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Executive Summary

What semantic structures can enable a system to understand and use
spatial language in realistic situations? This thesis will develop a model of
spatial semantics that can enable a system to understand and use spatial
language in real-world domains: finding video clips that match a spa-
tial language query, and enabling a robot to understand natural language
directions. Understanding spatial language expressions is a challenging
problem because linguistic expressions, themselves complex and ambigu-
ous, must be connected to real-world objects and events. I will build
systems that bridges this gap by modeling the meaning of spatial lan-
guage expressions hierarchically, first capturing the semantics of spatial
prepositions, and then composing these meanings into higher level struc-
tures. Spatial prepositions will be instantiated as classifiers which can
recognize examples of that preposition. The classifiers will be trained us-
ing a library of features computed from a geometric model of the situation.
A key contribution of this work will be creating and characterizing this
library and showing that it is able to correctly model a variety of spatial
relations in realistic domains. Next, these models will be composed to
create higher level models of spatial relations. In robotic direction under-
standing, this will be done by creating a Markov Random Field model of a
path through a space, and finding the path that maximizes the likelihood
of the directions. For surveillance video search, data can be collected from
annotators describing a person’s movement over many seconds or minutes
of video, and a similar model can be used to find and score video clips
that match the query. The result will be a computational model of spa-
tial semantics that connects symbols to real-world paths and movements
of people. Landau and Jackendoff (1993), Talmy (2005) and others have
characterized semantic structures underlying spatial language without an
implemented computational model. Regier (1992), Carlson and Covey
(2005) and others have created computational models of spatial seman-
tics focusing on schematic visual contexts, rather than realistic situations
such as video and path descriptions. This work will move beyond previous
work by creating implemented computational models of spatial language
expressions, and then evaluating those models on two realistic, real-world
domains. Through this work I will create new models of spatial seman-
tics that are faithful to human judgements and robust to the noise and
ambiguity inherent in real-world situations.



1 Introduction

Building a computer that can understand natural language has been a dream
of artificial intelligence since the Turing test was first proposed in 1950. Lan-
guage is uniquely human: through language humans unify and integrate many
disparate abilities. But many of these abilities seem to have nothing to do with
language, such as vision, movement, and social reasoning. One fruitful strat-
egy when faced with a large problem is to divide it into smaller subproblems.
This approach has been hugely successful, leading to amazing progress in indi-
vidual problem areas of artificial intelligence, from web search to autonomous
robotic navigation. However there has been less work towards integrating results
from different subfields into a consistent and coherent framework. Models from
computational linguistics often model only words, and not the non-linguistic
components of semantics. In this thesis I will divide the problem of language
understanding not horizontally, but vertically, focusing on a narrow subset of
language, but grounding that language in data collected from a real world. This
strategy has two benefits. First, it decreases the scope of the language under-
standing problem, making it more tractable. Second, by choosing a semantically
deep core domain, it offers an opportunity to explore the connection between
linguistic and non-linguistic concepts. A model that spans domains may be
more powerful and generalizable to new situations and contexts, a key challenge
in creating intelligent systems.

When pursuing this strategy, the choice of sub domain is key. In this thesis
I will study spatial language. Reasoning about movement and space is a funda-
mental competence of humans and many animals. Humans use spatial language
to tell stories and give directions, abstracting away the details of a complex
event into a few words such as “across the kitchen.” A system that understands
spatial language could be directly useful to people by finding video that matches
spatial language descriptions, or giving natural language directions. In order to
reason in this domain, the system must somehow map information about the
world into the language of interest. This thesis will implement a model for one
way that this mapping could be carried out, and apply the model to two realistic
domains.

Applying the model to a realistic domain is important to show that it works.
Working with more than one domain means the model must be more general-
izable, making it more likely the ideas will apply in a wide array of contexts.
Moreover, a system that works in a realistic domain is useful in its own right,
making it more likely that the ideas behind it will have impact. The choice
of domains depends on several factors. First, the applications should be com-
pelling, with use cases that have impact. Second, the scope of the problem
should be neither too small nor too large. Finally, the two domains should be
similar enough to reuse the same modeling machinery, but different enough to
require interesting generalizations.

In this thesis I will focus on natural language video retrieval and direction
giving and understanding for robots. Video retrieval is a compelling application:
in the United States alone, there are an estimated 30 million surveillance cam-



eras installed, which record four billion hours of video per week.(Vlahos, 2008)
Analyzing and understanding the content of video data remains a challenging
problem. A spatial language interface to video data can help people naturally
and flexibly find what they are looking for in video collections. For example,
a system installed in the home of an elder could help a health worker diagnose
problems the person is having as they age, and design effective interventions to
enable them to continue living at home. Studying language used to give direc-
tions could enable a robot to understand natural language directions. People
talk to robots even if they do not have microphones installed (Kinzer, 2009), and
it makes sense to build systems that understand what they say. A robot that
understands natural language is easy for anyone to use without special training.

Both these domains require a system that can connect language to concrete
non-linguistic contexts. A corpus can be collected that maps to specific non-
linguistic events. In the case of video retrieval, I have collected a corpus of
natural language descriptions of video clips. The video corpus consists of data
recorded from a fish-eye camera installed in the ceiling of a home. Sample frames
from this corpus, retrieved by the system for the query “across the kitchen,”
are shown in Figure 1. To associate video clips with a natural language descrip-
tion, annotators were asked to write a short phrase describing the motion of a
person in the clip. Using this corpus of descriptions paired with video clips, 1
trained models of the meanings of some spatial prepositions, and explored their
semantics by analyzing which features are most important for good classifica-
tion performance. Figure 2 shows the most frequent descriptions that appeared
in this corpus. These corpora provide a way to train and evaluate models of
spatial semantics in a restricted, but still realistic context.

For robotic language understanding, I am working with a corpus collected by
Nick Roy’s lab at CSAIL. Subjects were given a tour of a room and asked to write
down directions between two locations inside a building. The corpus consists
of paragraph length descriptions containing sentences. One set of instructions
from the corpus is shown in Figure 4. They have also collected images and
sensor data from a robot that drove through the environment, allowing it to
create a map of the environment populated with many landmarks. Figure 3
shows the most frequent spatial relations from this corpus. This data offers an
opportunity to map the language to the nonlinguistic spatial context.

2 System

Although these two domains seem different, the machinery to parse language,
extract spatial relations, and map it to geometric contexts can be shared between
them. For video retrieval, a system can model the clip as a schematic diagram
representing a person’s path together with reference objects. For direction un-
derstanding, the robot could create a map, together with the probable locations
of landmarks. In both contexts, the system must map linguistic structures to
structures in these domains.

This work will decompose the problem of understanding spatial language into



Figure 1: Frames from two clips returned for the query “across the kitchen.”
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Figure 2: Histogram of descriptions of video clips. Annotators watched a several
second long clip and completed the sentence “The person is going ...”
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Figure 3: Histogram of the most frequent spatial relations in the route instruc-
tions corpus. Each color represents a separate annotator.

With your back to the windows, walk straight through the door near the
elevators. Continue to walk straight, going through one door until you come
to an intersection just past a white board. Turn left, turn right, and enter
the second door on your right (sign says ” Administrative Assistant”).

Figure 4: A set of directions through an office space from the route instruction

corpus.



two parts: understanding spatial expressions, and composing those expressions
together into compound structures. Spatial expressions such as “across the
kitchen” will be modeled by visual classifiers that take spatial paths as input.
These classifiers are trained using labeled path examples. Continuous geometric
paths are converted into a set of features motivated by theories of human spatial
language (Talmy, 2005; Jackendoff, 1983; Landau and Jackendoff, 1993).

Spatial expressions will be composed together by abstracting spatial lan-
guage expressions as a list of spatial description clauses. Each spatial descrip-
tion clause consists of four fields: figure, verb, spatial relation, and landmark.
Figure 5 shows the spatial description clauses for a sentence from the route
instruction corpus. Spatial description clauses can be automatically extracted
from the linguistic structure of the text. A set of route directions, or a descrip-
tion of a person’s movement, can be modeled as a sequence of spatial description
clauses. Each element in the sequence maps to some part of the movement. A
Markov Random Field (MRF) model will be created to model probability of
a path given a sequence of SDCs and probable locations of landmarks in the
environment. The path that maximizes this probability can be used by a robot
seeking to follow natural language directions or return video clips that match
a natural language description. Classifiers that model the semantics of spatial
prepositions are a key component, specifying how each entry in the mapping
connects to the geometric context.

After applying this model to the route instruction corpus, I will apply it to
information retrieval. Annotators could describe a person’s movement over a
minute of video. A system could extract entity relations from these paragraphs,
and an MRF could score video clips based on how well they match the descrip-
tion. This method could be used for video retrieval by finding clips that match
more complicated natural language descriptions.

3 Related Work

There is a long history of systems that understand natural language in small
domains, going back to Winograd (1970). This work builds on previous work by
bringing the system in contact with realistic data: it is created and evaluated
using data from a corpus of naive annotators who are not otherwise involved
with the development of the system, and because the language is about real
situations, describing routes in office buildings and people’s movement. The
system must tackle unsanitized language not tuned and filtered by author of
the system. A constant theme in the work will be the struggle to balance
open-ended natural language understanding with the limitations arising from
the sensing and understanding capabilities of the system.

The linguistic structure extracted from spatial language expressions and
many of the features in the model are based on the theories of Jackendoff
(1983), Landau and Jackendoff (1993) and Talmy (2005). This work aspires
to be a computational instantiation of some of the ideas in their theories. For
example, Talmy (2005) says that for a figure to be across a particular ground,



Continue to walk

»( going

one door

a whiteboard

Figure 5: Entity structure for the sentence “Continue to walk straight, going
through one door until you come to an intersection just past a white board.”

among other things, the axes of the two objects must be “roughly perpendic-
ular.” The implementation of “across” in this work extends his definition by
giving an algorithm for computing the axes a figure imposes on a ground, and a
set, of features which quantify “roughly perpendicular,” using a machine learning
algorithm to fine-tune the distinctions by training on labeled data.

Others have implemented and tested models of spatial semantics. Regier
(1992) built a system that assigns labels such as “through” to a movie show-
ing a figure moving relative to a ground object. Kelleher and Costello (2009)
and Regier and Carlson (2001) built models for the meanings of static spatial
prepositions such as “in front of” and “above.” Building on their paradigm
of testing the semantics of spatial prepositions against human judgements, this
work focuses on realistic situations, requiring the model to be robust to noise,
and enabling an analysis of how the semantics of spatial prepositions change in
different real-world domains.

Katz et al. (2004) built a natural language interface to a video corpus which
can answer questions about video, such as “Show me all cars leaving the garage.”
Objects are automatically detected and tracked, and the tracks are converted
into an intermediate symbolic structure based on Jackendoff (1983) that corre-
sponds to events detected in the video. This work focuses on handling complex
spatial prepositions such as “across” while they focus on understanding a range
of questions involving geometrically simpler prepositions.

Researchers have developed video retrieval interfaces using non-linguistic
input modalities which are complementary to linguistic interfaces. Ivanov and
Wren (2006) describe a user interface to a surveillance system that visualizes
information from a network of motion sensors. Users can graphically specify



patterns of activation in the sensor network in order to find events such as
people entering through a particular door. Yoshitaka et al. (1996) describe a
query-by-example video retrieval system that allows users to draw an example
object trajectory, including position, size, and velocity, and finds video clips
that match that trajectory. The natural language query interface that will be
developed in this work would complement these interfaces in several ways. First,
queries expressed as text strings are easily repeatable; in contrast, it is difficult
to draw (or tell someone else to draw) the exact same path twice in a pen-
based system. Second, language can succinctly express paths such as “towards
the sink,” which would need to be drawn as many radial lines to be expressed
graphically. The combination of a pen-based interface and a natural language
interface is more powerful than either interface on its own.

3.1 Understanding Natural Language Directions

Many authors have proposed formalisms similar in spirit to spatial description
clauses for reasoning about the semantics of natural language directions. Many
of these representations are more expressive than SDCs, but correspondingly
more difficult to automatically extract from text, to the point where many
authors sidestep this problem by using human annotations. SDCs capture many
of the semantics of natural language directions, while still being simple enough
to extract and reason about automatically.

For example, Levit and Roy (2007) describes a probabilistic model for finding
likely paths described by dialogs from the MapTask corpus. Semantic units
called navigational informational units (NIUs) are annotated in the text, and
the system finds paths given a seequence of NIUs. This formulation is the most
similar to SDCs of the frameworks reviewed here. For a phrase like “move
two inches towards the house,” an NIU contains a path descriptor (“move...
towards”), a reference object (“the house”), and a quantitative description (“two
inches”). Spatial description clauses break down the instruction in a similar
way, separating the path descriptor into a verb and spatial relation, and not
explicitly modeling the quantitative description, since it appears so infrequently
in our corpus. The possible path descriptors of their formalism correspond to
spatial relations in our framework. The SDC formalism explicitly represents
the structure common to any spatial referring expression, whether it refers to a
position, an orientation, a move, or a compound reference to a landmark such
as “the doors near the elevators.”

Bugmann et al. (2004) identified a set of 15 primitive procedures associated
with clauses in a corpus of spoken natural language directions. This work fol-
lows their methodology of corpus-based robotics, working with natural language
directions given by a human for another human. An individual spatial descrip-
tion clause in our framework could correspond to one of their primatives actions.
Spatial description clauses explicitly represents the structure common to all of
their primatives, enabling a factorization of the system into a spatial-relation
processing module, and a landmark processing module, both of which can be
used in other applications.
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Macmahon (2006) built a system that follows natural language directions
created by a human for another human through a simulated environment. His
system represents each clause in a set of directions as one of four simple actions:
move, turn, verify, and declare-goal. A parser extracts these simple actions
from text, and forms compound actions, consisting of a simple action plus pre-
conditions, while-conditions, and post-conditions. A compound action in his
formalism is roughly equivalent to an SDC. This framework is more expressive
than SDCs: a compound action can have more than one pre-, post-, and while-
conditions. For example for “Follow the atrium all the way to the right,” “follow
the atrium” can be seen as a while-condition, while “all the way to the right”
describes a post-condition for the path segment. However, clauses involving
more than one pre-, post-, or while-conditions are relatively rare in the corpus
of anatural language directions. When they occur, they are modeled as separate
spatial description clauses.

Klippel et al. (2005) created a formalism for representing route knowledge
called wayfinding choremes. At each decision point in the route, a possible
direction to take is discritized into one of seven equidistant directions. (The
directions can be lexicalized as sharp right, right, half right, straight, half left,
left, sharp left. Back is a special case.) A sequence of wayfinding choremes can
be chunked together to create higher-order direction elements. In this model
turning actions are seen as primary. Like Klippel et al. (2005), the SDC model
discritizes orientation. However, rather than treating turning as primitive, in
this model landmarks are the key feature used to connect between natural lan-
guage directions and the external world. Each SDCs describes a transition
between two viewpoints, almost always with respect to a landmark: only 21%
of the SDCs in the corpus appear without an associated landmark. Landmarks
are a key part of natural language directions, so the formalism represents them
explicitly.

Dzifcak et al. (2009) created a language understanding system that simulta-
neously builds semantic structures representing both the goal of a sentence such
as “Go to the breakroom,” as well as the action needed to achieve that goal. A
combinatory categorial grammar (CCG) parser extracts both structures from
the input text. The CCG formalism enables the robot to understand complex
commands going beyond following directions, such as “Go to the breakroom
and report the location of the blue box.” This work takes a different strategy:
rather than trying to extract the entire linguistic structure from natural lan-
guage input, and understanding it completely, the system extracts a simplified,
domain specific representation. Because the representation is simple and do-
main specific, the extraction is robust to ungrammatical sentences such as “go
to hallway,” and can follow directions from untrained users with high accuracy.

4 Contributions

The key scientific contribution of this thesis is a model of spatial semantics
that enables a system to understand and use spatial language in real-world
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domains. Spatial prepositions in English will be defined in terms of a set of
features extracted from the two-dimensional geometry of a scene. I will apply
this lexicon of spatial relations to two real-world problems: natural language
video retrieval and natural language direction understanding. This effort will
show the effectiveness of the features and provide an opportunity to analyze
their performance in order to study which ones perform best. The thesis will
advance the state of the art in natural language understanding and grounding
by connecting spatial language to real-world domains.

5 Schedule

e September 14, 2009 - Submit a paper about understanding natural lan-
guage directions to HRI (Human-Robot Interaction).

e September 2009 - Proposal defense.
e October 7, 2009 - Collect corpus of paragraph descriptions of video.

e October 12, 2009 - Demo of generating natural language descriptions for
video clips. (For sponsor week.)

e November 14, 2009 - Implement SDC model on that corpus.
e November 30, 2009 - Evaluate model.

e January 31, 2010 - Submit a paper about video retrieval with longer de-
scriptions to SIGIR.

e February 1, 2010 - Thesis outline to Deb.
e February 7, 2010 - Complete introduction and contributions.
e February 14, 2010 - Complete related work chapter.

e January 22, 2010 - Submit paper analyzing spatial prepositions in direction
understanding and video retrieval, comparing their meanings, to ACL.

e February 28, 2010 - Complete chapter about all the features and their
importance.

e March 7, 2010 - Complete chapter about the different models and infer-
ence.

e March 14, 2010 - Complete chapter about evaluation.
e March 21, 2010 - Complete chapter about corpus and data collection.
e March 31, 2010 - Draft to committee.

e May, 2010 - Thesis defense
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