide

Ww |= ϕ1
M in time

|Ww|f(|ϕ1
M |) ≤ |G|f(|ϕ1

M |) ≤ (2|w|δ)f(|ϕ1
M |) = 2f(|ϕ1

M |)|w|
δ = 2o(|w|) .

By construction, Ww |= ϕM if, and only if, M accepts w if, and only if, w ∈ Sat.
In case b), H ∈ C as H is a subgraph of G. We can therefore decide H |= ϕ2

M in time

|H|f(|ϕ2
M |) ≤ |G|f(|ϕ2

M |) ≤ (2|w|δ)f(|ϕ2
M |) = 2f(|ϕ2

M |)|w|
δ = 2o(|w|)

By construction, H |= ϕM if, and only if, M accepts w if, and only if, w ∈ Sat.
Hence, in both cases we can decide w ∈ Sat in time 2o(|w|). This shows Part 1.
To show Part 2, we use the same proof idea. Let P be a language in the polynomial-

time hierarchy and let M be an alternating Turing machine with bounded alternation
deciding P in time nk. We use essentially the same proof as above but, given a word w,
we construct a graph G which contains a wall or a labeled tree-ordered web encoding w
with power k. The rest follows then as before.
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This concludes the proof of Theorem 8.3. It is easily seen that the proof can be adapted
to classes of graphs closed under spanning subgraphs, i.e. edge deletion: instead of taking
subgraphs we simply delete all edges no longer needed and make the MSO2-formulas
ignore isolated vertices.

Corollary 8.13. Let C be a class of graphs closed under spanning subgraphs, i.e. G ∈ C,
V (H) = V (G), and E(H) ⊆ E(G) implies H ∈ C.

1. If the treewidth of C is strongly unbounded by log28γ n, where γ > 1 is larger than
the gap-degree of C, then MC(MSO2, C) is not in XP, and hence not fixed-parameter
tractable, unless Sat can be solved in subexponential time 2o(n).

2. If the treewidth of C is strongly unbounded polylogarithmically then MC(MSO2, C)
is not in XP unless all problems in the polynomial-time hierarchy can be solved in
subexponential time.

8.4 Conclusion and Outlook
We have presented a strong intractability result for MSO2 on graph classes of un-
bounded treewidth. In comparison to Courcelle’s theorem, Courcelle’s theorem requires
the treewidth to be constant whereas our result refers to classes whose treewidth is essen-
tially not bounded logarithmically. As the examples in [MM03] show, there are classes of
graphs of unbounded treewidth, closed under subgraphs, which admit tractable MSO2-
model-checking. On the other hand, this is very unlikely to be the case for all classes
of logarithmic treewidth. Exploring tractability and intractability of MSO2 on classes
of unbounded treewidth, but bounded by logn, might lead to interesting new results on
the boundary of MSO2-tractability.
The results reported in this part of the thesis refer to MSO2, i.e. MSO with quantifi-

cation over sets of edges. For MSO without edge set quantification, referred to as MSO1,
it can be shown that MSO1 is tractable on any class C of graphs of bounded cliquewidth.
Again, except for the examples in [MM03], not much is known about MSO1 and graph
classes of unbounded cliquewidth and it would be very interesting to establish similar
results as in this work for the case of cliquewidth. This, however, is much more difficult
as no good obstruction similar to grid-like minors is known for this case.
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A Preliminaries

We review some basic notions of graph theory, complexity theory, parameterized com-
plexity, and logic. Our graph theoretic notions closely follow that of the books of Di-
estel [Die05] and Mohar and Thomassen [MT01]. We refer to these books for further
background and more detailed explanations of the concepts. We let N denote the set of
positive integers, N0 the set of nonnegative integers, Z the set of all integers, Q the set
of rational numbers, and R the set of real numbers. For integers n ≤ m, we write [n,m]
for {n, n+ 1, . . . ,m} and let [n] := [1, n].

A.1 Basic Graph-Theoretic Concepts

An undirected graph G = (V,E) is a pair where V is a set of vertices and E is a set
of 2-element subsets of V called the edges of G. We usually denote graphs by letters
G,H, and refer to their vertex/edge sets by V (G) and E(G), respectively. The order
of a graph is defined as its number of vertices; unless mentioned otherwise, our graphs
have n vertices and m edges. For an edge e = {u, v}, we often write e = uv and call u
and v the endpoints of e; in this case, we say u and v are adjacent, u is a neighbor of
v, e connects or joins u and v, and u is incident to e. If two edges e1 and e2 share an
endpoint, we say e1 and e2 are adjacent. The degree of a vertex v, denoted by deg(v),
is defined as the number of edges that have v as an endpoint. A graph G is k-regular if
every vertex of G has degree exactly k.
A graph G′ is a subgraph of G if and only if V (G′) ⊆ V (G) and E(G′) ⊆ E(G); in

this case we write G′ ⊆ G. If V (G) = V (G′) we call G′ a spanning subgraph of G. For
a subset U ⊆ V (G), we write G[U ] to denote the subgraph of G induced by U , i.e. the
graph that has U as its vertex set and an edge e = uv if and only if uv is also an edge in
G. Similarly, for a set of edges F ⊆ E(G), the edge-induced subgraph G[F ] is the graph
that consists of all the vertices that have an endpoint in F together with the edges of F .
Two graph G and H are isomorphic if there exists a bĳection f : V (G) → V (H)

such that uv is an edge of G if and only if f(u)f(v) is an edge of H. The function f is
called an isomorphism on graphs. We often write G = H to denote that G and H are
isomorphic.
The union of a number of graphs G1, . . . Gk is defined as the graph G with V (G) =

V (G1) ∪ · · · ∪ V (Gk) and E(G) = E(G1) ∪ · · · ∪ E(Gk). We define the intersection of
graphs analogously. For a set of vertices U ⊆ V (G), we write G − U for the graph
G[V (G) \ U ]; similarly, for a set of edges F ⊆ E(G), we write G − F for G[E(G) \ F ].
We often use the short notations G− v and G− e for G−{v} and G−{e}, respectively.
The corresponding operations are called vertex deletion and edge deletion.
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A.1.1 Paths, Cycles, Walks, and Tours

An n-path is a graph Pn having n+1 distinct vertices v1, . . . , vn+1 and n edges e1, . . . , en
such that ei = vivi+1, for 1 ≤ i ≤ n. The vertices v1 and vn+1 are called the endpoints of
Pn whereas the vertices v2, . . . , vn are called the internal vertices of Pn. An n-cycle is a
graph Cn with n distinct vertices v1, . . . , vn and n edges e1, . . . , en such that ei = vivi+1,
for 1 ≤ i ≤ n− 1, and en = v1vn.
A path of length k in a graph G is a subgraph P of G that is isomorphic to Pk. We say

P connects u and v in G if u and v are the endpoints of P . Two paths are called disjoint
if their vertex and edge sets are disjoint; they are internally disjoint if they are disjoint
except possibly for their endpoints; and they are called edge-disjoint if their edge-sets
are disjoint. A cycle C of length k of G is a subgraph of G that is isomorphic to Ck.
If there exists an edge uv in G such that u and v are on C but their isomorphic copies
in Ck are not adjacent, we call uv a chord of C. If a cycle C is chordless, we call C an
induced cycle, i.e. C is an induced subgraph of G isomorphic to Ck.
A walk of length k in a graph G is a sequence v1e1v2 . . . ekvk+1 of vertices and edges of

G such that ei = vivi+1 for 1 ≤ i ≤ k. We often denote a walk simply by its sequence of
vertices, i.e. as v1 . . . vk+1. A walk is closed if v1 = vk+1. Note that a path is a walk that
does not repeat vertices and a cycle is a closed walk that has distinct vertices except for
v1 = vk; hence, we may use a similar notation as for walks for paths and cycles as well.
Sometimes we speak of a simple path or cycle to emphasize the fact that the considered
path or cycle consists of distinct vertices.
A Hamiltonian cycle of a graph G is a cycle that visits every vertex of G exactly once.

An Euler tour is a closed walk in G that visits every edge of G exactly once. It is easy
to see that a graph contains an Euler tour if and only if it is connected and every vertex
is of even degree.

A.1.2 Connectivity and Separation

Two vertices u and v in G are connected if there exists a path in G with endpoints u
and v. The graph G itself is called connected if every pair of its vertices are connected;
otherwise it is called disconnected. The maximal connected subgraphs of G are called
the connected components of G.
A set of verticesX in a connected graphG with the property thatG−X is disconnected

is called a (vertex) separator of G; similarly, a set of edges F where G−F is disconnected
is called an (edge) cut of G. The size of a separator or cut is defined as the number
of its elements. A single vertex v whose removal disconnects G is called a cut vertex;
a single edge e whose removal disconnects G is called a cut edge. In this thesis, we
will primarily work with vertex separators and refer to them simply as separators if no
ambiguity arises.
A graph G is called k-connected if the order of G is at least k+1 and for any set U of

at most k−1 vertices the graph G−U is connected; in other words, a k-connected graph
has no separators with less than k vertices. By Menger’s famous theorem [Men27], this
is equivalent to the following condition: for any two vertices u, v ∈ V (G), there exist at

180



A.1 Basic Graph-Theoretic Concepts

least k internally disjoint paths between u and v. Since this is a standard theorem in
graph theory, we may use these characterizations of k-connected graphs interchangeably.
Similarly, we say that a graph G is k-edge-connected if for any set F of at most k − 1
edges, G − F is connected. Equivalently, a graph G is k-edge-connected if for any two
vertices u, v ∈ V (G), there exist at least k edge-disjoint paths between u and v in G.
By the definition above, we have that a graph is 2-connected, or biconnected, if and only

if it does not have a cut vertex; equivalently, for any two vertices u, v in a biconnected
graph, there exists a cycle that contains both u and v. If we consider the maximal
biconnected subgraphs of a given graph, we obtain a partition of the edge set of the
graph into its biconnected components, which are also called blocks. Note that every cut
edge induces a block of its own and that two blocks meet only at a cut vertex.

A.1.3 Forests and Trees

A forest is a graph that contains no cycles. A tree is a connected forest. The vertices of
a tree are sometimes also called nodes. The vertices of degree 1 in a tree T are called
leaves; the vertices of higher degree are called internal vertices or branching vertices.
Every tree with at least two vertices contains at least two leaves. A tree on n vertices
has exactly n− 1 edges. For any two vertices u and v in a tree T , there exists a unique
path in T that connects u and v. Every edge of a tree is a cut edge and every internal
vertex is a cut vertex. Every connected graph G contains at least one spanning tree T ,
i.e. a spanning subgraph that is a tree.
Oftentimes trees are considered to have a distinguished vertex r called the root of the

tree defining a certain hierarchy on the tree. For every vertex v other than the root,
its parent is defined as the unique vertex u that precedes v on the path from r to v.
Conversely, v is said to be a child of u. The notion of a sibling is defined as naturally.
More generally, the vertices that appear on the path from r to v are called the ancestors
of v in the tree.
An Euler tour of a tree T is a closed walk in T that traverses each edge exactly once

in each direction; i.e. every edge is traversed exactly twice. Every tree contains an Euler
tour that can be obtained simply by walking “along its boundary” (cf. Figure 1.4 (a)-(b)).

A.1.4 Cliques, Independent Sets, Bipartite Graphs

The complete graph Kn is defined as the graph on n vertices in which every two vertices
are adjacent. A clique in a graph G is a subgraph of G that is isomorphic to some
complete graph. Sometimes we call a complete graph also a clique. On the other hand,
a set of vertices U in a graph G is called independent if no two vertices of U are adjacent.
A graph G is called bipartite if its vertex set can be partitioned into 2 sets U and W

such that each of them is an independent sets, i.e. every edge of G has an endpoint in
U and an endpoint in W . It is well known that a graph is bipartite if and only if it
contains no odd cycle. A complete bipartite graph Km,n is a bipartite graphs with parts
U and W of size n and m, respectively, such that there is an edge between every vertex
of U and every vertex of W .
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More generally, a graph G is called k-partite if its vertex set can be partitioned into k
parts such that each part is an independent set. A complete k-partite graph is a k-partite
graph that includes every allowed edge.

A.1.5 Matchings, Covers, Domination

A matching M in a graph G is a subset of the edges of G such that no two edges in M
are adjacent. A maximal matching is a matching that cannot be extended by another
edge whereas a maximum matching is a matching of maximum possible cardinality. A
vertex cover of a graph G is a subset U of the vertices of G such that every edge of G
has an endpoint in U . By Königs Theorem [Kön31], we know that in every bipartite
graph, the size of a maximum matching is equal to the size of a minimum vertex cover.
However, this is not true in general graphs.
A dominating set in a graph G is a set D ⊆ V (G) such that every vertex of G is either

in D or has a neighbor in D. An edge dominating set is a set of edges ED ⊆ E(G) such
that every edge not in ED is adjacent to an edge in ED.

A.1.6 Weighted Graphs, Directed Graphs, Multigraphs

We often consider edge-weighted graphs: a graph G together with a function ` : E(G)→
R that assigns a weight to every edge of G. Unless otherwise mentioned, we restrict
ourselves to nonnegative integer weights, i.e. weight functions of the form ` : E(G)→ N0.
We define the weight of an edge set F ⊆ E(G) as the sum of the weights of the edges in
it and denote it by `(F ); the weight of a subgraph H ⊆ G is defined as `(H) := `(E(H)).
We occasionally use the term length to refer to the weight of an edge or subgraph.
We might sometimes also consider vertex-weighted graphs, in which case we will make

it explicit to avoid confusion. A graph with weights on its vertices is associated with a
function w : V (G)→ R that assigns a weight to each vertex of the graph. We generalize
the function w to sets of vertices and subgraphs as in the case of edge weights.
In Chapter 6, and occasionally at some other places, we consider some problems on

directed graphs. A directed graph D = (V,E) is a pair consisting of a set of vertices V
and a binary relation E on V called the directed edges of D. An edge e = (u, v) ∈ E,
sometimes denoted as uv is said to be directed from u to v. Directed edges are usually
drawn as arrows showing the direction of the edge. Like in the case of undirected graphs,
we refer to the set of vertices of a directed graph D by V (D) and to its set of edges by
E(D). One can regard undirected graphs as directed graphs in which the edge relation
is symmetric. Most of the notions on undirected graphs translate seamlessly to directed
graphs, so we will only define specific notions on directed graphs when necessary.
A multigraph is a graph that additionally might have loops and parallel edges. A

loop is an edge that has the same vertex as both of its endpoints; parallel edges are
multiple edges that all have the same endpoints. One can think of each edge and the
edge set of a multigraph as multisets. Formally, a multigraph is a triple G = (V,E, %),
where V is the set of vertices of G, E is its set of edges, and % is a function that assigns
to each edge in E a pair of vertices from V × V as its endpoints. Most notions from
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graphs adapt seamlessly to multigraphs and hence we will only define them explicitly if
necessary. Multigraphs are sometimes considered in conjunction with embedded graphs
in our work.

A.1.7 Graph Traversals

A graph traversal is an algorithm that visits every vertex and every edge of a graph in
a specific order. The most prominent graph traversal algorithms are breadth-first search
(BFS) and depth-first search (DFS). In BFS, we start at some root vertex r, mark it
as visited, and put it in a queue. At every step, we look at the vertex at the head of
the queue, remove it, consider all its unvisited neighbors, mark them as visited, and put
them at the end of the queue. Additionally, we may assign every vertex of the graph to
a BFS-layer when performing this procedure: the root is defined to be on layer zero and
whenever the neighbors of a vertex on some layer i are inserted into the queue, they are
assigned to layer i+ 1. This layering turns out to be very useful in many algorithms.
In DFS, the same procedure is executed using a stack instead of a queue; though, it is

usually described and implemented recursively instead of explicitly mentioning a stack
data structure. One further differentiates between pre-order, in-order, and post-order
DFS traversals depending on whether the current vertex is visited, i.e. processed, before,
in-between, or after its children. In-order traversals are often used in conjunction with
binary trees, rooted trees in which every vertex has at most two children, especially
when there is a notion of a left child and a right child at each vertex. The order in
which vertices are visited in a DFS procedure induces a numbering on the vertices called
a DFS-numbering; note however, that there exist different DFS-numberings based on
using a pre-order, in-order, or post-order transversal and also depending on the order
in which the children of a vertex are visited. Many graph algorithms can be described
succinctly based on a BFS or DFS procedure by basically specifying only the steps that
have to be performed upon visiting a vertex.

A.1.8 Distances and Neighborhoods

The length of a path P in an unweighted graph G is defined as the number of edges of P ;
in a weighted graph, it is defined as the sum of the weights of the edges on the path. A
shortest path between two vertices u and v is a path of minimum length between u and
v. The distance between u and v in G, denoted by distG(u, v), is defined as the length
of a shortest path between u and v; we might omit the subscript G whenever it is clear
from context. In a weighted graph, we use the terms unweighted length and unweighted
distance when considering the number of edges of paths instead of their weight. Note that
if we run a BFS rooted at a vertex u, the BFS-layer of each vertex v equals its unweighted
distance from u. The weighted distance of vertices can be calculated efficiently in graphs
with nonnegative weights using Dĳkstra’s algorithm [Dĳ59].
The r-neighborhood of a vertex v, denoted by Nr(v), is the set of vertices at unweighted

distance at most r from v; we define N(v) = N1(v). Note that by our definition, v itself
is included in its neighborhoods.
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A.2 Embeddings, Minors, and Treewidth

A drawing of a graph G in the plane is obtained by assigning every vertex of G to a
point in the plane and every edge of G to a simple (polygonal) curve in the plane such
that the endpoints of the curve correspond to the positions of the endpoints of the edge;
the curves of distinct edges may generally cross each other but their interiors may not
contain any vertex. It is convenient to sometimes identify a graph and its drawing. A
planar graph is a graph that can be drawn in the plane in such a way that distinct edges
do not cross each other; in this case, we say that the graph is embedded in the plane.
An embedding of a planar graph partitions the plane into a number of regions, each of
which is called a face of the embedding or the graph; furthermore, there always exists one
distinguished infinite or outer face of the embedding. Note that by a simple geometric
transformation, an embedding can be changed in such a way that any particular face
becomes the outer face. If nf denotes the number of faces of an embedding of a planar
graph, we have by Euler’s formula that m = n+ nf − 2; hence, the number of faces of a
planar graph does not depend on a particular embedding.

A.2.1 Embeddings of Graphs on Surfaces

We study embeddings on more general surfaces, such as a torus or the projective plane, as
outlined in [MT01] and refer to this book for a more detailed explanation of the concepts
presented in this section. We consider only compact surfaces without boundary. If a
surface contains a subset homeomorphic to a Möbius strip, it is nonorientable; otherwise
it is orientable. In this thesis, an embedding refers to a 2-cell embedding, i.e. a drawing
of the vertices and edges of the graph as points and arcs on a surface such that every
face is homeomorphic to an open disc. Such an embedding can be described purely
combinatorially by the notion of a combinatorial embedding:
Let G be a connected multigraph. A rotation system is a set of permutations {πv | v ∈

V (G)} that we think of as specifying the cyclic ordering of the edges around each vertex
in clockwise order. A combinatorial embedding is a pair Π = (π, λ) where π is a rotation
system and λ : E(G)→ {−1, 1} is a signature mapping. For an edge e ∈ E(G) incident
to a vertex v ∈ V (G), we call the cyclic sequence e, πv(e), π2

v(e), . . . the Π-clockwise
ordering around v. Given an embedding Π of G, we say that G is Π-embedded.
The Π-facial walks of G are obtained by the following face traversal procedure. Such

a traversal can be in clockwise mode or anti-clockwise mode; we start in the clockwise
mode. Starting with an arbitrary vertex v and an edge e0 = vu incident to v, we first
traverse the edge e0 from v to u. If we are in clockwise mode, we continue the walk along
the edge e1 = πu(e0); if we are in anticlockwise mode we traverse the edge e′1 = π−1

u (e0).
Whenever we traverse an edge that has signature −1 we change from clockwise mode
to anticlockwise mode or vice versa. We continue this procedure until we get to our
starting edge e0 in the same direction and in the same mode. The other Π-facial walks
are determined in the same way by starting with other edges and directions; facial walks
that differ only by a cyclic shift are considered to be the same. If G = K1, we define
the walk of length 0 to be the facial walk. Two embeddings are equivalent if and only if
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they contain the same set of facial walks. One can show that every edge appears exactly
twice in the set of all Π-facial walks of G. In fact, every edge appears either twice on
the same facial walk or in exactly two facial walks. The edges that are contained twice
in one facial walk are called singular. Similarly, if v is a vertex that appears more than
once on a facial walk, we call it singular. We sometimes refer to singular parts of a facial
walk as tree-like parts. If a facial walk does not contain singular vertices or edges, it is
a Π-facial cycle. A cycle C of a Π-embedded graph G is called Π-onesided if it has an
odd number of edges with negative sign; otherwise it is called Π-twosided. If G contains
a Π-onesided cycle, the embedding is nonorientable; otherwise it is orientable.
A combinatorial embedding of a graph G naturally induces a geometric 2-cell embed-

ding (on each subgraph) of G and vice versa. Note that a combinatorial embedding
is orientable if and only if it induces a 2-cell embedding on an orientable surface. We
often use this correspondence implicitly and talk about the combinatorial and geometric
embedding of a graph simultaneously. Note that each facial walk of a combinatorial
embedding induces a face in the geometric embedding; and, of course, every face of a
geometric embedding corresponds to a unique facial walk. Hence, talking about the
faces of an (combinatorial) embedding is one example where we implicitly go from com-
binatorial to geometric embeddings. For a face f of an embedded graph, we let ∂f
denote its facial walk which we sometimes also call boundary. When we refer to a planar
embedding, we actually mean an embedding in the 2-sphere; in this setting, any face of
the planar embedding can be thought of as the “outer face”. For an embedded graph G
with nf faces, the number g = 2 +m− n− nf is called the Euler genus of the surface.
The Euler genus is equal to twice the usual genus for orientable surfaces and equals the
usual genus for nonorientable surfaces.
Let G = (V,E, %) be a multigraph embedded on a surface and F its set of faces. The

dual G? = (F , E?, %?) of G is defined as the multigraph having the set of faces of G as
its vertex set and the following set of edges: for every edge e ∈ E of G that is adjacent
to the faces f1 and f2 in the embedding of G, there exists an edge e? that connects the
vertices f1 and f2 in G?. We actually identify e and e?, set E? := E, and define G and
G? to have the same set of edges; only the functions % and %? make the distinction. Note
that the dual of an embedded graph is in general a multigraph embedded on the same
surface.

A.2.2 Contraction and Minors

For an edge e = uv in a graph G, we define the operation G/e of contracting e as
identifying u and v and removing all loops and parallel edges. For a set of edges F ⊆
E(G), we define the operation G/F as consecutively contracting all edges of F ; the order
of the contractions is irrelevant. The inverse operation of contraction is that of splitting
a vertex w, that is, replacing it by an edge uv and assigning the edges that ended in w
to u or v. However this operation is not well defined, as it is not clear how to assign
these edges; if this operation is needed at any point, this assignment has to be specified.
A graph H is a minor of G if it can be obtained from G by a series of vertex and edge

deletions and contractions; we write H � G to denote this relation. As (G− F1)/F2 =
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(G/F2) − F1 for edge sets F1, F2 ⊆ E(G), the order of the contractions and deletions
does not matter. A class of graphs C is said to be minor-closed or closed under building
minors if for every graph G ∈ C, all of its minors also belong to C (up to isomorphisms).
Such a class is called proper if it is neither the empty class nor the class of all graphs.
For any proper minor-closed class of graphs C, there exists at least one graph H that
is excluded from C; the graphs in C are hence H-minor-free. The term H-minor-free
graphs more generally describes classes of graphs that exclude a fixed graph H as a
minor. By a well-known theorem of Mader [Mad67], we know that H-minor-free graphs
have bounded average degree, i.e. they fulfill m ≤ cHn, for a constant cH depending only
on |H|. Hence their size is determined basically by their number of vertices.
A model of H in G is a map that assigns to every vertex v of H a connected subgraph

Zv of G such that for u 6= v ∈ V (H), Zv and Zu are disjoint and for every edge
uv ∈ E(H), there exists an edge in G that has one endpoint in Zv and one endpoint in
Zu. W.l.o.g. we may assume that the Zv are trees as we can take a spanning tree of Zv
otherwise. It is easy to see that a graph H is a minor of G if and only if G contains a
model of H.
The operation of splitting an edge uv is defined as adding a vertex “in its middle”, i.e.

replacing it by a path uwv, where w is a new vertex added to the graph. A subdivision
S of a graph H is a graph that is obtained from H by iteratively splitting some edges.
The original vertices of H are sometimes called the nails of H in S. H is a topological
minor of G if a subdivision of H is isomorphic to a subgraph of G. The nails of H in G
are the nails of the subdivision of H in G. A topological minor H of G is also a minor
of G but the reverse is guaranteed to be true only if H has maximum degree 3 [Die05,
Proposition 1.7.2].
We also sometimes consider surface contractions and surface minors of embedded

graphs; in this setting, we do not delete loops and parallel edges after contracting an
edge; furthermore, the contraction of a loop is not allowed. As a consequence, the genus
of a graph is preserved when performing only surface contractions on its embedding.
Note that a combinatorial embedding of a graph G induces such an embedding for all
surface minors of G.

A.2.3 The Graph Minor Theorem

Note that the class of graphs that can be embedded on some fixed surface S is closed
under building minors; indeed, deleting and contracting edges preserves an embedding
on the surface. Hence, these classes of graphs are some prominent examples of proper
minor-closed graph classes. Further classes include, for example, linklessly embeddable
graphs, knotlessly embeddable graphs, graphs that have a vertex cover of size at most
k (for some constant k), and graphs embedded in some fixed surface augmented by a
constant number of additional vertices, called apices, that may have edges to arbitrary
vertices of the graph.
By Kuratowski’s Theorem [Kur30], we know that a graph is planar if and only if

it excludes K5 and K3,3 as a (topological) minor. Similar theorems hold for all fixed
surfaces and in fact, for all minor-closed graph classes as is shown by the seminal Graph
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Minor Theorem of Robertson and Seymour [RS04]: any proper minor-closed class of
graphs is characterized by a finite number of excluded minors. This is one of the deepest
and most far-reaching results of graph theory in the recent decades and has been proven
in a course of over 20 papers. We will return to this theorem and the graph minor theory
in Parts II and III of the thesis.

A.2.4 Tree Decompositions and Treewidth
A tree decomposition of a graph G is a pair (T,B), where T is a tree and B = {Bi|i ∈
V (T )} is a family of subsets of V (G), called bags, such that

(i) every vertex of G appears in some bag of B;
(ii) for every edge e = uv of G, there exists a bag that contains both u and v; and
(iii) for every vertex v of G, the set of bags that contain v form a connected subtree

Tv of T .

The width of a tree decomposition is the maximum size of a bag in B minus 1. The
treewidth of a graph G, denoted by tw(G), is the minimum width over all possible tree
decompositions of G. One can think of the treewidth of a graph as a global connectivity
measure that describes how similar the given graph is to a tree. Indeed, the class of
graphs of treewidth 1 is exactly the class of all forests; the class of graphs of treewidth
2 is the class of series-parallel graphs.
Let f : N0 → N0 be a function and C be a class of graphs. The treewidth of C is

bounded by f if tw(G) ≤ f(|G|) for all G ∈ C. C has bounded treewidth if its treewidth is
bounded by a constant.
The notion of treewidth has had an enormous impact on both theory and practice in

computer science since many computationally hard problems become easy on graphs of
bounded treewidth, see e.g. [AP89, Bod88]. Indeed, Courcelle’s famous theorem [Cou90]
tells that any problem that can be formulated in monadic second-order logic can be
decided on graphs of bounded treewidth in linear time. Furthermore, the notions of
tree decomposition and treewidth turn out to be of the most useful and important tools
in theoretical computer science and graph theory, especially in graph minor theory and
parameterized complexity.

A.2.5 On Local Treewidth and Apex-Minor-Free Graphs
We say that a graph has bounded local treewidth if for every vertex v and integer r, we
have tw(Nr(v)) ≤ f(r), for some computable function f depending solely on r; we write
ltwr(G) ≤ f(r). Demaine and Hajiaghayi [DH04] showed that every minor-closed class
of graphs that has bounded local treewidth has, in fact, linear local treewidth, i.e. in
this case, we have ltwr(G) ≤ λr for a fixed integer λ depending only on the excluded
minor of the class.
An apex-graph is a planar graph augmented by an additional vertex that can have

edges to any other vertex. A class of graphs is called apex-minor-free if it excludes a
fixed apex-graph as a minor. Eppstein [Epp00a] showed that a minor-closed class of
graphs has bounded local treewidth if and only if it is apex-minor-free.
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A.3 On Classical and Parameterized Complexity
We assume basic familiarity with fundamental notions of complexity as given in the book
by Garey and Johnson [GJ79]. We define the class P to be the class of problems (i.e.
languages) that can be decided by a deterministic Turing machine in polynomial time
and NP the class of problems that can be decided by a nondeterministic Turing machine
in polynomial time. A polynomial-time (many-one) reduction from a problem A to a
problem B, denoted as A ≤p B, is a polynomial-time computable function f : A → B
such that x ∈ A ⇔ f(x) ∈ B. A problem A is said to be NP-hard if for every problem
B ∈ NP, we have B ≤p A; if additionally A is itself in NP, it is called NP-complete.

A.3.1 Landau Notation

We use the standard Landau (big-Oh) notation: for a function f : N0 → N0, we let

O(f) := {g : N0 → N0 | ∃c, n0 ∈ N0 ∀n ≥ n0 : g(n) ≤ c · f(n)}

Ω(f) := {g : N0 → N0 | ∃c, n0 ∈ N0 ∀n ≥ n0 : g(n) ≥ 1
c
· f(n)}

Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N0 → N0 | ∀c ∈ N0 ∃n0 ∈ N0 ∀n ≥ n0 : g(n) ≤ 1
c
· f(n)}

ω(f) := {g : N0 → N0 | ∀c ∈ N0 ∃n0 ∈ N0 ∀n ≥ n0 : g(n) ≥ c · f(n)}

As usual, we often write f(n) = O(g(n)) or f(n) ≤ O(g(n)) for f(n) ∈ O(g(n)).
When writing O(1), we regard 1 as the constant function with value 1. If we want to
emphasize that the hidden constants in such an expression depend on some parameter
k, we use the notation Ok(f) (where we always assume that the dependence is at least
computable); this is especially common with regard to H-minor-free graphs where we
use the notation OH(f) to emphasize that the hidden constants depend on the excluded
minor H. We also use some derived notation such as

nO(f(n)) := {g : N0 → N0 | ∃f ′ ∈ O(f) ∃n0 ∈ N0 ∀n ≥ n0 : g(n) ≤ nf ′(n)} .

In particular, the class poly(n) := nO(1) is the class of all polynomially bounded
functions.

A.3.2 On Parameterized Complexity

We use the standard notions of parameterized complexity as given in the books of
Downey and Fellows [DF99] and Flum and Grohe [FG06]. A parameterized problem
is a pair (Q, κ) where Q is a problem (i.e. a language over some alphabet) and κ is a
parameterization, that is, a polynomial-time computable function that assigns an integer
to every instance of Q (formally, any word from the alphabet of Q is an instance). For
an instance x of Q, we call the number κ(x) the corresponding parameter. For example,
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in k-Independent Set an instance consists of a graph G and an integer k and the
parameter is defined to be k; the question is whether the graph G contains an indepen-
dent set of size at least k. This is a typical example of the standard parameterization
of a problem where the parameter is chosen to be the solution size. Other examples of
typical parameters are the treewidth of the instance, the genus of the given graph, and
the size of an excluded minor.

The Classes FPT and XP A parameterized problem is said to be fixed-parameter
tractable (FPT) if for any instance of size n with parameter k it can be solved in time
Ok(nO(1)) = O(f(k)nO(1)), for some computable function f solely dependent on k; a
corresponding algorithm is called an FPT-algorithm. We denote the class of parame-
terized problems that are fixed-parameter tractable by FPT. We define the class XP to
contain all parameterized problems that can be solved in time O(nf(k)) for some com-
putable function f . Clearly, FPT ⊆ XP; in fact, this inclusion is strict [DF99]. Whereas
many parameterized problems admit simple XP-algorithms, showing the fixed-parameter
tractability of problems is often hard and builds one of the main focuses of parameterized
complexity.

The W-hierarchy Another main focus of the theory is to provide evidence that many
parameterized problems most likely do not admit an FPT-algorithm. The complexity
classes W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] are defined for this purpose. The assumption that
FPT 6= W[1] is the parameterized analog of the assumption that P 6= NP in classical
complexity. We refer to the books mentioned above [DF99, FG06] for formal definitions
and further background on the W-hierarchy.

Bounded Fixed-Parameter Tractability Even after a problem is shown to be in FPT,
it remains a challenge to reduce the dependence on k and find the smallest function f
for which the problem still admits an algorithm with running time O(f(k)nO(1)). To
this end, the notion of bounded FPT is introduced. If the function f above belongs to
a class F of functions from N to N, we say that our problem is in F-FPT. We denote
2kO(1)-FPT, 2O(k)-FPT, and 2oeff(k)-FPT by EXPT, EPT, and SUBEPT, respectively; here,
f ∈ oeff(g) if there exists n0 ∈ N and a computable, nondecreasing and unbounded
function ι : N → N, such that f(n) ≤ g(n)

ι(n) for all n ≥ n0. A problem is subexponential
fixed-parameter tractable if it is in SUBEPT.

Kernels A kernel of a parameterized problem is a fully polynomial algorithm that
given an instance of size n and parameter k, returns a equivalent reduced instance of
the same problem of size f(k) and parameter k′ ≤ k. The function f denotes the
size of the kernel; we then speak of a linear, polynomial, and subexponential kernel,
respectively. Kernelization is a major technique in fixed parameter complexity as any
computable parameterized problem is in FPT if and only if it admits a kernel [Nie02].
Kernelization can be seen as polynomial-time pre-processing with a quality guarantee
and has gained much theoretical importance in the recent years – besides its natural
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practical importance. For an introduction to kernels we refer to the survey by Guo and
Niedermeier [GN07].

Exponential Time Hypothesis The satisfiability problem (Sat) is that of deciding if a
given CNF-formula is satisfiable; k-Sat is the variant where each clause is restricted to
have at most k variables. Sat was the first problem shown to be NP-complete [Coo71]
and 3-Sat is well-known to be NP-complete either [Kar72]. The exponential time hy-
pothesis (ETH) is the assumption that 3-Sat can not be solved in time 2oeff(n) where n
is the number of variables of the given instance. This is equivalent to saying that 3-Sat
parameterized by the number of variables is not in SUBEPT. This assumption is widely
believed and is implied by the stronger assumption that FPT 6= W[1]. Many negative
results in parameterized complexity are based on this assumption.

A.3.3 Optimization Problems and Approximation

An NP-optimization problem is a tuple (I, S, C, opt) where I is a polynomial-time decid-
able set of instances, S is a mapping that associates a nonempty set of solutions S(x)
with each instance x ∈ I such that for a given pair (x, y), it is decidable in polynomial
time whether y ∈ S(x) and there exists a k ∈ N such that for all x ∈ I and y ∈ S(x),
we have |y| ≤ |x|k; furthermore, C : {(x, y) | x ∈ I, y ∈ S(x)} → N is a polynomial-time
computable cost function and opt ∈ {min,max} is the optimization goal.
Given a NP-optimization problem P and an instance x ∈ I, we want to find a y ∈ S(x)

such that
C((x, y)) = opt(x) = opt{C(x, z) | z ∈ S(x)} .

We sometimes denote this optimal value with OPTP,x and drop the indices if the
problem and/or instance at hand is clear from context. We denote the class of all
NP-optimization problems by NPO. In what follows, let P = (I, S, C, opt) be an NP-
optimization problem.
Let x ∈ I be an instance of P and y ∈ S(x) a solution. We say y is an α-approximation

for x if ratio(x, y) := max{C((x,y))
OPT , OPT

C((x,y))} ≤ α. Note that by our definition, we have
α ≥ 1 for both maximization and minimization problems. Let A be a polynomial-time
algorithm that for a given instance x ∈ I computes a solution y ∈ S(x) and r : N → N
a computable function. We say A is an r-approximation algorithm for P if we have
ratio(x, y) ≤ r(|x|) for all instances x ∈ I and solutions y ∈ S(x) computed by A. We
often call the function r the approximation ratio or guarantee of A. If, in particular,
r is a constant function, we say A is a constant-factor approximation algorithm for
P . We denote the class of all NP-optimization problems that admit a constant-factor
approximation by APX. We call a problem Q APX-hard if every problem in APX can
be reduced to Q by a polynomial-time approximation-preserving reduction; Q is APX-
complete if it is APX-hard and in APX. We refer to the book of Ausiello et al. [ACG+03]
for further details (e.g. the definition of approximation-preserving reductions).
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A.3.4 Polynomial-Time Approximation Schemes

A solution y for an instance x of an NP-optimization problem P is called ε-close if
ratio(x, y) ≤ (1+ ε). We often call such a solution also near optimal. A polynomial-time
approximation scheme (PTAS) for P is a family of algorithms (Aε)ε≥0, so that Aε is
an (1 + ε)-approximation algorithm for P , i.e. Aε runs in polynomial time in |x| for
any instance x of P and computes ε-close solutions. A crucial property that we require
from PTASes is that the family (Aε)ε≥0 be uniform, in the sense that there exists a
polynomial-time algorithm that for a given 0 ≤ ε ∈ Q computes Aε. We use the notion
PTAS also to denote the class of all NP-optimization problems that admit a PTAS. We
trivially have PTAS ⊆ APX ⊆ NPO. It is well-known that unless P = NP, all these
inclusions are strict; this implies, in particular, that APX-hard problems most likely do
not admit a PTAS.
Note that the running time of a PTAS is, in fact, Oε(poly(n)) for an instance of size n;

that is, in general, a PTAS runs in polynomial time only for a fixed error bound. Hence,
there is a qualitative difference in the running times of different PTASes based on their
dependence on 1/ε that may become very important, especially when it comes to their
practical applicability; this difference is best studied in the framework of parameterized
complexity theory: a PTAS can naturally be seen as an algorithm parameterized by 1/ε.
Whereas many PTASes are in XP in this respect, there have been great efforts in recent
years in obtaining efficient PTASes (EPTASes), namely, PTASes that are in FPT with
respect to the parameter 1/ε, see e.g. [Bak94, RS98, Gro03, Kle08]. Of course, even after
an EPTAS or an FPT-algorithm is discovered for a problem, it still remains to find the
algorithm with the smallest dependence on the parameter; indeed, we will study cases
in this thesis where such an improvement on the parameter-dependence turns out to be
crucial (see Chapters 3 and 6).
If the dependence on 1/ε of an EPTAS is even polynomial, we obtain a fully polynomial-

time approximation scheme (FPTAS); problems admitting an FPTAS define the complex-
ity class FPTAS. However, no polynomially bounded NP-optimization problem (i.e. a
problem with C((x, y)) ≤ |x|O(1) for all x ∈ I and y ∈ S(x)) admits an FPTAS unless
P = NP [KS81]. We trivially have FPTAS ⊆ EPTAS ⊆ PTAS; Marx [Mar07, Mar08]
showed that unless ETH fails, all these inclusions are strict.

A.3.5 Some Important NP -Hard Problems

Finally, we review some of the most important (NP-hard) problems we consider and
their basic properties. In Vertex Cover, we are given a graph G and an integer k and
are asked if G contains a vertex cover of size at most k; in the optimization version we
are asked for a vertex cover of minimum size. The problem is APX-complete [PY91],
admits only a 2-approximation in general graphs (see [Hal02] for slight nonconstant
improvements) but a PTAS on H-minor-free graphs [Gro03]. If parameterized by k, we
obtain k-Vertex Cover, which is in EPT in general graphs [DF95c] and in SUBEPT
on H-minor-free graphs [DFHT05].
The Independent Set problem is defined as the set of pairs (G, k) such that G is a
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graph that contains an independent set of size at least k; similarly Clique is the set of
such pairs where G contains a clique of size at least k. Their optimization versions are
naturally maximization problems. Both problems are APX-hard [PY91] and the best
known approximation algorithms have a ratio of O(n/ log2 n) [BH92]; but they admit a
PTAS on H-minor-free graphs [Gro03]. They are W[1]-complete when parameterized by
k [DF95b] but in SUBEPT on H-minor-free graphs [DFHT05].
In Dominating Set we are asked if a given graph G contains a dominating set of

size at most k (or for a dominating set of smallest size in the optimization version). The
problem is APX-hard in general graphs [PY91] with the best known approximation ratio
being 1 + logn [Joh74]. It admits a PTAS on H-minor-free graphs [Gro03]. The param-
eterization by k is k-Dominating Set and is W[2]-complete in general graphs [DF95a]
but in SUBEPT on H-minor-free graphs [DFHT05].
We also sometimes consider the connected or independent version of the problems

above where we require the solution sets to be connected or independent. These vari-
ants are usually harder than the unconstrained versions; we provide more details when
required.

Max-Cut refers to the optimization problem of finding a cut with the maximum
number of edges in a given graph. Whereas the Min-Cut problem is well-known
to be solvable in polynomial time, the Max-Cut problem is indeed NP-hard. It ad-
mits a constant-factor approximation of 1.1383 [GW95] but is APX-complete in general
graphs [PY91]. It admits a PTAS on dense graphs, i.e. when m = Θ(n2) [AKK99] and
on H-minor-free graphs [DHK05]. The parameterized version k-Max-Cut, where we
are asked for a cut of size at least k in a given graph, is in EPT in general graphs [RS07]
and trivially in SUBEPT on H-minor-free graphs (every graph has a cut of size at least
m/2 and H-minor-free graphs have treewidth O(

√
n) [AST90]).

The Hamiltonian Path and Hamiltonian Cycle problems are that of deciding
whether a given graph contains a Hamiltonian path or cycle, respectively. Their opti-
mization version is commonly referred to as the traveling salesman problem (Tsp); in
the general version, we are given a (possibly edge-weighted) graph and are asked for the
smallest tour in the graph that visits every vertex exactly once. This version is NPO-
complete, in the sense that no approximation algorithm exists unless P = NP [SG76].
If the given edge-weights fulfill the triangle inequality, we obtain the metric Tsp ; this
variant admits a well-known 3

2 -approximation [Chr76]. We often allow vertices and edges
to be used multiple times in a Tsp tour but in this case, their weights are also counted
multiple times; furthermore, one can always use the shortest-paths metric in the graph
and obtain the metric version. In this thesis, the Tsp usually refers to this version
of the problem where repetition of vertices and edges is allowed. We often refer to the
Tsp on planar graphs with shortest-paths metric by planar Tsp; similarly, we obtain
Tsp on bounded-genus graphs, apex-minor-free graphs, and H-minor-free graphs. The
Tsp is known to admit a PTAS on weighted bounded-genus graphs [DHM07] and un-
weighted apex-minor-free graphs [DHK09]. Whether it admits a PTAS on (weighted)
H-minor-free graphs is an important open problem.
The parameterized version of the Hamiltonian Path and Tsp is k-Longest Path,

commonly referred to as k-Path: given a graph G and parameter k, we ask whether
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G contains a path of length at least k. This problem is in FPT, in fact in EPT, on
general graphs [AYZ95] and in SUBEPT on H-minor-free graphs [DFHT05, DH05b]. An
important variant is Directed k-Path, the corresponding problem on directed graphs.
The problem is in EPT on general directed graphs [AYZ95] and some improvements have
been achieved on H-minor-free graphs (see Chapter 6); but whether it is in SUBEPT is
an important open question even on planar graphs.
Finally, the most important problem for this thesis is perhaps Steiner Tree. A full

introduction to this problem is given in Chapter 1.

A.4 Logic
A signature σ is a finite set of constant symbols c ∈ σ and relation symbols R ∈ σ where
each relation symbol is equipped with an arity ar(R). A σ-structure A consists of

(i) a a finite set U(A), called the universe of A;
(ii) a constant c(A) ∈ U(A) for each constant symbol c ∈ σ; and
(iii) for each R ∈ σ an ar(R)-ary relation R(A) ⊆ (U(A))ar(R).

For signatures σ, τ with τ ⊆ σ, we define the τ -reduct of a σ-structure A to be a τ -
structure A′ := A|τ with U(A′) = U(A) and having the same constants and relations as
A on all symbols of τ . Conversely, a σ-expansion of a τ -structure A′ is a σ-structure A
with A|τ = A′.
We assume to have an unlimited supply of variables; these are symbols usually de-

noted by small letters, such as x, y, z, v0, v1, . . . , and one of their purposes is to serve
as temporary labels for elements of a structure. A term of a signature σ is a constant
symbol c ∈ σ or a variable symbol. An atomic formula of σ is given by

(i) a string s = t, where s and t are σ-terms; or
(ii) R(t1, . . . , tn), where R ∈ σ is an n-ary relation symbol and t1, . . . , tn are σ-terms.

Here and henceforth, we assume that = is not a symbol of the signature σ. Formulas of
first-order logic over a signature σ are defined inductively as follows:

• every atomic formula of σ is a first-order formula; and
• if ϕ and ψ are first-order formulas and x is a variable, then ¬ϕ, (ϕ ∨ ψ), (ϕ ∧ ψ),
∃xϕ, and ∀xϕ are also first-order formulas, where the symbols ¬,∨,∧,∃, and ∀ are
intended to mean not, or, and, exists, and for all, respectively.

We usually denote formulas by Greek letters ϕ,ψ, . . . . We let FO[σ] denote the set of all
first-order formulas over σ. We say the quantifier ∀x and ∃x bind the variable x. For a
formula ϕ, we call the set of variables that occur in ϕ but are not bound by a quantifier,
the set of free variables of ϕ. A formula without free variables is called a sentence. If a
formula ϕ contains free variables X = (x1, . . . , xn), we often write ϕ(X) or ϕ(x1, . . . , xn)
to denote this fact; if T = (t1, . . . , tn) are σ-terms, we write ϕ(T ) or ϕ(t1, . . . , tn) for
the formula obtained from ϕ by replacing xi with ti, 1 ≤ i ≤ n. We use the following
abbreviations and conventions:
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• for terms s, t, we write s 6= t for ¬(s = t);
• we write > for the formula ∀xx = x and ⊥ for the formula ∀xx 6= x;
• for formulas ϕ,ψ, we write (ϕ→ ψ) for (¬ϕ ∨ ψ);
• for formulas ϕ,ψ, we write (ϕ↔ ψ) for (ϕ→ ψ) ∧ (ψ → ϕ);
• ¬ is evaluated first, ∨ and ∧ are evaluated next, followed by the quantifiers ∃, ∀,
and→,↔ are evaluated last; we often omit the outermost parentheses of a formula;
•
∨k
i=1 ϕ(xi) denotes ϕ(xi)∨ · · ·∨ϕ(xk); we freely use such variations with

∨
and

∧
;

• ∃≤kxϕ(x) denotes ∃x1 . . . ∃xk ¬∃y(ϕ(y)∧
∧k
i=1 y 6= xi) intending to mean that there

exist at most k elements in the structure fulfilling ϕ(x);
• ∃≥kxϕ(x) to mean that there exist at least k elements in the structure fulfilling
ϕ(x), i.e. ¬∃≤k−1xϕ(x)
• ∃=kxϕ(x) to mean that there exist exactly k elements in the structure fulfilling
ϕ(x), i.e. ∃≤kxϕ(x) ∧ ∃≥kxϕ(x).

A.4.1 Semantics

A σ-interpretation of a formula ϕ is a pair I = (A, β), where A is a σ-structure and
β : D → A is a function, with some domain D that includes the set of free variables of
ϕ, assigning an element of A to every free variable of ϕ.
A σ-interpretation I = (A, β) satisfies a formula σ if ϕ is true in the structure A when

the free variables of ϕ are interpreted by the elements specified by β; here, we evaluate
the truth of formulas as follows:

• if ϕ is an atomic formula of the form s = t, then ϕ is true under I if and only if
the terms s and t are interpreted by the same element of U(A) under I;
• if ϕ is an atomic formula of the form R(t1, . . . , tn), then ϕ is true under I if and

only if the terms t1, . . . , tn are interpreted by elements a1, . . . , an ∈ U(A) such that
(a1, . . . , an) ∈ R(A);
• otherwise, we proceed inductively using the standard semantics of the symbols
¬,∨,∧,∃, and ∀. For example, the formula ϕ ∧ ψ is true if and only if ϕ and ψ
are true; and the formula ∃xϕ(x) is true if and only if there exists an element
a ∈ U(A) such that ϕ becomes true if the free variable x is interpreted by a.

If a σ-interpretation I satisfies a formula ϕ we often say that I is a model for ϕ or I
models ϕ and write I |= ϕ. If ϕ is a sentence, we also write A |= ϕ when ϕ is true in
the σ-structure A.
We refer to the book of Ebbinghaus, Flum, and Thomas [EFT94] for more background

on mathematical logic.

A.4.2 Monadic Second-Order Logic

The class of formulas ofmonadic second-order logic (MSO) is obtained as the extension of
first-order logic by quantification over sets of elements. That is, in addition to first-order
variables, which we denote by small letters x, y, ..., there are variables X,Y, ... ranging
over sets of elements. Formulas of MSO[σ] are then built up inductively by the rules for
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first-order logic FO[σ] with the following additional rules: if x is a first-order variable,
X a second-order variable, and ϕ an MSO[σ] formula with free variable X, then (i) Xx
is an atomic formula intending to mean that x is an element of X; equivalently, we often
write x ∈ X with the same semantics; (ii) ∃Xϕ; and (iii) ∀Xϕ are also MSO[σ] formulas,
the semantics being again the obvious standard semantics where, e.g. a formula ∃Xϕ
is true in a σ-structure A if there is a subset A ⊆ U(A) such that ϕ is true in A if the
variable X is interpreted by A. We write A |= ϕ to indicate that ϕ is true in A. We
refer to the book of Libkin [Lib04] for more on MSO.

A.4.3 MSO on Graphs

One way to work with graphs in logic is to consider the signature σ = {E}, where
E is a binary relation symbol, and define a graph G as a σ-structure G with universe
U(G) := V (G) and E(G) := E(G). If we define graphs in this way, then MSO[σ] will only
allow us to quantify over vertex sets. This variant of monadic second-order logic over
graphs is often referred to as MSO1 and is indeed important in its own right [Cou90];
however, as in this work we would like to be able to also quantify over edge sets, we take
a second standard approach to define graphs as below.
The signature σgraph of incidence structures is defined as σgraph := {V,E,∈}, where

V,E are unary and ∈ is a binary relation symbol. We will always use ∈ in infix no-
tation and write v ∈A e instead of (v, e) ∈ ∈(A). With any graph G we associate
a σgraph-structure G, its incidence structure, with universe U(G) := V (G)∪̇E(G) and
V (G) := V (G), E(G) := E(G), and v ∈G e if and only if v ∈ V (G), e ∈ E(G), and v
and e are incident in G. We will not usually distinguish between a graph G and its
incidence structure and write v ∈ e instead of v ∈G e whenever no confusion is possi-
ble. Furthermore, we use the set-theoretic notions of ∈,⊆,∩,∪,∅ with their standard
obvious semantics. For example, for sets of elements X,Y (which can be V , E, or some
second-order variables), we write X ⊆ Y for the formula ∀x(x ∈ X → x ∈ Y ) and use
the shortcuts X 6= ∅ and ∀X ⊆ Y ϕ for ∃x(x ∈ X) and ∀X(X ⊆ Y → ϕ), respectively.
If we consider MSO[σgraph] we obtain MSO over graphs with quantification over vertex

and edge sets, usually denoted by MSO2. To give an example, the following MSO2-
formula is true in a graph G if and only if G is 3-colorable:

∃C1∃C2∃C3∀x
∨3
i=1 x ∈ Ci ∧ ∀e∈E(

∀x∈ e∀y ∈ e(x 6= y →
∧

1≤i≤3 ¬(x ∈ Ci ∧ y ∈ Ci))
)

Whereas this property is also definable in MSO1, we give a further example that is not
expressible in MSO1, namely a formula ϕHam that is true in a graph G if and only if G
contains a Hamiltonian path. We derive this formula step-by-step by defining a number
of formulas that will also be useful to us later on:

• for a second-order variable P denoting a set of edges, we write x ∈ V (P ) for the
formula ∃e(e ∈ P ∧ v ∈ e);
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• we can define that X consists of connected components of P by

components(X,P ) := X ⊆ P ⊆ E ∧ ∀e ∈ P (e ∩ V (X) 6= ∅→ e ∈ X) ;

• conn(P ) := ∀X 6= ∅(components(X,P )→ X = P ) states that P is connected;
• deg≤k(v, P ) := ∃≤ke ∈ P (v ∈ e) states that the degree of a vertex v is at most k in
P ; similarly, deg≥k(v, P ) and deg=k(v, P ) can be defined to state that the degree
of a vertex v is at least or exactly k in P , respectively;
• ac(P ) := ∀X ⊆ P ∀e ∈ X ∀u, v ∈ e

(
conn(X)∧u 6= v∧deg≥2(u,X)∧deg≥2(v,X)→

∀Y (Y = X − e→ ¬conn(Y ))
)
states that P is acyclic; and

• we can define that P is path by

path(P ) := conn(P ) ∧ ac(P ) ∧ ∀v deg≤2(v, P ) .

Finally, ϕHam := ∃P path(P ) ∧ V ⊆ V (P ) expresses that the graph contains a Hamilto-
nian path, as desired.

A.4.4 The Model-Checking Problem of MSO
Themodel-checking problem MC(MSO) for MSO is defined as the problem, given a struc-
ture G and a formula ϕ ∈ MSO, to decide if G |= ϕ. As we saw in the examples above,
MSO has a high expressive power, and thus its model-checking problem is naturally of
high significance.
In [Var82], Vardi proved that MC(MSO) is PSPACE-complete. However the hardness

result crucially uses the fact that the formula is part of the input (and in fact holds on
a fixed two-element structure), whereas we are primarily interested in the complexity of
checking a fixed formula expressing a graph property in a given input graph. We therefore
study model-checking problems in the framework of parameterized complexity:
Let C be a class of σ-structures. The parameterized model-checking problem for MSO

on C, denoted by MC(MSO, C), is defined as the problem to decide, given G ∈ C and
ϕ ∈ MSO[σ], if G |= ϕ. The parameter is k := |ϕ|.
As, for instance, the NP-complete problem 3-colorability is definable in MSO1, we

obtain that MC(MSO1,Graphs), the model-checking problem for MSO1 on the class
of all graphs, is not fixed-parameter tractable unless P = NP. However, Courcelle’s
seminal theorem [Cou90] states that if we restrict the class of admissible input graphs,
then we can obtain much better results: he showed that MC(MSO2, C) is fixed-parameter
tractable with parameter |ϕ| on any class C of graphs of treewidth bounded by a constant.
In the last part of this thesis, we will prove (under suitable complexity assumptions)

the first lower bounds for this theorem; namely, that there exist natural classes of graphs
of small (polylogarithmic) but unbounded treewidth that do not admit a fixed-parameter
tractable model-checking algorithm for MSO2.
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Well, my heart’s in the Highlands at the break of day
Over the hills and far away

There’s a way to get there and I’ll figure it out somehow
But I’m already there in my mind
And that’s good enough for now

– Bob Dylan, 1997
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