
1 References and further reading

Tutorials, talks and links

• by Jeff Bilmes (at NIPS):
http://nips.cc/Conferences/2013/Program/event.php?ID=3688

• by Andreas Krause and Stefanie Jegelka (at ICML):
http://www.cs.berkeley.edu/˜stefje/submodularity_icml.html

• by Francis Bach (MLSS):
http://www.di.ens.fr/˜fbach/submodular_fbach_mlss2012.pdf

• by Jan Vondrák (Modern Aspects of Submodularity workshop, 2012):
http://researcher.watson.ibm.com/researcher/files/us-jvondrak/submod-tutorial-1.
pdf and http://researcher.watson.ibm.com/researcher/files/us-jvondrak/submod-tutorial-2.
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• list of more submodularity papers than listed here: http://www.cs.berkeley.edu/˜stefje/references.
html

Early papers on submodularity; books and surveys

[Bac13] F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Foundations and
Trends in Machine Learning, 2013.

[Cho54] G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–295, 1954.

[Edm70] J. Edmonds. Combinatorial Structures and Their Applications, chapter Submodular Functions, Matroids
and Certain Polyhedra, pages 69–87. Gordon and Breach, 1970.

[Fuj05] S. Fujishige. Submodular functions and optimization. Number 58 in Annals of Discrete Mathematics.
Elsevier Science, 2 edition, 2005.

[KG14] Andreas Krause and Daniel Golovin. Tractability: Practical Approaches to Hard Problems, chapter Sub-
modular Function Maximization. Cambridge University Press, 2014.

[Lov83] L. Lovász. Mathematical programming – The State of the Art, chapter Submodular Functions and Con-
vexity, pages 235–257. Springer, 1983.

[Sha71] L. S. Shapley. Cores of convex games. International Journal of Game Theory, 1(1):11–26, 1971.

Submodularity and convexity, submodular minimization

[Bac10] F. Bach. Structured sparsity-inducing norms through submodular functions. In Advances in Neural
Information Processing Systems (NIPS), 2010.

[Bac13] F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Foundations and
Trends in Machine Learning, 2013.

[CD09] A. Chambolle and J. Darbon. On total variation minimization and surface evolution using parametric
maximum flows. Int. Journal of Computer Vision, 84(3), 2009.

[Edm70] J. Edmonds. Combinatorial Structures and Their Applications, chapter Submodular Functions, Matroids
and Certain Polyhedra, pages 69–87. Gordon and Breach, 1970.

1



[FI11] S. Fujishige and S. Isotani. A submodular function minimization algorithm based on the minimum-
norm base. Pacific Journal of Optimization, 7:3–17, 2011.

[Fuj05] S. Fujishige. Submodular functions and optimization. Number 58 in Annals of Discrete Mathematics.
Elsevier Science, 2 edition, 2005.

[GJ85] F. Granot and A. F. Veinott Jr. Substitutes, complements, and ripples in network flows. Math. of OR,
10:471–497, 1985.

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid algorithm and its consequences in combina-
torial optimization. Combinatorica, 1:499–513, 1981.

[GLS84] M. Grötschel, L. Lovász, and A. Schrijver. Corrigendum to the paper “the ellipsoid algorithm and its
consequences in combinatorial optimization”. Combinatorica, 4:291–295, 1984.

[Hoc01] D.S. Hochbaum. An efficient algorithm for image segmentation, Markov random fields and related
problems. Journal of the ACM, 48(4):686–701, 2001.

[IFF01] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimizing
submodular functions. Journal of the ACM, 48:761–777, 2001.

[Lov83] L. Lovász. Mathematical programming – The State of the Art, chapter Submodular Functions and Con-
vexity, pages 235–257. Springer, 1983.

[McC05] S. T. McCormick. Submodular function minimization. Discrete Optimization, 12:321–391, 2005.

[Orl09] J. B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization. Math-
ematical Programming, 118(2):237–251, 2009.

[Que98] W. Queyranne. Minimizing symmetric submodular functions. Mathematical Programming, 82:3–12,
1998.

[Sch00] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial
time. J. Combin. Theory Ser. B, 80:346–355, 2000.

[Top78] D.M. Topkis. Minimizing a submodular function on a lattice. Operations Research, 26:305–321, 1978.

[Top98] D.M. Topkis. Supermodularity and Complementarity. Princeton University Press, 1998.

Minimizing a sum of submodular functions

[EN15] A. Ene and H. Nguyen. Random coordinate descent methods for minimizing decomposable submod-
ular functions. In Int. Conference on Machine Learning (ICML), 2015.

[JBS13] S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly submodular optimization. In
Advances in Neural Information Processing Systems (NIPS), 2013.

[Kol12] V. Kolmogorov. Minimizing a sum of submodular functions. Discrete Applied Mathematics,
160(15):2246–2258, 2012.

[KPT11] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via dual decom-
position. IEEE Trans. on Pattern Analysis and Machine Intelligence, 33(3):531–552, 2011.

[NJJ14] N. Nishihara, S. Jegelka, and M.I. Jordan. On the linear convergence rate of decomposable submodu-
lar function minimization. In Advances in Neural Information Processing Systems (NIPS), 2014.

[SK10] P. Stobbe and A. Krause. Efficient minimization of decomposable submodular functions. In Advances
in Neural Information Processing Systems (NIPS), 2010.

[SSKS11] B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnörr. A study of Nesterov’s scheme for Lagrangian
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