Pauchok: A Modular Framework for Question

Answering
by
Stefanie Tellex

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2003
(© Massachusetts Institute of Technology 2003. All rights reserved.

Author ...
Department of Electrical Engineering and Computer Science

May 9, 2003

Certified Dyo
Boris Katz

Principal Research Scientist
Thesis Supervisor

Accepted by ...
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Pauchok: A Modular Framework for Question Answering
by
Stefanie Tellex

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 2003, in partial fulfillment of the
requirements for the degree of
Master of Engineering

Abstract

An ideal question answering system would be able to answer any question that a
human could answer. Currently this dream is unattainable without major advances
in artificial intelligence. However, we can advance towards this dream today by
focusing on factoid questions that can be answered by short phrases. The Question
Answering tracks at recent Text REtrieval Conferences (TREC) provide a forum
for evaluating and comparing factoid question answering systems. Many systems
entered in TREC have the same general architecture, but they are evaluated only
as black box systems. This thesis describes Pauchok, an extensible playground that
enables question answering components to be quickly implemented and tested. I
implemented a number of passage retrieval algorithms within Pauchok’s framework.
I compared the performance of these passage retrieval algorithms, and found three
important things. Boolean querying schemes perform well in the question answering
task. The performance differences between various passage retrieval algorithms vary
with the choice of document retriever, which suggests significant interactions between
document retrieval and passage retrieval. The best algorithms in our evaluation
employ density-based measures for scoring query terms. These results reveal future
directions for passage retrieval and question answering.

Thesis Supervisor: Boris Katz
Title: Principal Research Scientist

Acknowledgments

This document originated from a paper to appear in SIGIR 2003 [29], co-authored
with Boris Katz, Jimmy Lin, Gregory Marton, and Aaron Fernandes.
I could not have completed this thesis without help. Here is an incomplete list of

those to whom I owe thanks.

e Boris, for his guidance over the past two years.

Jimmy and Greg for all the admonishments, discussions, and advice.

Aaron for helping build the system.

Everyone who read drafts.

Eric, for putting up with all the stressful days and late nights.

Alisa, Amy, Carie, Dave, Lin, and Piotr for keeping me sane.

My family.

Dedication

To my cat Licorice.
“If man could be crossed with the cat it would improve man, but it would deteri-

orate the cat.” - Mark Twain

Contents

1 Introduction

1.1 Motivation
1.2 Approach
1.3 Contributions
1.4 Organization e

2 Related Work

2.1 Standard Question Answering Architecture
2.2 Other Question Answering Architectures
2.3 Stand-alone Approaches to Passage Retrieval

3 Pauchok’s Design

3.1 Design Overview e
3.2 Question Analysiso o
3.3 Document Retrieval o Lo
3.4 Passage Retrieval oLl
3.5 Answer Extraction

4 Procedure for Passage Retrieval Evaluation
4.1 Implementation Lo

4.2 SCOTING e e

5 The Passage Retrieval Algorithms
51 MITRE o

11
11

13
13
14
15

17
17
17
18
19
19

20
20
21

23

5.2 bm2b e

5.3 MultiText o o
5.4 IBM e
5.5 SiteQo
5.6 Alicante
5.7 ISI . . o e
5.8 Voting L

Results of Passage Retrieval Evaluation

6.1 Comparison With End-to-end Systems
6.2 Overall Performance
6.3 Performance of Voting o000
6.4 Differences Among Top Algorithms
6.5 Scoring L e

Discussion of Passage Retrieval Evaluation

7.1 Density-Based Scoring o o0
7.2 Boolean Querying Lo o oo
7.3 Passage Retrieval Differences00
7.4 Error Analysis for Missed Questions
Contributions

81 Future Worko

28
28
29
31
32
32

34
34
34
35
36

38

List of Figures

1-1

3-1

6-1

6-2

Pauchok’s compile time structure 10
Data flow in Pauchok 18

Missed questions versus MRR, for algorithms using both document re-
trievers. Lo e 30
Performance at ranks 1 through 5 for two passage retrieval algorithms

using both document retrievers.o 33

List of Tables

6.1 Performance compared to TREC 2001 end-to-end systems. 28
6.2 Performance on TREC 2001 using both Lucene and PRISE. 29
6.3 Performance using the oracle document retriever. 31
6.4 t-test results for top performing passage retrieval algorithms. 32

Chapter 1

Introduction

A huge amount of data is accessible on the World Wide Web. Google indexes over 3
billion web pages — so many that it would take nearly 1000 years to view each one
for 10 seconds. Yet this information is useless if it cannot be retrieved when users
need it. Keyword searching has emerged from the past forty years of research into
this information retrieval (IR) problem. In this model, users formulate a query, send
it to the IR system, and receive a collection of documents matching the query. Users
then read document summaries to filter the resulting collection. Finally they must
read the chosen documents in order to find the needed information.

Keyword searching has serious drawbacks when the user is searching for an answer
to a factoid question such as “When did Hawaii become a state?” Although factoid
questions can be answered by a short phrase, users must scan through lists of search
results and must read entire documents to find the few sentences that matter.

A question answering interface addresses these problems. Users ask a question,
and the system tries to find an exact answer to the question in a large corpus of
documents. Asking questions does not require training; people ask questions all the
time. An ideal question answering system would be able to answer any question
that a human could answer. Currently this dream is unattainable without full text
natural language understanding. However, we can advance towards this dream today
by focusing on factoid questions that can be answered by short phrases.

This thesis describes Pauchok, a system that captures some of the abstractions

common to many factoid question answering systems. This work advances the state of
the art in factoid question answering by providing a framework for quickly developing
and evaluating new question answering components, and by comparing a number of
algorithms used to retrieve passages from a corpus in response to a natural language

question.

1.1 Motivation

The IR community has developed systems that seek to answer natural language ques-
tions from an unstructured corpus of natural language documents [9]. These systems
focus on factoid questions, or questions that can be answered by a short phrase, of-
ten a noun phrase. For example, the question “Who was the first woman killed in
the Vietnam War?” can be answered by the noun phrase “Sharon Lane”. The Text
REtrieval Conference (TREC) competition [31, 32] is a forum where many factoid
question answering systems are evaluated and compared.

Although many of the systems evaluated at TREC have a similar architecture,
they are evaluated as black box systems. When a system performs well, we often do
not know which component is responsible for its good performance. Improving the
state of the art in question answering requires good evaluations for each component,

so that better components can be recognized and used to build better systems.

1.2 Approach

Pauchok is a modular question answering architecture that captures some of the
key abstractions shared across top performing TREC systems. Pauchok provides
a framework in which question answering components from diverse systems can be
directly compared.

Pauchok instantiates a version of the standard question answering architecture [32,
31, 24, 9, 19]. As shown in Figure 1-1, Pauchok contains modules for question anal-

ysis, document retrieval, passage retrieval, and answer extraction. Question analysis

Renove St opwords |

Question Analysis

Answer Extractor

}<Z: Hi gh | DF words |

Lucene |

Docunment Retriever PRI SE |
oracl e |

Mul ti Text |

Passage Retriever bn25 |
. others |

<: —

Part of speech |

Figure 1-1: Pauchok’s compile time structure. There can be many different im-
plementations of each module on the left; this diagram only shows ones currently
implemented.

analyzes the question for use by other modules. Document retrieval finds documents
from the corpus that contain an answer. Passage retrieval searches for blocks of
several sentences that contain an answer. Finally answer extraction identifies exact
answer phrases in retrieved passages.

I evaluated a number of passage retrieval algorithms used in TREC 2001 [31]
systems. This thesis presents the results of the evaluation and suggests research
directions that could lead to improvements in the performance of passage retrieval
algorithms.

I chose to evaluate passage retrieval over other key abstractions such as docu-
ment retrieval and answer extraction for several reasons. Many passage retrieval
techniques have been described in the context of improving document retrieval per-
formance (e.g., [27, 4]), but I am not aware of any attempts to systematically study

the performance of passage retrieval for question answering. Because most answer

10

extraction algorithms are currently computationally infeasible at the level of entire
documents, current systems run them only on passages; as a result, if passage re-
trieval does not perform well, answer extraction is impossible. Furthermore, passages
themselves form a very natural unit of response for question answering systems; Lin
et al. [21] showed that users prefer passages over exact phrase answers in a real-world
setting because paragraph-sized chunks provide context. For example, although the
question “Who was the first woman killed in the Vietnam War” can be answered by

“Sharon Lane”, users may prefer the entire passage:

A piece of steel from a rocket that landed between Ward 4A and Ward
4B of the 312th Evacuation Hospital had ripped through Sharon Lane’s
aorta. She bled to death less than a month before her 26th birthday, the

first woman killed by hostile fire in Vietnam.

1.3 Contributions

This work contributes to the field of question answering in several ways.

I synthesized a generic question answering architecture that serves as a play-

ground for future research.

I created an evaluation framework for components in the standard question

answering architecture.

I identified successful passage retrieval techniques.

I suggest directions for the improvement of passage retrieval.

1.4 Organization

Chapter 2 reviews the standard question answering architecture and various other

architectures for question answering systems.

11

Chapter 3 describes Pauchok’s major abstractions: Question analysis, document
retrieval, passage retrieval, and answer extraction.

Chapter 4 outlines the evaluation procedure. A number of passage retrieval algo-
rithms were implemented in Pauchok’s framework. I tuned them on the TREC 2000
data and tested on the TREC 2001 data.

Chapter 5 details the passage retrieval algorithms implemented for this evaluation.

Chapter 6 presents the results of the evaluation.

Chapter 7 discusses the results. Boolean querying schemes perform well in the
question answering task. The performance differences between various passage re-
trieval algorithms vary with the choice of document retriever, which suggests signifi-
cant interactions between document retrieval and passage retrieval.

Chapter 8 suggests future directions for passage retrieval and question answering.

12

Chapter 2

Related Work

This chapter discusses the standard approach to question answering and several al-

ternate approaches. Then it describes initial work in passage retrieval.

2.1 Standard Question Answering Architecture

This section reviews various instantiations of the standard question answering archi-
tecture. Pauchok is a concrete implementation of this architecture. Pauchok’s design
is shown in Figure 1-1.

The TREC question answering track [32, 31] is a forum where question answering
systems are evaluated and compared. A TREC system tries to find an answer to a
factoid question in a large corpus of newspaper articles. Voorhees [32, 31] describes
a generic question answering architecture that is implemented by most systems sub-
mitted to TREC. This architecture consists of question type classification, document
retrieval, and named entity matching. First, systems identify the expected answer
type of the question, in order to characterize the answer. For example, the answer
type of “Who was the first governor of Alaska?” might be “person.” Systems range
from computing very broad to very specific answer types; there is no standard answer
type ontology. Next, systems use some algorithm to retrieve passages from the cor-
pus that are likely to contain an answer. Finally, they search the passages for entities

matching the answer type of the question.

13

Hirschman and Gaizauskas [9] describe a generic architecture in order to frame
their discussion of actual question answering systems. While Voorhees surveys ex-
isting question answering systems and generalizes an architecture, they describe a
typical architecture in order to compare it to existing systems. Their system begins
by analyzing the question. Subsequent processing modules have access to the results
of this analysis. Document collection preprocessing and candidate document selection
modules retrieve documents from the corpus likely to contain an answer. Candidate
document analysis creates a useful representation of the document for answer extrac-
tion. Pauchok’s passage retrieval module is a type of candidate document analysis.
The answer extraction module retrieves an exact answer to the questions from the
analyzed documents.

Light et al. [19] describe a more abstract model used to frame a component level
analysis of the performance of various modules. Their model consists of document
retrieval, sentence retrieval, and short answer extraction. Sentence retrieval maps
to Pauchok’s passage retrieval. They compare various kinds of word overlap scoring

functions.

2.2 Other Question Answering Architectures

Other architectures for question answering systems have been proposed that approach
the problem differently from the standard question answering architecture
Chu-Carroll et al. [5] describe a system consisting of question analysis agents,
answering agents, and an answer resolution module. There can be multiple ques-
tion analysis and answering agents that try to answer the question using different
strategies. For example, one answering agent might answer questions by searching
the corpus, while another searches for answers on the World Wide Web. The answer
resolver combines answers from multiple systems and tries to determine the best one.
Pauchok could be integrated into this architecture as an answering agent.
InsightSoft’s TREC 2001 system [28] uses indicative patterns to identify answers.

This system cuts the retrieved documents into passages around query terms, and

14

analyzes each passage for the presence of pattern. It associates each question type
with human-generated patterns that signal the presence of answers.

The START [14, 17] system retrieves answers to questions from the World Wide
Web. START makes use of Omnibase [15], an abstraction over knowledge sources.
Omnibase provides a structured query interface to documents on the World Wide
Web. It also contains natural language annotations describing the data in these
documents. START parses the user’s question and matches it against the annotations
on the documents in order to find an answer through Omnibase.

Aranea [20] also searches for an answer to a question on the World Wide Web. It
consists of two major modules: knowledge annotation and knowledge mining. The
knowledge annotation module has a database of annotated web pages that contain
answers to classes of TREC questions. To answer these questions, Aranea identifies
the question as one that can be answered by one of its annotated pages, and then
uses the annotations to extract an answer from the web page. This technique yields
high precision but low recall. The knowledge mining module searches for an answer
in text snippets retrieved via a web search engine. It tries to exploit the redun-
dancy of the World Wide Web by searching for phrases repeated across multiple web
pages. Because the TREC competition requires systems to find support for answers
by returning a document from the provided corpus, Aranea also contains an answer
projection module. Given an answer obtained from the web, the answer projection
module tries to find a document supporting it in the corpus. Lin et al. [20] used

Pauchok as Aranea’s answer projection module in TREC 2002.

2.3 Stand-alone Approaches to Passage Retrieval

Salton et al. [27] describes an IR system that retrieves passages if the passage has
a higher relevance score than the document; it returns a smaller snippet only if the
similarity of the passage to the query is greater than the similarity of the entire
document to the query. He describes several variations of word overlap term scoring

with stemming to rank passages.

15

Callan [4] describes experiments in which he added passage retrieval to INQUERY,
an IR system. INQUERY’s overall goal is document retrieval; passages are used as
evidence that a document is relevant. The scoring metric ranked passages based on
a term frequency and inverse document frequency (if.idf) term score.

A variety of passage retrieval techniques have been used in past TREC conferences.

The ones chosen for this evaluation are described in Chapter 5.

16

Chapter 3

Pauchok’s Design

I tried to design Pauchok to support any module from any question answering system
that instantiates the standard question answering architecture. The system currently
supports question analysis, document retrieval, passage retrieval, and answer extrac-

tion, four major components found in many TREC systems.

3.1 Design Overview

Data flow in Pauchok is shown graphically in Figure 3-1. Each module tries to identify
the location of an answer at successively finer levels of granularity. The question
analyzer analyzes the question to generate a query; this query is used to retrieve
documents from the corpus. A passage retrieval algorithm analyzes the documents to
extract passages from the corpus. (A different query can be used for document and
passage retrieval.) Finally an answer extractor searches for an exact answer to the

question in the retrieved passages.

3.2 Question Analysis

The question analysis module converts natural language questions into queries for the
document retriever. This process can range in sophistication from simply returning

the user’s question as the query to employing sophisticated question analysis to gener-

17

/ Question /L-) Question Anal yzer
/ Query /L—-) Docunent Retriever
/ Docunent s /L-b Passage Retriever
{ Passages ,Lb Answer Extractor
{ Answer s /

Figure 3-1: Data flow in Pauchok

\

\

\

\

ate complex, structured queries. Often, this module also detects the expected answer
type of a question, e.g., the expected answer type of “When was Albert Einstein

born?” is date. This information helps guide the answer extraction process.

3.3 Document Retrieval

The document retrieval module retrieves documents from the corpus that are likely
to contain answers to the user’s question. It consists of a query generation algorithm
and a text search engine. The query generation algorithm takes as input the user’s
question and creates a query containing terms likely to appear in documents con-
taining an answer. This query is passed to the text search engine, which uses it to
retrieve a set of documents.

Pauchok currently supports the Lucene search engine [2], a freely available open-
source IR engine. In addition, it can use the list of documents provided by NIST
for each TREC question, generated using the PRISE engine [3]. It also supports an
“oracle” document retriever that returns the documents NIST identified as relevant
for each TREC question. Every document returned by the oracle document retriever

is guaranteed to contain an answer to the question.

18

Lucene is the only Pauchok document retriever that may be used for generic
questions; the other document retrievers rely on files provided by NIST for questions
used in TREC. However, Pauchok supports the capability to add more document

retrievers. I have begun adding support for Lemur [1].

3.4 Passage Retrieval

Passage retrieval algorithms take a document and a question and try to find passages
from the document that contain an answer. Typical passage retrieval algorithms
break the document into passages, compute a score for each passage, and return
the passage with the highest score. The system abstracts this mechanism so that
passage tokenizing algorithms and passage scoring algorithms can be modularized as
well. Passage retrieval algorithms that cannot be broken down in this way are also
supported.

Pauchok supports a large number of passage retrieval algorithms that are described

in Chapter 5.

3.5 Answer Extraction

Finally, the system must extract an answer to the question from the passages. This
module takes as input a passage from the passage retrieval component and tries to
retrieve an exact phrase to return as an answer. This functionality typically requires
parsing and detailed question analysis. Many systems extract answers by identifying
entities in the passage that match the expected answer type of the question.

Two baseline answer extraction algorithms have been implemented within Pau-
chok. The identity answer extractor returns the center-point of the passage, stripping
words from either end until it fits within the specified answer window. The part of
speech answer extractor analyzes the question to determine the part of speech of the

answer, and returns the first entity from the passage matching that part of speech.

19

Chapter 4

Procedure for Passage Retrieval

Evaluation

In order to evaluate Pauchok, passage retrieval algorithms chosen from top perform-
ing TREC systems were implemented within its framework. The relative performance
of these algorithms was evaluated and compared in order to suggest improvements
for passage retrieval in question answering. The success of this implementation ef-
fort shows that Pauchok’s architecture captures an abstraction shared across many

question answering systems.

4.1 Implementation

Chapter 5 describes the algorithms used in detail. The algorithms were tested and
trained using the data set provided by NIST for the TREC 2000 conference. All
evaluation results are presented over the TREC 2001 data set. TREC 2000 and TREC
2001 used the same corpus of newspaper articles. NIST data for each conference
included a list of questions, and for each question a list of answer patterns and a list
of supporting documents. [31, 32]

For each answer, Pauchok outputted the score assigned by the passage retrieval
algorithm, the supporting document number, and the answer text itself. Algorithms

ran on the first 200 documents returned by the document retrieval module. For each

20

question, algorithms returned up to twenty passages of 1000 bytes each. In an end-
to-end question answering system evaluation, an answer extraction algorithm would
run on these passages to find an exact answer. The answer extractor would limit the
results returned by the system; in TREC 2001, systems returned five answers of 50
bytes each.

Pauchok expanded or contracted the initial passage returned by the algorithm
to fit within the space allotted, so that all evaluated passages had the same aver-
age length. If a passage retrieval algorithm returned an answer shorter than this
limit, Pauchok expanded the passage by adding words surrounding the passage in the
document. Similarly, if the algorithm returned a longer passage, Pauchok trimmed
words from either end of the passage until it fit within the limit. This way the eval-
uation does not give an algorithm that happens to return longer passages an unfair
advantage.

I present results using both the Lucene IR engine and the PRISE document re-
triever. Documents were retrieved by the Lucene system using a query generated by
stripping a predefined list of stopwords from the question.

Many of the algorithms had a number of constant factors as part of their scoring
function. A script tuned the algorithms for the TREC 2000 data set by varying each
parameter around an initial value obtained from the algorithm’s description. The
algorithms ran on the TREC 2001 data set using the values that performed best on
the TREC 2000 data. All results presented are for the TREC 2001 questions.

4.2 Scoring

Asin TREC 2001 [31], both strict and lenient scores are presented. For lenient scoring,
an answer is judged correct if it matches one of the regular expressions in the answer
patterns obtained from NIST. For strict scoring, the answer also had to be supported;
the document that contained the answer had to appear in the list provided by NIST
containing correct documents for that question. I present both the percentage of

missed questions for each algorithm and the mean reciprocal rank (MRR). MRR is

21

computed by averaging the inverse of rank of the first passage to correctly answer a
question over all questions. I measured MRR over all twenty response passages, as

opposed to the usual five in formal TREC evaluations.

22

Chapter 5

The Passage Retrieval Algorithms

For this study, eight different passage retrieval algorithms were implemented in the
Pauchok framework. Most of the algorithms were chosen from top-performing TREC
2001 systems that had well-described passage retrieval algorithms.

I did not include passage retrieval algorithms from two notable TREC 2001 sys-
tems. The top performing TREC 2001 system, InsightSoft [28], cuts the retrieved
documents into passages around query terms, returning all passages from all retrieved
documents. The use of human-generated indicative patterns makes answer extrac-
tion on such large amounts of text viable. The second best system, LCC [8], retrieves
passages that contain keywords from the question based on the results of question
analysis. Their passage retrieval algorithm requires the expected answer type of the
question or a bridging inference between the expected answer type and the question.
However, neither the answer type ontology nor the bridging inference mechanisms
were described well enough to be implemented.

The following sections provide an overview of the surveyed algorithms.

5.1 MITRE

MITRE’s word overlap algorithm [19] assigns the passage a point for every word it
has in common with the question. The version that Light describes in his work makes

use of stemming when scoring the sentence. I implemented both a stemming and non-

23

stemming version in order to explore the effects of stemming on the baseline system
performance. This algorithm represents one of the simplest reasonable techniques to

use for passage retrieval.

5.2 bm25

The well known Okapi bm25 weighting scheme [26, 25, 13| represents the state of
the art in document retrieval. It takes a set of query terms and sums the score of
each term with respect to the document. I implemented a passage retrieval algorithm

based on this formula to serve as another baseline for comparison.

The bm25 formula follows:

3 () (ki + 1)t f (ks + 1)gtf avdl — dl

k -
2K kvar P9 i

@ is a query, containing terms 7.

N—n+0.5,

wit) is log 22

this formula is the Robertson-Sparck Jones weight without
relevance information.

n is the number of documents containing the term.

N is the number of documents in the corpus.

tf is the frequency of the term within the document.

qtf is the frequency of the term in the corpus.

ki1, k3, and k3 are constants.

K is a constant equal to k1((1 — b) + b.dl/avdl)

avdl is the average document length in the corpus.

dl is the length of the document being scored.

The weight for the first term in the summation (w(!)) is an estimate of this formula:
log ;%. Here p; is the probability that 7" appears in the document given that the
document is relevant, and p; is the probability that 7" appears in the document given

that it is not relevant. Intuitively, terms that have a high probability of appearing

24

in relevant documents and a low probability of appearing in non-relevant documents

have higher weights.

(kit1)tf
K+if

The second term in the summation, is zero when the term does not occur

in the passage, increases monotonically with the number of occurrences of the term,

and has an asymptotic limit.

(ks+1)qtf
ks+qtf

The third term in the summation, is smaller the more frequently the
term appears in the corpus.

The final term in the formula is a constant factor that normalizes for document
length. Intuitively, a long document should not gain a higher score for containing more
instances of the term than a shorter document. Since all passages in this experiment
were the same length, this term could be dropped. However Pauchok’s architecture

supports scoring passages of different lengths with 6m25, so this term was still used

for these results.

5.3 MultiText

Clarke’s MultiText algorithm [6, 7] gives weight to short passages containing many
terms with high inverse document frequency (idf) values. The algorithm effectively
slides a window across the document. FEach window starts and ends with a term in
the scoring query, and the score of each window is based on the number of query
terms that appear in it as well as the length of the window. Short windows with
many query terms are favored. Once the highest scoring passage has been identified,
a 250 byte window of text around the center-point is returned as the answer. This
window may be longer or shorter than the window actually scored; it depends on the
density of query terms in the document.

The MultiText algorithm’s scoring metric uses an idjf-like measure rather than the
actual idf because of the structure of the index. Pauchok’s implementation uses the

actual idf.

25

5.4 IBM

IBM’s passage retrieval component [12, 11] computes a series of distance measures
for the passage. The “matching words” measure sums the idf of words that appear
in both the query and the passage. The “thesaurus match” measure sums the idf
of words in the query whose WordNet synonyms appear in the passage. The “mis-
match words” measure sums the idf of words that appear in the query and not in the
passage, and reduces the score. The “dispersion” measure is the number of words in
the passage between matching query terms, and the “cluster words” measure is the
number of words that occurred adjacently in both the question and the passage. For
each passage, it computes these distances, assigns weights to them, and sums them,
yielding the score for that passage. The highest scoring passages are considered in

the answer extraction module.

5.5 SiteQ

The SiteQ scorer [18] computes the score of a passage by summing the weights of
the sentences. Sentences with more query terms have a higher score. Sentences with
query terms close together in the text are scored higher as well. Site() weights query
terms based on their part of speech. However, the version implemented in Pauchok

uses the idf weight of the word for this term.

5.6 Alicante

The Alicante scorer [30, 22] computes the non-length normalized cosine similarity
between the query and the passage. It takes into account the number of appearances
of a term in the passage and in the query, along with idf values. The Alicante
system reported an optimal passage size of twenty sentences, but my experiments

show highest performance using a six sentence window.

26

5.7 1ISI

The ISI passage retrieval algorithm [10] ranks sentences based on their similarity
to the question. This system gives weight to exact match of proper names, term
match, and stemmed word match. It also uses the CONTEX parser to check for
QSUBUMED words in order to discount them, so they do not contribute to the score
in both passage retrieval and answer extraction. A QSUBUMED word is one that
the CONTEX parser identified as matching the answer type of the question. Since

Pauchok only tested passage retrieval, its implementation ignored this factor.

5.8 Voting

I designed a new passage retrieval algorithm by combining the results from the imple-
mented collection of algorithms. I implemented a simple voting scheme that scored
each passage based on its initial rank and also based on the number of answers the
other algorithms returned from the same document. More precisely, given the results
from various passage retrieval algorithms, the algorithm calculates the score for each

passage as follows:

A = number of algorithms
R = number of passages returned
docids = A x R matrix of document ids

returned by each algorithm

A R | 1/r if docids|a,r] = doc

docscore(doc) = >

a=1r=1| 0 otherwise

1 1
score(a,r) = —+§docscor6(docids[a, r])
T

I ran this voting algorithm using IBM, ISI, and SiteQ, the best performing algo-
rithms under the PRISE IR engine.

27

Chapter 6

Results of Passage Retrieval

Evaluation

First, this section presents the results of the algorithms compared to the end-to-end
performance in TREC 2001. Then it compares the performance of all the algorithms
using the Lucene and PRISE document retrievers. It presents similar results for
the oracle document retriever. Finally it explores differences among top performing

algorithms.

6.1 Comparison With End-to-end Systems

Table 6.1 presents the percentage of unanswered questions in this evaluation com-
pared to the end-to-end results for each system in TREC 2001 in order to show that

Pauchok’s implementation of the passage retrieval algorithms was reasonable. Both

Strict Lenient
Algorithm Lucene PRISE TREC 2001 Lucene PRISE TREC 2001
IBM 49.2% 39.6% 44.3% 39.6% 30.8% 43.1%
ISI 48.8% 41.8% 41.7% 40.2% 32.2% 39.8%
SiteQ 48.0% 40.4% 56.1% 40.2% 32.6% 52.8%
MultiText 46.4% 41.6% 43.1% 38.6% 34.8% 40.7%
Alicante 50.0% 42.6% 60.4% 41.8% 35.2% 59.6%

Table 6.1: Performance showing percentage of unanswered questions over all docu-
ments using two different IR engines, compared to the end-to-end TREC 2001 results
for each algorithm. Algorithms not taken from TREC 2001 systems are not shown.

28

Strict Lenient

Lucene PRISE Lucene PRISE

Algorithm MRR % Incorrect MRR % Incorrect MRR % Incorrect MRR % Incorrect
IBM 0.326 49.20% 0.331 39.60% 0.426 39.60% 0.421 30.80%
ISI 0.329 48.80% 0.287 41.80% 0.413 40.20% 0.396 32.20%
SiteQ 0.323 48.00% 0.358 40.40% 0.421 40.20% 0.435 32.60%
MultiText 0.354 46.40% 0.325 41.60% 0.428 38.60% 0.398 34.80%
Alicante 0.296 50.00% 0.321 42.60% 0.380 41.80% 0.391 35.20%
BM25 0.312 48.80% 0.252 46.00% 0.410 40.80% 0.345 38.00%
stemmed MITRE 0.250 52.60% 0.242 58.60% 0.338 44.20% 0.312 39.20%
MITRE 0.271 49.40% 0.189 52.00% 0.372 42.20% 0.265 42.00%
Averages 0.309 49.15% 0.297 45.33% 0.399 40.95% 0.370 35.60%

Voting with IBM, 0.350 39.80% 0.352 39.00% 0.410 31.00% 0.430 30.00%
ISI, and SiteQ

Table 6.2: Performance on TREC 2001 using both Lucene and PRISE, ordered by the
lenient percentage incorrect under PRISE. Mean reciprocal rank (MRR) and percent-
age incorrect (% Inc.) are shown for both the strict and lenient scoring conditions.
The performance of the associated TREC 2001 systems is also provided.

were run on the same set of questions. NIST assessors manually scored the TREC
2001 systems; NIST created the answer patterns used to score Pauchok based on the
assessors’ scoring. The Pauchok runs returned twenty 1000 byte passages instead of
five 50 byte answers as in TREC 2001. As a result there are generally fewer unan-
swered questions in the Pauchok runs. I do not compare the MRR numbers because

answer extraction will likely reorder the results in the end-to-end system.

6.2 Overall Performance

Table 6.2 shows the overall performance of the passage retrieval algorithms with
the Lucene and PRISE document retrievers, under strict and lenient conditions.
ANOVA (over all runs except for voting) revealed that the performance difference
for the PRISE set of results was statistically significant under both strict and le-
nient scoring (lenient: F(7,3992) = 3.25, p = 0.001; strict: F(7,3992) = 3.71,
p = 0.0005). However, the differences in the performance of passage retrieval al-
gorithms with Lucene was not significant under both strict and lenient scoring, as
demonstrated by ANOVA over all runs except for voting (lenient: F'(7,3696) = 0.71,
ns; strict F'(7,3696) = 0.68, ns). (Questions for which Lucene returned no docu-
ments are excluded from the ANOVA, although they are not excluded from Table

29

05
+ Lucene
* NIST
*
+ +
* +
4
04 * *
*
+
+
[
74
= *
+
*
03
*
02 .] .] . |
0.2 0.3 0.4 0.5

Percent missed

Figure 6-1: Missed questions versus MRR for algorithms using both document re-
trievers.

6.2.) Overall, most of the passage retrieval algorithms achieved a higher MRR with
Lucene as the document retriever, but passage retrievers using the PRISE engine
had fewer questions with no answers. Intuitively, passage retrievers using the PRISE
IR engine answer more questions, but passage retrievers using Lucene rank correct
answers higher.

Figure 6-1 visualizes the performance differences among the algorithms using
Lucene and PRISE. Under PRISE the algorithms missed fewer questions. The PRISE
data points are more spread out, because the performance differences between the al-
gorithms using PRISE was statistically significant. Under both document retrievers,
algorithms with higher MRR scores also missed fewer questions.

Figure 6-2 visualizes the precision/recall tradeoff between Lucene and PRISE.

IBM’s passage retriever is shown because it performed well, and MITRE’s passage

30

Algorithm # Incorrect % Incorrect MRR

IBM 31 7.18% 0.851

SiteQ 32 7.41% 0.859

ISI 37 8.56% 0.852
Alicante 39 9.03% 0.816
MultiText 44 10.19% 0.845
BM25 45 10.42% 0.810
MITRE 45 10.42% 0.800
stemmed MITRE 63 14.58% 0.762

Table 6.3: Performance of different passage retrieval algorithms using the oracle doc-
ument retriever.

retriever is shown as a baseline. IBM using Lucene has more correct answers at ranks

1 and 2 than PRISE, even though IBM using PRISE answers more questions overall.

6.3 Performance of Voting

Although voting resulted in a slight performance boost, the improvement was not sta-
tistically significant. For Lucene, ANOVA over all runs including voting was not sig-
nificant (lenient: F'(8,4158) = 0.79, ns; strict: F'(8,4158) = 0.69, ns). For the PRISE
results, although the ANOVA over all runs was significant (lenient: F'(8,4990) = 3.27,
p = 0.0006; strict: F'(8,4991) = 3.64, p = 0.0003), a t-test between IBM and the
voting algorithm was not. (lenient: #(499) = —0.67, p = 0.51; strict: #(499) = —0.54,
p = 0.59)

Table 6.3 shows the results using the oracle document retriever: every document

returned contains an instance of the answer.!

This condition tests the performance
of passage retrieval algorithms under optimal document retrieval. ANOVA revealed
that the difference in performance between the algorithms is statistically significant

(F(7,3448) = 2.71, p = 0.008).

31

t-test results
Algorithm PRISE Lucene Oracle

ISI £(499) = 0.94, p = 0.35 £(462) = 0.44, p = 0.66 ¢(431) = 1.23, p = 0.22
SiteQ t(499) = 1.15, p = 0.25 #(462) = 0.45, p = 0.66 ¢(431) =0.19, p = 0.85

Table 6.4: t-test results for IST and SiteQ with IBM, the algorithm that found an
answer for the most questions, over different IR engines. It only shows results for
lenient scoring; the t-tests for strict scoring were also not statistically significant.

6.4 Differences Among Top Algorithms

The performance difference of the three passage retrievers that answered the most
questions correctly (IBM, ISI, and SiteQ) was not significant. The results of our

pairwise t-tests are shown in Table 6.4.

6.5 Scoring

Neither strict nor lenient scoring was perfect. Strict scoring displayed many false
negatives, i.e., valid answers scored as incorrect, because the list of relevant documents
supplied by PRISE was not exhaustive. Conversely, lenient scoring displayed many
false positives, i.e., wrong answers scored as correct, because many of the answer
patterns were not discriminating enough. However, both scoring conditions are useful
in establishing realistic upper and lower bounds on performance. Both scoring metrics
relied on the list of answer patterns provided by NIST for each TREC question. Some
questions had correct answers in the corpus not matched by any of the NIST answer
patterns. However the error introduced by this factor is probably not large, because

the answer patterns were generated based on answers returned by TREC systems.

I'Note that the strict and lenient measures are identical under the oracle document retriever.

32

0.5

—8—IBM - Lucene
--0-- IBM - NIST

04 I~

Percentage of
questions answered

03 |~

02 [~

01 |~

0.0

0.5

—&— MITRE - Lucene
--0-- MITRE - NIST

0.4

Percentage of
questions answered

0.3

0.2

0.1

0.0
Rank

Figure 6-2: Performance at ranks 1 through 5 for two passage retrieval algorithms
using both document retrievers.

33

Chapter 7

Discussion of Passage Retrieval

Evaluation

This section discusses implications of the differences in performance of the algorithms
and presents the results of an error analysis of questions that no passage retrieval

algorithm was able to answer.

7.1 Density-Based Scoring

The differences in performance of the IBM, ISI, and SiteQ algorithms were not sig-
nificant. All these algorithms use a density based scoring metric; they look for high
scoring query terms that appear close together in the passage. The fact that all the
best systems use a density based scoring metric suggests that this is a good indicator

of the presence of an answer.

7.2 Boolean Querying

An immediate conclusion from this study is that in terms of passage retrieval, the
performance obtained using the Lucene document retriever is comparable to the per-
formance obtained using the PRISE document retriever. In fact, passage retrieval

algorithms using Lucene actually achieve a higher MRR on average. This result is

34

surprising because in terms of pure document retrieval, boolean query models have
been consistently outperformed by more modern approaches. Yet, for the passage
retrieval task, the effectiveness of these different document retrievers is quite simi-
lar. This result confirms the intuition of many in the question answering community:
boolean queries can supply a reasonable set of documents for down-stream compo-
nents in a question answering system. Many of the top-performing systems in the
TREC competitions (e.g., [10, 23]) employ simple boolean queries for this reason, and

because a boolean model allows for finer-grained control over query expansion.

7.3 Passage Retrieval Differences

The results with Lucene show that the performance differences between passage re-
trieval algorithms were not statistically significant. It may be possible to attribute
the differences in performance to pure chance. Based on this experience, systems
utilizing boolean keyword querying schemes should focus more on improving docu-
ment retrieval. Compared to the PRISE results, Lucene appears to have lower recall,
consistent with conventional wisdom; as such, methods for boosting recall (e.g., query
expansion techniques) should be a priority in the development of question answering
systems built on boolean keyword search engines. In fact, at least one system [23] has
implemented “feedback loops” which expand or contract boolean queries to improve
the quality of a hit list.

In contrast, the results with the PRISE document retriever show that the perfor-
mance differences attributed to the passage retrieval algorithms are statistically sig-
nificant; here the passage retriever does make a difference. However, passage retrieval
algorithms using PRISE tend to place relevant passages at lower ranks compared to
Lucene. Generalizing from this result yields the insight that different passage retrieval
techniques are still worth exploring, with a focus on better confidence ranking in the
context of an IR engine like PRISE.

Finally, the results with the oracle document retriever reveal that performance

differences among the various algorithms were still statistically significant even when

35

document retrieval was perfect. This observation suggests that document and passage
retrieval technology can be developed independently and still be combined for better

end-to-end performance.

7.4 FError Analysis for Missed Questions

Some questions could not be answered by any of the passage retrieval algorithms.
For these questions, subsequent processing by answer extraction modules is useless.
Error analysis of these questions yields suggestions for future work.

A significant number of the missed questions required definitions as an answer.
NIST plans to require fewer definition questions in future tracks because users have
better mechanisms for finding the definition of a term, such as WordNet [31]. How-
ever, the system could still be confronted with definition questions by users ignorant
of those better mechanisms, so it is still reasonable to expect systems to answer
these questions. Definition questions are difficult for keyword based passage retrieval
algorithms because there is essentially one keyword available in the question. For ex-
ample, for the question “What is an ulcer?” the only term specific to the question is
“ulcer.” Here, synonymy expansion and parsing could help to improve performance.
A parser could look for a set of relations or patterns that denote the presence of the
definition of a term. Synonymy expansion and recognition could allow the algorithms
to recognize additional keywords that might be found near the answer. This strategy
might help if the definition contains synonyms of the term. Similarly, expanding the
query by using WordNet hypernyms or terms in a dictionary definition might increase
the precision for these questions.

Another significant fraction of missed questions asked for the first instance of
something. For example, for “What was the first satellite to go into space?”, many
answers had the terms “first” and “satellite” co-occur, but “first” did not modify
“satellite” as in “The first country to launch a satellite”. Katz and Lin [16] identi-
fied this phenomenon as ambiguous modification, where words in a query are found

in the candidate answers, but in the wrong modification relationship (in this case,

36

adjective-noun modification). In this specific example, “first” is the ambiguous modi-
fier, because it could potentially modify many head nouns that co-occur with satellite,
e.g., “first country”. Katz and Lin’s solution extracted syntactic relations from both
candidate answers and queries in order to ensure that the proper relations existed
in both. The integration of linguistic processing techniques into passage retrieval

algorithms could increase their overall precision.

37

Chapter 8

Contributions

Pauchok has instantiated a generic question answering architecture. The architecture
is robust enough to support many top performing passage retrieval algorithms from
TREC 2001. Lin et al. [20] used Pauchok as the answer projection component for
Aranea in TREC 2001. Current work is being done using this architecture to explore
new question answering components.

Pauchok’s architecture allows components from diverse systems to be implemented
in a common framework so they can be directly evaluated. This thesis empirically
evaluated a number of passage retrieval algorithms. This evaluation showed that top
performing algorithms use density based scoring measures. Error analysis from this
evaluation suggested that future work in passage retrieval should focus on definition

questions and using a parser to disambiguate word relations.

8.1 Future Work

A similar comparison of various answer extraction algorithms would be interesting,
but would present more challenges than passage retrieval. The best performing an-
swer extraction algorithms work via large databases of patterns. Replicating those
databases from scratch is non-trivial.

Pauchok’s framework enables the exploration of new question answering compo-

nents. It would be interesting to explore ways of using a natural language parser

38

to improve passage retrieval. Combining the existing passage retrieval algorithms

through a voting mechanism might yield an algorithm that performs better overall.
Pauchok should be entered into a future TREC competition both to evaluate

its architecture as an end-to-end system and to stimulate the development of better

question answering components.

39

Bibliography

1]
2]
3]
[4]

[5]

[6]

7]

8]

Lemur. http://www-2.cs.cmu.edu/~lemur/.
Lucene. http://jakarta.apache.org/lucene/docs/index.html.
Prise. http://www.itl.nist.gov /iaui/894.02/works/papers/zp2/.

James P. Callan. Passage-level evidence in document retrieval. In Proceedings
of the 17th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR-1994), 1994.

Jennifer Chu-Carroll, John Prager, Christopher Welty, Krzysztof Czuba, and
David Ferrucci. A multi-strategy and multi-source approach to question answer-
ing. In Proceedings of the Eleventh Text REtrieval Conference (TREC 2002),
2002.

Charles Clarke, Gordon Cormack, Derek Kisman, and Thomas Lynam. Ques-
tion answering by passage selection (Multitext experiments for TREC-9). In

Proceedings of the Ninth Text REtrieval Conference (TREC-9), 2000.

Charles Clarke, Gordon Cormack, and Elizabeth Tudhope. Relevance ranking for
one to three term queries. Information Processing and Management, 36:291-311,

2000.

Sanda Harabagiu, Dan Moldovan, Marius Pagca, Mihai Surdeanu, Rada Mihal-
cea, Roxana Girju, Vasile Rus, Finley Licitusu, Paul Mor#rescu, and Rizvan

Bunescu. Answering complex, list, and context questions with LCC’s Question-

40

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Answering Server. In Proceedings of the Tenth Text REtrieval Conference (TREC
2001), 2001.

Lynette Hirschman and Robert Gaizauskas. Natural language question answer-
ing: The view from here. Journal of Natural Language Engineering, Special Issue

on Question Answering, Fall-Winter 2001.

Eduard Hovy, Ulf Hermjakob, and Chin-Yew Lin. The use of external knowledge
in factoid QA. In Proceedings of the Tenth Text REtrieval Conference (TREC
2001), 2001.

Abraham Ittycheriah, Martin Franz, and Salim Roukos. IBM’s statistical ques-
tion answering system—TREC-10. In Proceedings of the Tenth Text RFEtrieval
Conference (TREC 2001), 2001.

Abraham Ittycheriah, Martin Franz, Wei-Jing Zhu, and Adwait Ratnaparkhi.
IBM’s statistical question answering system. In Proceedings of the 9th Text

REtrieval Conference (TREC-9), 2000.

Karen Sparck Jones, Steve Walker, and Stephen E. Robertson. A probabilistic
model of information retrieval: Development and status. Technical Report 446,

University of Cambridge Computer Laboratory, 1973.

Boris Katz. Annotating the World Wide Web using natural language. In Proceed-
ings of the 5th RIAO Conference on Computer Assisted Information Searching
on the Internet (RIAO ’97), 1997.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy Lin, Gregory Marton,
Alton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform access to
heterogeneous data for question answering. In Proceedings of the Tth Interna-

tional Workshop on Applications of Natural Language to Information Systems

(NLDB 2002), 2002.

41

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

Boris Katz and Jimmy Lin. Selectively using relations to improve precision in
question answering. In Proceedings of the FEACL-2003 Workshop on Natural

Language Processing for Question Answering, 2003.

Boris Katz, Jimmy Lin, and Sue Felshin. The START multimedia informa-
tion system: Current technology and future directions. In Proceedings of the

International Workshop on Multimedia Information Systems (MIS 2002), 2002.

Gary Geunbae Lee, Jungyun Seo, Seungwoo Lee, Hanmin Jung, Bong-Hyun Cho,
Changki Lee, Byung-Kwan Kwak, Jeongwon Cha, Dongseok Kim, JooHui An,
Harksoo Kim, and Kyungsun Kim. SiteQ: Engineering high performance QA
system using lexico-semantic pattern matching and shallow NLP. In Proceedings

of the Tenth Text REtrieval Conference (TREC 2001), 2001.

Marc Light, Gideon S. Mann, Ellen Riloff, and Eric Breck. Analyses for elu-
cidating current question answering technology. Journal of Natural Language

Engineering, Special Issue on Question Answering, Fall-Winter 2001.

Jimmy Lin, Aaron Fernandes, Boris Katz, Gregory Marton, and Stefanie Tellex.
Extracting answers from the web using knowledge annotation and knowledge

mining techniques. In Proceedings of the Eleventh Text RFEtrieval Conference

(TREC 2002), 2002.

Jimmy Lin, Dennis Quan, Vineet Sinha, Karun Bakshi, David Huynh, Boris
Katz, and David R. Karger. What makes a good answer? The role of context
in question answering. In Proceedings of the Ninth IFIP TC13 International
Conference on Human-Computer Interaction (INTERACT-2003), 2003.

Fernando Llopis and Jose L.Vicedo. IR-n: A passage retrieval system at CLEF-
2001. In Proceedings of the Second Workshop of the Cross-Language Evaluation
Forum (CLEF 2001), 2001.

Dan Moldovan, Marius Pasca, Sanda Harabagiu, and Mihai Surdeanu. Perfor-

mance issues and error analysis in an open-domain question answering system.

42

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL-2002), 2002.

John Prager, Jennifer Chu-Carroll, and Krzysztof Czuba. Use of WordNet hyper-
nyms for answering what-is questions. In Proceedings of the Tenth Text RFEtrieval

Conference (TREC 2001), 2001.

Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Mike Gatford,
and A. Payne. Okapi at TREC-4. In Proceedings of the 4th Text REtrieval
Conference (TREC-4), 1995.

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. Okapi at TREC-3. In Proceedings of the 3rd Text REtrieval
Conference (TREC-3), 1994.

Gerard Salton, James Allan, and Chris Buckley. Approaches to passage retrieval
in full text information systems. In Proceedings of the 16th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR-1993), 1993.

Martin M. Soubbotin and Sergei M. Soubbotin. Patterns of potential answer ex-

pressions as clues to the right answers. In Proceedings of the Tenth Text RFEtrieval

Conference (TREC 2001), 2001.

Stefanie Tellex, Boris Katz, Jimmy Lin, Gregory Marton, and Aaron Fernandes.
Quantitative evaluation of passage retrieval algorithms for question answering.
In Proceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR-2003), 2003.

José L. Vicedo and Antonio Ferrdandez. University of Alicante at TREC-10. In
Proceedings of the Tenth Text REtrieval Conference (TREC 2001), 2001.

Ellen M. Voorhees. Overview of the TREC 2001 question answering track. In
Proceedings of the Tenth Text REtrieval Conference (TREC 2001), 2001.

43

[32] Ellen M. Voorhees and Dawn M. Tice. Overview of the TREC-9 question an-
swering track. In Proceedings of the Ninth Text REtrieval Conference (TREC-9),
2000.

44

