6.883 Learning with Combinatorial Structure

Stefanie Jegelka
Organization

• participate: questions, discussion, ... highly welcome! 😊

• class website: http://people.csail.mit.edu/stefje/fall15/

• Piazza for Q&A: piazza.com/mit/fall2015/6883 please sign up!

• Listeners: register to access class materials

• **Grade**: 45% homework, 45% project, 10% scribe

• **Homework**: ok to discuss in groups, but each person must hand in a solution & acknowledge collaborations

• **TA**: Zi Wang, office hours will be posted

• If you email me: put 6.883 in subject
Organization

- textbook & class material: no single one; material will be pointed out as we go
- we will discuss foundations & (very) recent research papers

Homework 0:
- fill out the survey
- sign up
What is this class about?
What is this class about?

- Recall: regression / classification

Observe samples \((x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)\).

\(x_i \in \mathbb{R}^d\). regression: \(y_i \in \mathbb{R}\), classification: \(y_i \in \{0, 1\}\)

Problem: find a function \(f \in \mathcal{F}\) that predicts \(y\) well: \(\hat{y} = f(x)\)

\text{e.g. linear function } f(x) = w^\top x

\text{minimize } \mathbb{E}[ext{loss}(f(x), y)]

1. we can do this (with enough samples)
2. ... if loss is convex
Example 1: Structured prediction

Observe samples \((x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)\).

find a function that predicts \(y\) from \(x\): \(\hat{y} = f(x)\)

What if \(y\) is not a scalar?
Structured prediction

Observe samples \((x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)\).

find a function that predicts \(y\) from \(x\): \(\hat{y} = f(x)\)

What if \(y\) is not a scalar?

\[
\begin{array}{cc}
\text{x} & \text{y} \\
\end{array}
\]

5' - GCT TAC GCC GCC ACG ACC TAC CTG TGC GCC GCC GAC CTC CTC GAC ACC GTC GAC TGC GTC TGT GGC GAC CGC GCC TTC TAC TTC AGC AGG CCC GCA AGC GTG TGT ACC CGC AGC CGT GCC ATC GTT GAG GAG TSC TGT TTC CGC AGC TGT GAC CTC GCC CTC CTG GAG ACG TAC TGT GCT ACC CCC GGC AAG TCC GAG -3'.
Structured prediction

Observe samples \((x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)\).

Find a function that predicts \(y\) from \(x\): \(\hat{y} = f(x)\)

\(y = (y^1, \ldots, y^d), \quad y^i \in \mathcal{Y}^i\)

Components \(y^i\) interdependent and often discrete

Example formulation:

\[f(x) = \operatorname{arg\,max}_{y \in \mathcal{Y}} g(x, y) \]

E.g. \(g(x, y) = p(y|x, \theta)\)

\[g(x, y) = w^\top \phi(x, y) \]

\(\mathcal{Y} = \text{all matchings} \)

\(y = (1, 0, 0, \ldots, 0, 1, 0, \ldots, 0)\)
Observe samples $(x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)$.
find a function that predicts y from x: $\hat{y} = f(x)$

$y = (y^1, \ldots, y^d), \ y^i \in \mathcal{Y}^i$

components y^i interdependent and often discrete

Example formulation:

$$f(x) = \arg \max_{y \in \mathcal{Y}} g(x, y)$$

combinatorial optimization problem
-- can we solve this?

can we learn such a function?

e.g. $g(x, y) = p(y|x, \theta)$

$$g(x, y) = w^\top \phi(x, y)$$
Another example
Example 2: High-dimensional data

\[y = Xw + \epsilon \]

e.g. \(\hat{w} \in \arg \min_w \|Xw - y\|^2 \)
High-dimensional data

\[y = Xw + \epsilon \]

\[\begin{array}{c}
\begin{array}{c}
\vdots \\
y_i \\
\vdots \\
m \times 1
\end{array} \\
= \\
\begin{array}{c}
\vdots \\
x_i^T \quad \quad \quad \quad \quad \quad \quad \quad \quad m \times d
\end{array}
\end{array}\]

\[\hat{w} \in \arg \min_w \|Xw - y\|^2\]

without noise: infinitely many solutions! (a whole subspace)
High-dimensional data

\[y = Xw + \epsilon \]

\[
\begin{pmatrix}
\vdots \\
 y_i \\
 m \\
\end{pmatrix}
\begin{pmatrix}
\vdots \\
 x_i^T \\
 d \\
\end{pmatrix}
= \begin{pmatrix}
\vdots \\
 S \\
 d \\
\end{pmatrix} = 0
\]

e.g. \(\hat{w} \in \text{arg min}_w \|Xw - y\|^2 \)

without noise: infinitely many solutions! (a whole subspace)

key insight: \(w \) is not arbitrary – only \(k \) nonzero entries
High-dimensional data

\[y = Xw + \epsilon \]

e.g. \(\hat{w} \in \arg \min_w \| Xw - y \|^2 \)

s.t. \(\| w \|_0 \leq k \)

combinatorial optimization problem!

More generally:

- signal is a sparse combination of “atoms”
 low-rank matrix, sparse graph, ...
- signal has certain sparsity pattern

How phrase this?
Example 3: Sensing & monitoring
Sensing & monitoring

\[y = x + \epsilon \]

\[p(x, y) = p(y_1, \ldots, y_n) p(x_1, \ldots, x_n | y_1, \ldots, y_n) \]

pick set \(A \) of locations to maximize

\[F(A) = I(x; y_A) = H(x) - H(x | y_A) \]

uncertainty before observing

uncertainty after observing
Recap ...

ground set of items \mathcal{V}
subsets $S \subseteq \mathcal{V}$
constraints: $|S| \leq k$, S a matching, …
set function: $F(S)$ $F : 2^\mathcal{V} \rightarrow \mathbb{R}_+$

- Mathematical models?
- Algorithms?
- Analysis?

this may be hard ... 😞
What is “nice”?

Can we still use convex optimization? How?

We’ll learn about appropriate algorithms & their analysis
What makes our setting easier?

Mathematical structure.

• Some combinatorial problems are nice. Which?

• Relaxations

\[S \subseteq \mathcal{V}, \quad x = 1_S \]

Is this easier? It depends. Geometry important for statistics & computation.
Set functions

$F(S)$

“discrete analog of convexity”?
Convex functions (Lovász, 1983)

- “occur in many models” in economy, engineering and other sciences”, “often the only nontrivial property that can be stated in general”
- preserved under many operations and transformations: larger effective range of results
- sufficient structure for a “mathematically beautiful and practically useful theory”
- efficient minimization

“It is less apparent, but we claim and hope to prove to a certain extent, that a similar role is played in discrete optimization by submodular set-functions“ [...] they share the above four properties.
Marginal gain

- Given set function
 \[F : 2^V \rightarrow \mathbb{R} \]
- Marginal gain:
 \[F(s|A) = F(A \cup \{s\}) - F(A) \]
Diminishing marginal gains

placement $A = \{1,2\}$

placement $B = \{1,\ldots,5\}$

Big gain

new sensor s

small gain

$A \subseteq B$

$$F(A \cup s) - F(A) \geq F(B \cup s) - F(B)$$
Submodularity

\[A \subseteq B \]

\[
F(A \cup s) - F(A) \geq F(B \cup s) - F(B)
\]

diminishing marginal costs

extra cost: one drink

extra cost: free refill 😊
Supermodular set functions

- **Submodularity**: diminishing marginal gains
\[
F(A \cup e) - F(A) \geq F(B \cup e) - F(B)
\]

- **Supermodularity**: increasing marginal gains
\[
F(A \cup e) - F(A) \leq F(B \cup e) - F(B)
\]
Why is submodularity useful?

- occurs in many learning problems: rank, independence, diversity, cohesion, graphs, ...
- associated with very “nice” polyhedra
- close connections to convexity
- optimization: convex optimization, greedy algorithms, ...
The big picture

- Graph theory (Frank 1993)
- Electrical networks (Narayan 1997)
- Submodular functions
- Information theory
- Matroid theory (Whitney, 1935)
- Game theory (Shapley 1970)
- Stochastic processes (Macchi 1975, Borodin 2003)
- Machine learning

Contributors:
- G. Choquet
- J. Edmonds
- L. S. Shapley
- L. Lovász
Diffusion processes on graphs
Diffusion processes on graphs

- Information propagates.
- Node v becomes active if random threshold exceeded:

$$a_v(N_v) \geq \theta$$

- $#$ active nodes after t steps?
- Which set of nodes is most influential?
Set functions ... and point processes

Point process:
distribution over subsets:

Questions:
• mode?
• marginal probabilities?
• sampling?
• learning? ...
Point processes -- examples

\[P(x|z) \propto P(z|x) P(x) \]

\[x \in \{0, 1\}^n \]

would like: nearby points are both selected or not selected spatial coherence, “attractive” --- positive correlations
$P(S \mid \text{data}) \propto P(S) P(\text{data} \mid S)$

would like: “spread out”, repulsion, diversity
Determinantal point processes

- normalized similarity matrix K
- sample Y:

$$P(S \subseteq Y) = \det(K_S)$$

$$P(e_i \in Y) = K_{ii}$$

$$P(e_i, e_j \in Y) = K_{ii}K_{jj} - K_{ij}^2$$

repulsion

$$= P(e_i \in Y)P(e_j \in Y) - K_{ij}^2$$
DPP sample

DPP

uniform

similarities:

\[s_{ij} = \exp\left(-\frac{1}{2\sigma^2} \|x_i - x_j\|^2\right) \]

\[\sigma^2 = 35 \]
Why is this useful?

• representation makes many things closed form / tractable: linear algebra.
Representations...

- set functions
- graphs
- convex functions
- polyhedra
- determinants
- polynomials
Common questions

- combinatorial predictions
- combinatorial regularization
- selecting informative subsets
- processes defined by combinatorial objects
- point processes ...

- Mathematical models? how phrase as inference/learning/optimization problem?
- Analysis? Is this tractable? Can we do learning? Can we give any guarantees? How much time will this take? ...
Coarse syllabus

Properties & Algorithms

- basic convex analysis
 - convex sets & functions, norms, subdifferentials, optimality conditions, duality
- convex optimization
 - non-smooth optimization, conditional gradient method, proximal gradient, splitting & dual decomposition & others
- submodularity & convexity
- submodular maximization
- scalability
- determinantal point processes
- online learning

Formulations & Applications

- structured prediction
- combinatorial norms & regularization
- spread of influence, diversity, information gain, point processes, ...
Lots of connections

Example: the same algorithm for:

- Learning to predict structures (structured prediction)
- Finding the minimum of a submodular set function
- Generate “pseudo-samples” to approximate moments
- Learning with many sparsity- and low-rank inducing regularizers
- Learning with combinatorial norms
- Finding the mode (MAP) for certain graphical models
- Approximating partition functions
- ...

... after suitable formulation 😊
Goals of the class

• understand formulations of combinatorial learning problems
 be able to formulate problems mathematically

• understand underlying mathematical principles
 (these are often shared among many problems – surprisingly many connections!)
 be able to recognize mathematical structure to exploit

• understand algorithmic techniques & their connections: what applies? why do they work?
 be able to select, derive & analyze appropriate algorithms

• Have fun with some beautiful math!

• ➔ basis to explore and play with it on your own!! 😊
Upcoming seminars

• MIT-MSR Machine Learning Seminar
 Andreas Krause (ETH): Inference and Learning with Probabilistic Submodular Models
 Thursday Sep 10, 4pm, 32-G449

• Stochastics & Statistics Seminar
 Robert Freund (MIT): An extended Frank-Wolfe Method with Application to Low-Rank Matrix Completion
 Friday, Sep 11, 11am, 32-124

• Algorithms & Complexity Seminar
 Morteza Zadimoghaddam: Randomized Composable Core-sets for Distributed Submodular and Diversity Maximization
 Friday, Sep 11, 4pm, 32-G575