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Organization

participate: questions, discussion, ... highly welcome! ©

class website: http://people.csail.mit.edu/stefje/falllb/
Piazza for Q&A: piazza.com/mit/fall2015/6883 please sign up!
Listeners: register to access class materials

Grade: 45% homework, 45% project, 10% scribe

Homework: ok to discuss in groups, but each person must
hand in a solution & acknowledge collaborations

TA: Zi Wang, office hours will be posted
If you email me: put 6.883 in subject



Organization

e textbook & class material: no single one;
material will be pointed out as we go

e we will discuss foundations & (very) recent research papers

Homework O:
e fill out the survey
* sign up



What is this class about?



What is this class about?

e Recall: regression / classification

Observe samples (z1,y1), (2,Y2),-- - (Tn, Yn)-

r;, € R% regression: y; € R, classification: y; € {0,1}

Problem: find a function f € F that predicts y well: § = f(z)

e.g. linear function f(z) =w'x

minimize E[loss(f(x),y)]

A
B 1. we can do this

* (with enough samples)
> 2. ...if loss is convex




Example 1: Structured prediction

Observe samples (z1,y1), (2,Y2),--- (T, Yn)-
find a function that predicts y from z: § = f(x)
What if y is not a scalar?




Structured prediction

Observe samples (z1,v1), (X2,42), . (Tn, Yn)-
find a function that predicts y from z: § = f(x)
What if y is not a scalar?
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Structured prediction

Observe samples (z1,v1), (X2,42), . (Tn, Yn)-

find a function that predicts y from z: § = f(x)

y=(y'...,y%), yt €Y

components y* interdependent and often discrete

Example formulation:

f(z) = argmaxyey g(z,y)

e.g. g(x,y)=ply|r,0) Y = all matchings

— (1,0,0,...,0,1,0,...,0
g(xay):w—r¢($,y) Y (7 y Uy s Uy, 1, U, )



Structured prediction

Observe samples (z1,v1), (X2,42), . (Tn, Yn)-

find a function that predicts y from z: § = f(x)

y= (' ...,y%), vy )’ m

components y* interdependent and often discrete

Example formulation:

f(x) = argmaxyey g(z,y) eg. g(z,y) =pylz,0)
L J
R
combinator'ial optimization problem g(z,y) =w ¢(z,y)

-- can we solve this?

Y
can we learn such a function?




Another example




Example 2: High-dimensional data

= Xw + €

e.g. W € argmin, |[[Xw —y|?



High-dimensional data

y = Xw + €

e.g. W € argmin, |[|[Xw —y|?

without noise: infinitely many solutions! (a whole subspace)



High-dimensional data

y = Xw + €

e.g. W € argmin,, |[|[Xw — yl? )

without noise: infinitely many solutions! (a whole subspace)
key insight: w is not arbitrary —only knonzero entries



High-dimensional data

y = Xw + €

e.g. W € argmin, |[[Xw —y?

m

s.t. |wlo <k
combinatorial optimization
problem!

More generally:

e signal is a sparse combination of “atoms”
low-rank matrix, sparse graph, ...

* signal has certain sparsity pattern

How phrase this?

ll EEEE BN




Example 3: Sensing & monitoring




Sensing & monitoring

Y= +¢€

p(wvy) :p(y17 R 7yn)p(x17 SR 7ajn‘y17 S 7yn)

pick set A of locations to maximize

F(A) =1(x;y4) = H(x) — H(x|ya)
\

uncertainty before observing uncertainty after observing



Recap ...

Ownﬂaxﬂgﬂ B
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ground set of items V
subsets S CV * Mathematical models?
. _ e Algorithms?
constraints: |S| <k, S a matching,... . Analysis?

set function: F(S) F:2Y¥ =R,

this may be hard ... ®



° (41 ° L
What is nice ?

° convex loss function
* over convex set

n
min Z(wTwz —;)?
w
i=1

Can we still use convex optimization? How?

We’'ll learn about appropriate algorithms & their analysis



What makes our setting easier?

Mathematical structure.

 Some combinatorial problems are nice. Which?

* Relaxations T Is this easier?

It depends.
Geometry important
for statistics &
computation

Ok |k ]|O

—




Set functions




Convex functions (lovisz, 1983

* “occur in many models in economy, engineering and other
sciences”, “often the only nontrivial property that can be
|H

stated in genera

e preserved under many operations and transformations:
larger effective range of results

e sufficient structure for a “mathematically beautiful and
practically useful theory”

e efficient minimization

“It is less apparent, but we claim and hope to prove to a
certain extent, that a similar role is played in discrete
optimization by submodular set-functions” |[...]

they share the above four properties.




Marginal gain

e Given set function

* Marginal gain:

F:2Y 5 R

F(s|A) = F(AU {s}) — F(A)

22



Diminishing marginal gains
pIacement A={1,2} placement B={1,..,5}
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Submodularity

.

N——
B
F(AUs) — F'(A) > F(BUs)— F(B)
extra cost: extra cost:
one drink free refill ©

diminishing marginal costs

24



Supermodular set functions

e Submodularity: diminishing marginal gains

F(AUe)— F(A) > F(BUe)— F(B)

e Supermodularity: increasing marginal gains

F(AUe)—F(A) < F(BUe)— F(B)




Why is submodularity useful?

occurs in many learning problems: :
rank, independence, diversity, cohesion, graphs, ... o®

associated with very “nice” polyhedra
close connections to convexity

optimization: convex optimization, greedy algorithms, ...



The big picture

J. Edmonds

G. Choquet

submodular

- functions

L. Lovasz

L.S. Shapley



Diffusion processes on graphs




Diffusion processes on graphs

e information propagates

* node v becomes active if
random threshold exceeded:

ay(Ny) > 6

\

activation function set of active neighbors

e f# active nodes after t steps?

e Which set of nodes is most
influential?



Set functions ... and point processes

Point process:

o ® o ® " distribution over subsets:
- - o
O ®
- - |
© Questions:
o ¢ e mode?
Q ° o e .
SCYVY * marginal probabilities?
° i ?
<o far- sampling:

set function F:2Y — R, * learning? ...

min | max F'(S)



Point processes -- examples

P(x|z) < P(z|x) P(x) x e {0,1}"

labels pixel
values

would like: nearby points are both selected or not selected
spatial coherence, “attractive” --- positive correlations



Diversity

-
hil

P(S | data) < P(S) P(data|.5)

would like: “spread out”, repulsion, diversity



Determinantal point processes

S
OOOuuuquuu
O  normalized similarity matrix K
o/
3 e sample:
3
j P(S C Y) = det(Ks)
P(Gi < Y) = K;;

. 2
P(ej,e; €Y) = Ky Kjj — Ki; repulsion

= P(e; € Y)P(e; €Y) — K7,



DPP sample

DPP uniform
. 0‘ ‘ ® . . ‘: o :o‘ ° ®
similarities:
sij = exp(—ggz lzi — ;%) 0® =35




Why is this useful?

* representation makes many things closed form / tractable:
linear algebra.



Representations...

set functions
graphs

convex functions
polyhedra
determinants

polynomials



Common questions

combinatorial predictions

combinatorial regularization

selecting informative subsets

processes defined by combinatorial objects

point processes ...

Mathematical models? how phrase as inference/learning/
optimization problem?

Algorithms? Convex, combinatorial optimization.

Analysis? Is this tractable? Can we do learning? Can we give
any guarantees? How much time will this take? ...



Coarse syllabus

Properties & Algorithms Formulations & Applications

* basic convex analysis

convex sets & functions, norms,

subdifferentials, optimality conditions, duality * structured pre diction

* convex optimization

non-smooth optimization, conditional gradient o . .
method, proximal gradient, splitting & dual combi ﬂ.atO-I’I al norms &
decomposition & others regu larization

e submodularity & convexity

e submodular maximization * spread of influence,
e scalability diversity, information

e determinantal point processes gain, point processes, ..

* online learning



Lots of connections

Example: the same algorithm for:

e Learning to predict structures (structured prediction)
* Finding the minimum of a submodular set function

* Generate “pseudo-samples” to approximate moments

e Learning with many sparsity- and low-rank inducing
regularizers

e Learning with combinatorial norms
* Finding the mode (MAP) for certain graphical models
e Approximating partition functions

... after suitable formulation ©



Goals of the class

understand formulations of combinatorial learning problems
be able to formulate problems mathematically

understand underlying mathematical principles
(these are often shared among many problems — surprisingly many connections!)

be able to recognize mathematical structure to exploit

understand algorithmic techniques & their connections: what
applies? why do they work?
be able to select, derive & analyze appropriate algorithms

Have fun with some beautiful math!

=>» basis to explore and play with it on your own!! ©



Upcoming seminars

MIT-MSR Machine Learning Seminar
Andreas Krause (ETH): Inference and Learning with Probabilistic
Submodular Models
Thursday Sep 10, 4pm, 32-G449

* Stochastics & Statistics Seminar
Robert Freund (MIT): An extended Frank-Wolfe Method with Application to
Low-Rank Matrix Completion
Friday, Sep 11, 11am, 32-124

e Algorithms & Complexity Seminar
Morteza Zadimoghaddam: Randomized Composable Core-sets for
Distributed Submodular and Diversity Maximization
Friday, Sep 11, 4pm, 32-G575



