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Abstract—This paper proposes an algorithm that enables
robots to efficiently learn human-centric models of their envi-
ronment from natural language descriptions. Typical semantic
mapping approaches augment metric maps with higher-level
properties of the robot’s surroundings (e.g., place type, object
locations), but do not use this information to improve the metric
map. The novelty of our algorithm lies in fusing high-level
knowledge, conveyed by speech, with metric information from
the robot’s low-level sensor streams. Our method jointly estimates
a hybrid metric, topological, and semantic representation of the
environment. This semantic graph provides a common framework
in which we integrate concepts from natural language descrip-
tions (e.g., labels and spatial relations) with metric observations
from low-level sensors. Our algorithm efficiently maintains a
factored distribution over semantic graphs based upon the
stream of natural language and low-level sensor information.
We evaluate the algorithm’s performance and demonstrate that
the incorporation of information from natural language increases
the metric, topological and semantic accuracy of the recovered
environment model.

I. INTRODUCTION

Until recently, robots that operated outside the laboratory
were limited to controlled, prepared environments that explic-
itly prevent interaction with humans. There is an increasing
demand, however, for robots that operate not as machines used
in isolation, but as co-inhabitants that assist people in a range
of different activities. If robots are to work effectively as our
teammates, they must become able to efficiently and flexibly
interpret and carry out our requests. Recognizing this need,
there has been increased focus on enabling robots to interpret
natural language commands [1, 2, 3, 4, 5]. This capability
would, for example, enable a first responder to direct a micro-
aerial vehicle by speaking “fly up the stairs, proceed down the
hall, and inspect the second room on the right past the kitchen.”
A fundamental challenge is to correctly associate linguistic
elements from the command to a robot’s understanding of the
external world. We can alleviate this challenge by developing
robots that formulate knowledge representations that model
the higher-level semantic properties of their environment.

We propose an approach that enables robots to efficiently
learn human-centric models of the observed environment from
a narrated, guided tour (Fig. 1) by fusing knowledge inferred
from natural language descriptions with conventional low-level
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Fig. 1. A user giving a tour to a robotic wheelchair designed to assist residents
in a long-term care facility.

sensor data. Our method allows people to convey meaningful
concepts, including semantic labels and relations for both local
and distant regions of the environment, simply by speaking to
the robot. The challenge lies in effectively combining these
noisy, disparate sources of information. Spoken descriptions
convey concepts (e.g., “the second room on the right”) that
are ambiguous with regard to their metric associations: they
may refer to the region that the robot currently occupies, to
more distant parts of the environment, or even to aspects of the
environment that the robot will never observe. In contrast, the
sensors that robots commonly employ for mapping, such as
cameras and LIDARs, yield metric observations arising only
from the robot’s immediate surroundings.

To handle ambiguity, we propose to combine metric,
topological, and semantic environment representations into
a semantic graph. The metric layer takes the form of an
occupancy-grid that models local perceived structure. The
topological layer consists of a graph in which nodes cor-
respond to reachable regions of the environment, and edges
denote pairwise spatial relations. The semantic layer contains
the labels with which people refer to regions. This knowledge
representation is well-suited to fusing concepts from spoken
descriptions with the robot’s metric observations of its sur-
roundings.



We estimate a joint distribution over the semantic, topo-
logical and metric maps, conditioned on the language and
the metric observations from the robot’s proprioceptive and
exteroceptive sensors. The space of semantic graphs, however,
increases combinatorially with the size of the environment. We
efficiently maintain the distribution using a Rao-Blackwellized
particle filter [6] to track a factored form of the joint distri-
bution over semantic graphs. Specifically, we approximate the
marginal over the space of topologies with a set of particles,
and analytically model conditional distributions over metric
and semantic maps as Gaussian and Dirichlet, respectively.
The algorithm updates these distributions iteratively over
time using spoken descriptions and sensor measurements. We
model the likelihood of natural language utterances with the
Generalized Grounding Graph (G3) framework [2]. Given a
description, the G3 model induces a distribution over semantic
labels for the nodes in the semantic graph that we then use
to update the Dirichlet distribution. The algorithm uses the
resulting semantic distribution to propose modifications to the
graph, allowing semantic information to influence the metric
and topological layers.

We demonstrate our algorithm through three “guided tour”
experiments within mixed indoor-outdoor environments. The
results demonstrate that by effectively integrating knowledge
from natural language descriptions, the algorithm efficiently
learns semantic environment models and achieves higher ac-
curacy than existing methods.

II. RELATED WORK

Several researchers have augmented lower-level metric
maps with higher-level topological and/or semantic informa-
tion [7, 8, 9, 10, 11]. Zender et al. [9] describe a framework for
office environments in which the semantic layer models room
categories and their relationship with the labels of objects
within rooms. The system can then classify room types based
upon user-asserted object labels. Pronobis and Jensfelt [8]
describe a multi-modal probabilistic framework incorporating
semantic information from a wide variety of modalities includ-
ing detected objects, place appearance, and human-provided
information. These approaches focus on augmenting a metric
map with semantic information, rather than jointly estimating
the two representations. They do not demonstrate improvement
of metric accuracy using semantic information.

The problem of mapping linguistic elements to their cor-
responding manifestation in the external world is referred
to as the symbol grounding problem [12]. In the robotics
domain, the grounding problem has been mainly addressed in
the context of following natural language commands [1, 2, 3,
13, 14, 15, 16, 17]. Cantrell et al. [18] described an approach
that updates the symbolic state, but not the metric state, of the
environment.

A contribution of the proposed algorithm is a probabilistic
framework that uses learned semantic properties of the envi-
ronment to efficiently identify loop closures, a fundamental
problem in simultaneous localization and mapping (SLAM).
Semantic observations, however, are not the only information

Fig. 2. An example of a semantic graph.

source useful for place recognition. A number of solutions
exist that identify loop closures based upon visual appear-
ance [19, 20] and local metric structure [21], among others.

III. BUILDING SEMANTIC MAPS WITH LANGUAGE

This section presents our approach to maintaining a distri-
bution over semantic graphs, our environment representation
that consists jointly of metric, topological, and semantic maps.

A. Semantic Graphs

We model the environment as a set of places, regions
in the environment a fixed distance apart that the robot
has visited. We represent each place by its pose xi in a
global reference frame, and a label li (e.g., “gym,” “hall-
way”). More formally, we represent the environment by the
tuple {G,X,L} that constitutes the semantic graph. The graph
G = (V,E) denotes the environment topology with a vertex
V = {v1, v2, . . . , vt} for each place that the robot has visited,
and undirected edges E that signify observed relations be-
tween vertices, based on metric or semantic information. The
vector X = [x1, x2, . . . , xt] encodes the pose associated with
each vertex. The set L = {l1, l2, . . . , lt} includes the semantic
label li associated with each vertex. The semantic graph
(Fig. 2) grows as the robot moves through the environment.
Our method adds a new vertex vt+1 to the topology after the
robot travels a specified distance, and augments the vector of
poses and collection of labels with the corresponding pose
xt+1 and labels lt+1, respectively. This model resembles the
pose graph representation commonly employed by SLAM
solutions [22].

B. Distribution Over Semantic Graphs

We estimate a joint distribution over the topology Gt,
the vector of locations Xt, and the set of labels Lt. For-
mally, we maintain this distribution over semantic graphs
{Gt, Xt, Lt} at time t conditioned upon the history of metric
exteroceptive sensor data zt = {z1, z2, . . . , zt}, odometry
ut = {u1, u2, . . . , ut}, and natural language descriptions
λt = {λ1, λ2, . . . , λt}:

p(Gt, Xt, Lt|zt, ut, λt). (1)

Each λi denotes a (possibly null) utterance, such as “This
is the kitchen,” or “The gym is down the hall.” We factor



the joint posterior into a distribution over the graphs and a
conditional distribution over the node poses and labels:

p(Gt, Xt, Lt|zt, ut, λt) = p(Lt|Xt, Gt, z
t, ut, λt)

× p(Xt|Gt, zt, ut, λt)× p(Gt|zt, ut, λt) (2)

This factorization explicitly models the dependence of the
labels on the topology and place locations, as well as the
metric map’s dependence on the constraints induced by the
topology.

The space of possible graphs for a particular environment
is spanned by the allocation of edges between nodes. The
number of edges, however, can be exponential in the number
of nodes. Hence, maintaining the full distribution over graphs
is intractable for all but trivially small environments. To
overcome this complexity, we assume as in Ranganathan and
Dellaert [23] that the distribution over graphs is dominated by
a small subset of topologies while the likelihood associated
with the majority of topologies is nearly zero. In general,
this assumption holds when the environment structure (e.g.,
indoor, man-made) or the robot motion (e.g., exploration)
limits connectivity. In addition, conditioning the graph on the
spoken descriptions further increases the peakedness of the
distribution because it decreases the probability of edges when
the labels and semantic relations are inconsistent with the
language.

The assumption that the distribution is concentrated around
a limited set of topologies suggests the use of particle-
based methods to represent the posterior over graphs,
p(Gt|zt, ut, λt). Inspired by the derivation of Ranganathan
and Dellaert [23] for topological SLAM, we employ Rao-
Blackwellization to model the factored formulation (2),
whereby we accompany the sample-based distribution over
graphs with analytic representations for the conditional pos-
teriors over the node locations and labels. Specifically, we
represent the posterior over the node poses p(Xt|Gt, zt, ut, λt)
by a Gaussian, which we parametrize in the canonical form.
We maintain a Dirichlet distribution that models the posterior
distribution over the set of node labels p(Lt|Xt, Gt, z

t, ut, λt).
We represent the joint distribution over the topology, node

locations, and labels as a set of particles:

Pt = {P (1)
t , P

(2)
t , . . . , P

(n)
t }. (3)

Each particle P (i)
t ∈ Pt consists of the set

P
(i)
t =

{
G

(i)
t , X

(i)
t , L

(i)
t , w

(i)
t

}
, (4)

where G(i)
t denotes a sample from the space of graphs; X(i)

t

is the analytic distribution over locations; L(i)
t is the analytic

distribution over labels; and w(i)
t is the weight of particle i.

Algorithm 1 outlines the process by which we recursively
update the distribution over semantic graphs (2) to reflect the
latest robot motion, metric sensor data, and utterances. The
following sections explain each step in detail.

Algorithm 1: Semantic Mapping Algorithm

Input: Pt−1 =
{
P

(i)
t−1

}
, and (ut, zt, λt), where

P
(i)
t−1 =

{
G

(i)
t−1, X

(i)
t−1, L

(i)
t−1, w

(i)
t−1

}
Output: Pt =

{
P

(i)
t

}
for i = 1 to n do

1) Employ proposal distribution
p(Gt|G(i)

t−1, z
t−1, ut, λt) to propagate the graph

sample G(i)
t−1 according to odometry ut and current

distributions over labels L(i)
t−1 and poses X(i)

t−1.

2) Update the Gaussian distribution over the node
poses X(i)

t according to the constraints induced by
the newly-added graph edges.

3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t according to the language λt.

4) Compute the new particle weight w(i)
t based upon

the previous weight w(i)
t−1 and the metric data zt.

end

Normalize weights and resample if needed.

C. Augmenting the Graph using the Proposal Distribution

Given the posterior distribution over the semantic graph at
time t−1, we first compute the prior distribution over the graph
Gt. We do so by sampling from a proposal distribution that
is the predictive prior of the current graph given the previous
graph and sensor data, and the recent odometry and language:

p(Gt|Gt−1, z
t−1, ut, λt) (5)

We formulate the proposal distribution by first augmenting
the graph to reflect the robot’s motion. Specifically, we add a
node vt to the graph that corresponds to the robot’s current
pose with an edge to the previous node vt−1 that represents
the temporal constraint between the two poses. We denote this
intermediate graph as G−t . Similarly, we add the new pose as
predicted by the robot’s motion model to the vector of poses
X−t and the node’s label to the label vector L−t according to
the process described in Subsection III-E.2

We formulate the proposal distribution (5) in terms of the
likelihood of adding edges between nodes in this modified
graph G−t . The system considers two forms of additional
edges: first, those suggested by the spatial distribution of nodes
and second, by the semantic distribution for each node.

1) Spatial Distribution-based Constraints: We first propose
connections between the robot’s current node vt and others
in the graph based upon their metric location. We do so by
sampling from a distance-based proposal distribution biased
towards nodes that are spatially close. Doing so requires
marginalization over the distances dt between node pairs, as
shown in equation (6) (we have omitted the history of language

2The label update explains the presence of the latest language λt.



observations λt, metric measurements zt−1, and odometry
ut for brevity). Equation (6a) reflects the assumption that
additional edges expressing constraints involving the current
node etj /∈ E− are conditionally independent. Equation (6c)
approximates the marginal in terms of the distance between
the two nodes associated with the additional edge.

pa(Gt|G−t , zt−1, ut, λt) =
∏

j:etj /∈E−

p(Gtjt |G−t ) (6a)

=
∏

j:etj /∈E−

∫
X−

t

p(Gtjt |X−t , G−t , ut)p(X−t |G−t ) (6b)

≈
∏

j:etj /∈E−

∫
dtj

p(Gtjt |dtj , G−t )p(dtj |G−t ), (6c)

The conditional distribution p(Gtjt |dtj , Gt−1, z
t−1, ut) ex-

presses the likelihood of adding an edge between nodes vt
and vj based upon their spatial location. We represent the
distribution for a particular edge between vertices vi and vj a
distance dij = |xi − xj |2 apart as

p(Gijt |dij , G−t , zt−1, ut) ∝ 1

1 + γd2
ij

, (7)

where γ specifies distance bias. For the evaluations in this
paper, we use γ = 0.2. We approximate the distance prior
p(dtj |G−t , zt−1, ut) with a folded Gaussian distribution. The
algorithm samples from the proposal distribution (6) and adds
the resulting edges to the graph. In practice, we use laser scan
measurements to estimate the corresponding transformation.

2) Semantic Map-based Constraints: A fundamental con-
tribution of our method is the ability for the semantic map
to influence the metric and topological maps. This capability
results from the use of the label distributions to perform
place recognition. The algorithm identifies loop closures by
sampling from a proposal distribution that expresses the se-
mantic similarity between nodes. In similar fashion to the spa-
tial distance-based proposal, computing the proposal requires
marginalizing over the space of labels:

pa(Gt|G−t , zt−1, ut, λt) =
∏

j:etj /∈E−

p(Gtjt |G−t , λt) (8a)

=
∏

j:etj /∈E−

∑
L−

t

p(Gtjt |L−t , G−t , λt)p(L−t |G−t ) (8b)

≈
∏

j:etj /∈E−

∑
l−t ,l

−
j

p(Gtjt |l−t , l−j , G
−
t )p(l−t , l

−
j |G

−
t ), (8c)

where we have omitted the metric, odometry, and language
inputs for clarity. The first line follows from the assumption
that additional edges that express constraints to the current
node etj /∈ E− are conditionally independent. The second line
represents the marginalization over the space of labels, while
the last line results from the assumption that the semantic edge
likelihoods depend only on the labels for the vertex pair. We
model the likelihood of edges between two nodes as non-zero
for the same label:

Fig. 3. Depicted as pie charts, the nodes’ label distributions are used to
propose new graph edges. The algorithm rejects invalid edges that result from
ambiguous labels (black) and adds the valid edge (green) to the graph.

p(Gtjt |lt, lj) =

{
θlt if lt = lj

0 if lt 6= lj
(9)

where θlt denotes the label-dependent likelihood that edges ex-
ist between nodes with the same label. In practice, we assume
a uniform saliency prior for each label. Equation (8c) then
measures the cosine similarity between the label distributions.

We sample from the proposal distribution (8a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we estimate the transformation associated with each
edge based upon local metric observations. Figure 3 shows
several different edges sampled from the proposal distribution
at one stage of a tour. Here, the algorithm identifies candidate
loop closures between different “entrances” in the environment
and accepts those (shown in green) whose local laser scans
are consistent. Note that some particles may add invalid
edges (e.g., due to perceptual aliasing), but their weights will
decrease as subsequent measurements become inconsistent
with the hypothesis.

D. Updating the Metric Map Based on New Edges

The proposal step results in the addition, to each particle,
of a new node at the current robot pose, along with an edge
representing its temporal relationship to the previous node. The
proposal step also hypothesizes additional loop-closure edges.
Next, the algorithm incorporates these relative pose constraints
into the Gaussian representation for the marginal distribution
over the map

p(Xt|Gt, zt, ut, λt) = N−1(Xt; Σ−1
t , ηt), (10)

where Σ−1
t and ηt are the information (inverse covariance)

matrix and information vector that parametrize the canonical
form of the Gaussian. We utilize the iSAM algorithm [22] to
update the canonical form by iteratively solving for the QR
factorization of the information matrix.



E. Updating the Semantic Map Based on Natural Language
Next, the algorithm updates each particle’s analytic distri-

bution over the current set of labels Lt = {lt,1, lt,2, . . . , lt,t}.
This update reflects label information conveyed by spoken
descriptions as well as that suggested by the addition of edges
to the graph. In maintaining the distribution, we assume that
the node labels are conditionally independent:

p(Lt|Xt, Gt, z
t, ut, λt) =

t∏
i=1

p(lt,i|Xt, Gt, z
t, ut, λt). (11)

This assumption ignores dependencies between labels asso-
ciated with nearby nodes, but simplifies the form for the
distribution over labels associated with a single node. We
model each node’s label distribution as a Dirichlet distribution
of the form

p(lt,i|λ1 . . . λt) = Dir(lt,i;α1 . . . αK)

=
Γ(

∑K
1 αi)

Γ(α1)× . . .× Γ(αK)

K∏
k=1

lαk−1
t,i,k . (12)

We initialize parameters α1 . . . αK to 0.2, corresponding to a
uniform prior over the labels. Given subsequent language, this
favors distributions that are peaked around a single label.

We consider two forms of natural language inputs. The first
are simple utterances that refer only to the robot’s current
position, such as “This is the gym.” The second are expressions
that convey semantic information and spatial relations associ-
ated with possibly distant regions in the environment, such as
“The kitchen is down the hall,” which include a figure (“the
kitchen”) and landmark (“the hall”). We have implemented our
complex language system with the words “through,” “down,”
“away from,” and “near.”

To understand the expression “The kitchen is down the hall,”
the system must first ground the landmark phrase “the hall”
to a specific object in the environment. It must then infer an
object in the environment that corresponds to the word “the
kitchen.” One can no longer assume that the user is referring to
the current location as “the kitchen” (referent) or that the hall’s
(landmark) location is known. We use the label distribution
to reason over the possible nodes that denote the landmark.
We account for the uncertainty in the figure by formulating a
distribution over the nodes in the topology that expresses their
likelihood of being the referent. We arrive at this distribution
using the G3 framework [2] to infer groundings for the
different parts of the natural language description. In the
case of this example, the framework uses the multinomial
distributions over labels to find a node corresponding to “the
hall” and induces a probability distribution over kitchens based
on the nodes that are “down the hall” from the identified
landmark nodes.

For both types of expressions, the algorithm updates the
semantic distribution according to the rule

p(lt,i|λt = (k, i), lt−1,i) =

Γ(
∑K

1 αt−1
i +∆α)

Γ(αt−1
1 )×...×Γ(αt−1

k +∆α)×...×Γ(αK)

K∏
k=1

lαk−1
t,i,k ,

(13)

where ∆α is set to the likelihood of the grounding. In the
case of simple language, the grounding is trivial, and we
use ∆α = 1 for the current node in the graph. For complex
expressions, we use the likelihood from G3 for ∆α.

G3 creates a vector of grounding variables Γ for each
linguistic constituent in the natural language input λ. The top-
level constituent γa corresponds to the graph node to which
the natural language input refers. Our aim is to find:

∆α = p(γa = xi|λ) (14)

We compute this probability by marginalizing over groundings
for other variables in the language:

∆α =
∑
Γ/γa

p(Γ|λ). (15)

G3 computes this distribution by factoring according to the
linguistic structure of the natural language command:

∆α =
∑
Γ/γa

1

Z

∏
m

f(γm|λm) (16)

Tellex et al. [2] describe the factorization process in detail.
In addition to input language, we also update the label

distribution for a node when the proposal step adds an edge
to another node in the graph. These edges may correspond to
temporal constraints that exist between consecutive nodes, or
they may denote loop closures based upon the spatial distance
between nodes that we infer from the metric map. Upon adding
an edge to a node for which we have previously incorporated
a direct language observation, we propagate the observed label
to the newly connected node using a value of ∆α = 0.5.

F. Updating the Particle Weights

Having proposed a new set of graphs {G(i)
t } and updated

the analytic distributions over the metric and semantic maps
for each particle, we update their weights. The update follows
from the ratio between the target distribution over the graph
and the proposal distribution, and can be shown to be

w̃
(i)
t = p(zt|G(i)

t , zt−1, ut, λt) · w(i)
t−1, (17)

where w(i)
t−1 is the weight of particle i at time t− 1 and w̃(i)

t

denotes the weight at time t. We evaluate the measurement
likelihood (e.g., of LIDAR) by marginalizing over the node
poses

p(zt|G(i)
t , zt−1, ut, λt) =

∫
Xt

p(zt|X(i)
t , G

(i)
t , zt−1, ut, λt)

× p(X(i)
t |G

(i)
t , zt−1, ut, λt)dXt, (18)

which allows us to utilize the conditional measurement model.
In the experiments presented next, we compute the conditional
likelihood by matching the scans between poses.

After calculating the new importance weights, we periodi-
cally perform resampling in which we replace poorly-weighted
particles with those with higher weights according to the
algorithm of Doucet et al. [6].
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Fig. 4. Maximum likelihood semantic graphs for the small tour. In contrast to (a) the baseline algorithm, our method incorporates key loop closures based
upon (b) simple and (c) complex descriptions that result in metric, topological, and semantic maps that are noticeably more accurate. The dashed line denotes
the approximate ground truth trajectory. The inset presents a view of the semantic and topological maps near the gym region.

IV. RESULTS

We evaluate our algorithm through three experiments in
which a human gives a robotic wheelchair (Fig. 1) [11] a
narrated tour of buildings on the MIT campus. The robot was
equipped with a forward-facing LIDAR, wheel encoders, and a
microphone. In the first two experiments, the robot was manu-
ally driven while the user interjected textual descriptions of the
environment. In the third experiment, the robot autonomously
followed the human who provided spoken descriptions. Speech
recognition was performed manually.

A. Small Tour

In the first experiment (Fig. 4), the user started at the
elevator lobby, visited the gym, exited the building, and later
returned to the gym and elevator lobby. The user provided
textual descriptions of the environment, twice each for the
elevator lobby and gym regions. We compare our method with
different types of language input against a baseline algorithm.

1) No Language: We consider a baseline approach that
directly labels nodes based upon simple language, but does
not propose edges based upon label distributions. The baseline
emulates typical solutions by augmenting a state-of-the-art
iSAM metric map with a semantic layer without allowing
semantic information to influence lower layers.

Figure 4(a) presents the resulting metric, topological, and
semantic maps that constitute the semantic graph for the
highest-weighted particle. The accumulation of odometry drift
results in significant errors in the estimate for the robot’s pose
when revisiting the gym and elevator lobby. Without reasoning
over the semantic map, the algorithm is unable to detect loop
closures. This results in significant errors in the metric map
as well as the semantic map, which hallucinates two separate
elevator lobbies (purple) and gyms (orange).

2) Simple Language: We evaluate our algorithm in the
case of simple language with which the human references the
robot’s current position when describing the environment.

Figure 4(b) presents the semantic graph corresponding to
the highest-weighted particle estimated by our algorithm. By
considering the semantic map when proposing loop closures,
the algorithm recognizes that the second region that the user

labeled as the gym is the same place that was labeled earlier in
the tour. At the time of receiving the second label, drift in the
odometry led to significant error in the gym’s location much
like the baseline result (Fig. 4(a)). The algorithm immediately
corrects this error in the semantic graph by using the label
distribution to propose loop closures at the gym and elevator
lobby, which would otherwise require searching a combina-
torially large space. The resulting maximum likelihood map
is topologically and semantically consistent throughout and
metrically consistent for most of the environment. The excep-
tion is the courtyard, where only odometry measurements were
available, causing drift in the pose estimate. Attesting to the
model’s validity, the ground truth topology receives 92.7% of
the probability mass and, furthermore, the top four particles
are each consistent with the ground truth.

3) Complex Language: Next, we consider algorithm’s per-
formance when natural language descriptions reference loca-
tions that can no longer be assumed to be the robot’s current
position. Specifically, we replaced the initial labeling of the
gym with an indirect reference of the form “the gym is
down the hallway,” with the hallway labeled through simple
language. The language inputs are otherwise identical to those
employed for the simple language scenario and the baseline
evaluation.

The algorithm incorporates complex language into the se-
mantic map using the G3 framework to infer the nodes in
the graph that constitute the referent (i.e., the “gym”) and
the landmark (i.e., the “hallway”). This grounding attributes
a non-zero likelihood to all nodes that exhibit the relation of
being “down” from the nodes identified as being the “hallway.”
The inset view in Fig. 4(c) depicts the label distributions that
result from this grounding. The algorithm attributes the “gym”
label to multiple nodes in the semantic graph as a result of
the ambiguity in the referent as well as the G3 model for
the “near” relation. When the user later labels the region
after returning from the courtyard, the algorithm proposes
a loop closure despite significant drift in the estimate for
the robot’s pose. As with the simple language scenario, this
results in a semantic graph for the environment that is accurate
topologically, semantically, and metrically (Fig. 4(c)).
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(a) Ground Truth
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Fig. 5. Maximum likelihood semantic graphs for (a) the large tour experiment. (b) The result of the baseline algorithm with letter pairs that indicate map
components that correspond to the same environment region. (c) Our method with inset views that indicate the inclusion of two complex language descriptions.

B. Large Tour

The second experiment (Fig. 5) considers an extended tour
of MIT’s Stata Center, two neighboring buildings, and their
shared courtyard. The robot visited several places with the
same semantic attributes (e.g., elevator lobbies, entrances, and
cafeterias) and visited some places more than once (e.g., one
cafeteria and the amphitheater). We accompanied the tour with
20 descriptions of the environment that included both simple
and complex language.

As with the shorter tour, we compare our method against
the baseline semantic mapping algorithm. Figure 5(b) presents
the baseline estimate for the environment’s semantic graph.
Without incorporating complex language or allowing semantic
information to influence the topological and metric layers,
the resulting semantic graph exhibits significant errors in
the metric map, an incorrect topology, and aliasing of the
labeled places that the robot revisited. In contrast, Fig. 5(c)
demonstrates that, by using semantic information to propose
constraints in the topology, our algorithm yields correct topo-
logical and semantic maps, and metric maps with notably less
error. The resulting model assigns 93.5% of the probability
mass to the ground truth topology, with each of the top five
particles being consistent with ground truth.

The results highlight the ability of our method to tolerate
ambiguities in the labels assigned to different regions of the
environment. This is a direct consequence of the use of se-
mantic information, which allows the algorithm to significantly
reduce the number of candidate loop closures that is otherwise
combinatorial in the size of the map. This enables the particle
filter to efficiently model the distribution over graphs. While
some particles may propose invalid loop closures due to
ambiguity in the labels, the algorithm is able to recover with
a manageable number of particles.

For utterances with complex language, the G3 framework
was able to generate reasonable groundings for the referent
locations. However, due to the simplistic way in which we
define regions, groundings for “the lobby” were not entirely
accurate (Fig. 5(c), inset) as grounding valid paths that go
“through the entrance” is sensitive to the local metric structure
of the landmark (entrance).

C. Autonomous Tour

In the third experiment, the robot autonomously followed
a user during a narrated tour along a route similar to that of
the first experiment [24]. Using a headset microphone, the user
provided spoken descriptions of the environment that included
ambiguous references to regions with the same label (e.g.,
elevator lobbies, entrances). The descriptions included both
simple and complex utterances that were manually annotated.
Figure 6 presents the maximum likelihood semantic graph that
our algorithm estimates. By incorporating information that the
natural language descriptions convey, the algorithm recognizes
key loop closures that result in accurate semantic maps. The
resulting model assigns 82.9% of the probability mass to the
ground truth topology, with each of the top nine particles being
consistent with ground truth.

V. CONCLUSION

We described a semantic mapping algorithm enabling robots
to efficiently learn metrically accurate semantic maps from nat-
ural language descriptions. The algorithm infers rich models

20 m

Fig. 6. Maximum likelihood map for the autonomous tour.



of an environment from complex expressions uttered during
a narrated tour. Currently, we assume that the robot has
previously visited both the landmark and the referent locations,
and that the user has already labeled the landmark. As such, the
algorithm can incorrectly attribute labels in situations where
the user refers to regions that, while they may be visible,
the robot has not yet visited. This problem results from the
algorithm needing to integrate the spoken information in situ.
We are currently working on modifying our approach to allow
the user to provide a stream of spoken descriptions, and for the
robot to later ground the description with sensor observations
as needed during environment exploration. This description
need not be situated; such an approach offers the benefit that
the robot can learn semantic properties of the environment
without requiring that the user provide a guided tour.

At present, our method uses traditional sensors to observe
only geometric properties of the environment. We are building
upon techniques in scene classification, appearance modeling,
and object detection to learn more complete maps by inferring
higher-level semantic information from LIDAR and camera
data. We are also working toward automatic region segmenta-
tion in order to create more meaningful topological entities.

Spoken descriptions can convey information about space
that includes the types of places, their colloquial names, their
locations within the environment, and the types of objects they
contain. Our current approach supports assigning labels and
spatial relationships to the environment. A direction for future
work is to extend the scope of admissible descriptions to in-
clude those that convey general properties of the environment.
For example, the robot should be able to infer knowledge
from statements such as “you can find computers in offices,”
or “nurses’ stations tend to be located near elevator lobbies.”
Such an extension may build upon existing data-driven efforts
toward learning ontologies that describe properties of space.

In summary, we proposed an approach to learning human-
centric maps of an environment from user-provided natural
language descriptions. The novelty lies in fusing high-level
information conveyed by a user’s speech with low-level ob-
servations from traditional sensors. By jointly estimating the
environment’s metric, topological, and semantic structure, we
demonstrated that the algorithm yields accurate representations
of its environment.
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