
6.883 Learning with Combinatorial Structure
Note for Lecture 12

Author: Chiyuan Zhang

1 Sparsity and `1 relaxation

Last time we talked about sparsity and characterized when an `1 relaxation could recover
the original sparse solution of the `0 problem. Today we look at a specific setting, in
which the behavior could be characterized more easily.

Specifically, instead of reconstructing the signal using a sparse linear combination of
atoms from a overcomplete dictionary, we assume the signal is sparse in the original
Euclidean basis. We get a noisy observation z of the signal, and would like to recover the
original sparse signal by

min
w

1

2
‖z − w‖2, s.t.‖w‖1 ≤ R

Figure 1 gives a nice geometric intuition of why the `1 constrained problem recovers
sparse solutions, while `2 constrained problem does not. Under this setting, this phe-
nomenon could also be explained algebraically. In particular, we consider an equivalent
formulation with the constraints replaced by a regularizer penalty with appropriately
chosen regularization coefficient λ:

min
w

1

2
‖z − w‖2 + λ‖w‖1 (1)

Since this is a convex optimization problem, from our previous lectures, we can write the
optimality condition as

0 ∈ ∂w
(

1

2
‖z − w‖2 + λ‖w‖1

)
In other words, ∃g ∈ ∂w‖w‖1 such that (w− z) +λg = 0. In this case, the optimal solution
is w? = z−λg. To get the subdifferential of the `1 norm, notice that

‖w‖1 = max
s∈[−1,1]d

s>w ⇒ sign(w) ∈ ∂w‖w‖1

Where sign(·) is the component-wise sign function, and when wi = 0, sign(wi) could take
any value in [−1, 1]. To make sure sign(w?) is consistent with g, we get the following
rules

zi > λ⇒ w?i = z − λ, gi = +1

zi < −λ⇒ w?i = z + λ, gi = −1

|zi| ≤ λ⇒ w?i = 0, gi = zi/λ

(2)

1

Figure 1: Geometric intuition of why `1 constraints give sparse solution, while `2 con-
straints do not.

In summary, we can see that the optimal solution w? is given by shrinking the mag-
nitude of each component zi by λ, and then thresholding at 0. If |zi| ≤ λ for some i,
the corresponding w?i will be 0. Therefore, `1 regularized problem leads to sparse solu-
tions.

2 Structural Sparsity and Convex Relaxation

2.1 Formulation of Structural Sparsity

In the last lecture, we also mentioned that sometimes we need to enforce structures in the
sparsity patterns of our signals. For examples, the coefficients under a wavelet basis of a
natural image generally follows a hierarchical structural pattern. In this section, we will
talk about how to generalize the technique of relaxation to a general class of structural
sparsity problems.

Recall that the original sparsity constraint is formulated with ‖w‖0 = | supp(w)|, which is
actually a set function on supp(w). If we replace the set function with any non-decreasing
submodular function F (·), a lot of useful structural sparsity constraints can actually be
represented. For example, let

F (S) =

k∑
i=1

min{|S ∩Gi|, 1}

2

(a) Preferred sparsity pattern. (b) Not-so-preferred sparsity pattern.

Figure 2: Illustration of hierarchical sparsity, by using the submodular function F (·) de-
fined in (3).

then we get the group sparsity, according to partition of variables into {Gi}ki=1. Note the
cost is zero for group Gi if all the variables in that group is zero, but otherwise is 1 no
matter how many variables in Gi comes into play.

Another example is to prefer hierarchical (tree-like) sparsity patterns, by using a set func-
tion that satisfies

F (T) < F (S), if T is a tree and S is not, while |S| = |T |

In particular, we can use

F (S) =

∣∣∣∣∣⋃
s∈S

ancestors(s)

∣∣∣∣∣ (3)

An illustration of this hierarchical sparsity is shown in Figure 2.

2.2 Convex Relaxation of Structural Sparsity

The reason that we chose to use a submodular function F (·) in the formulation of the
structural sparsity problems is that when we develop the convex relaxation, the tools we
developed in the previous lectures of this class will naturally come into play and help
solving the problems.

Recall in the case of `0 sparsity, we relax the `0-norm with the `1-norm, which is its convex
envelope on [−1, 1]d. See Figure 3 for an illustration.

Definition 1 (Convex Envelope). A convex envelope of a function g(x) : D → R is the largest
convex function h(x) : D → R such that h(x) ≤ g(x) ∀x ∈ D.

3

Figure 3: `1-norm is the convex envelope of the `0-norm on [−1, 1]d.

Note that talking about the convex envelope of `0-norm on the whole Rd is not very use-
ful, because it will be the constant-0 function. The choice of the set [−1, 1]d (the unit
`∞ ball) is somewhat arbitrary, and choosing other sets will lead to different convex en-
velopes. But we will see this choice interplay nicely with submodular function related
tools.

The convex envelope of a function g(x) can be computed by taking the conjugate func-
tion

g∗(y) = sup
x∈D

x>y − g(x)

and then compute the g∗∗, the conjugate of the conjugate. Note when g itself is convex,
g∗∗ = g.

Proposition 1. Let F be a non-decreasing submodular function. The convex envelope of g(w) =
F (supp(w)) on w ∈ [−1, 1]d is

Ω(w) = f(|w|) (4)

where f(·) is the Lovász extension of F (·), and |w| is the component-wise absolute value of the
vector w.

Proof. The proof is done by directly calculating the conjugate of the conjugate. First of all,

g∗(s) = sup
w∈[−1,1]d

s>w − g(w) = sup
w∈[−1,1]d

s>w − F (supp(w))

Since F only depends on the support of w, we can separate the sup into two parts, one
part is about the support, and the other about the magnitude of each component on the

4

support:

g∗(s) = sup
δ∈{0,1}d

sup
w∈([−1,1]\{0})d

(δ ◦ w)>s− F (supp(δ)) = sup
δ∈{0,1}d

δ>|s| − F (supp(δ))

here δ ◦ w means elementwise multiplication of two vectors. Note

sup
δ∈{0,1}d

δ>|s| − F (supp(δ)) = inf
T⊂{1,...,d}

{
F̃ (T) = F (T)−

∑
i∈T
|si|

}
(5)

where F̃ is a submodular function because F is submodular and the red part is modular.
From the homework, we know that minimizing a submodular function is equivalent to
minimizing its Lovász extension on [0, 1]d. Meanwhile, it is easy to show that the Lovász
extension of the sum of two submodular functions is equal to the sum of their Lovász
extensions. And the Lovász extension of a modular function H(T) =

∑
i∈T Hi is equal to

h(x) =
∑

i xiHi for x ∈ [0, 1]d.

Therefore, we can replace the submodular minimization problem in (5) by minimizing
the Lovász extension of F̃ :

g∗(s) = sup
δ∈[0,1]d

δ>|s| − f(δ)

where f(·) is the Lovász extension of F (·). Now let us compute the conjugate of g∗:

g∗∗(w) = sup
s
s>w − g∗(s) = sup

s
inf

δ∈[0,1]d
s>w − δ>|s|+ f(δ)

Remember f(·) is convex because F (·) is submodular. By verifying the conditions for the
saddle point theorem, we can switch the inf and sup:

g∗∗(w) = inf
δ∈[0,1]d

f(δ) + sup
s
s>w − δ>|s|

Note that

sup
s
s>w − δ>|s| =

{
0 ∀i : |wi| ≤ δi
∞ o.w.

Therefore,
g∗∗(w) = inf

δ∈[0,1]d,δ≥|w|
f(δ) = f(|w|)

where the last equality comes from the following fact: the Lovász extension is

f(x) =
d∑
i=1

x(i)(F (Si)− F (Si−1))

where x(i) are sorted coordinates such that x(1) ≥ . . . ≥ x(d), and Si are corresponding
level sets. Note ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sd = {1, . . . , d}. By assumption, F (S) is

5

a submodular function defined on the cardinality |S| and is non-decreasing. So F (Si) −
F (Si−1) ≥ 0. Therefore, the minimizer of f(x) is achieved by taking the minimal possible
coordinate for each component xi.

Proposition 2. Ω(w) = f(|w|) is a norm if F ({a}) > 0 for all a ∈ V , where f is the Lovász
extension of F .

Some common examples of this formulation include

• F (S) = |S|: f(|w|) = ‖w‖1

• F (S) = min |S|, 1: f(|w|) = ‖w‖∞

• F (S) =
∑k

i=1 min{|S ∩Gi|, 1}: f(|w|) =
∑k

i=1 ‖wGi‖∞

2.3 Geometry of Convex Relaxation

By the definition Lovász extension,

Ω(w) = f(|w|) = max
s∈PF

s>|w| = max
|s|∈PF

s>w (6)

where the last equality is because when F (S) = F (|S|) is non-decreasing, all the vertices
of PF is in the positive orthant. Recall the dual norm is defined by

‖u‖∗ = sup
‖x‖≤1

u>x

So Ω(·) is actually the dual norm of a norm Ω∗whose unit norm ball is defined by

BΩ∗ = {s : Ω∗(s) ≤ 1} = {s : |s| ∈ PF } = {s : ‖sA‖1 ≤ F (A),∀A ⊂ V} =

{
s : max

A⊂V,A 6=∅

‖sA‖1
F (A)

≤ 1

}
Comparing the left hand side to the right hand side, we get

Ω∗(s) = max
A⊂V,A 6=∅

‖sA‖1
F (A)

(7)

From the unit norm ball of Ω∗, we can also get the unit norm ball of Ω by the fact that the
unit dual norm ball is the polar set of the unit norm ball:

BΩ = {y ∈ Rd : s>y ≤ 1,∀s ∈ BΩ∗}

For our specific case,

BΩ = {w : f(|w|) ≤ 1} = conv

{
1

F (supp(w))
w : w ∈ {±1, 0}d

}
(8)

6

Figure 4: Examples of unit norm balls and unit dual norm balls.

Figure 4 shows some examples of unit norm balls and unit dual norm balls associated
with different F (·). Please refer to the slides for more examples.

The sparsity patterns that we could get from those norms can be characterized by the
notion of stable set.

Definition 2 (Stable Set). A set S ⊂ V is stable if ∀e 6∈ S, F (S∪{e}) > F (S). In other words,
adding any element to the set will increase the “cost”.

For example, for F (S) = |S|, then every set is stable; for F (S) = min{1, |S|}, then only ∅
is stable.

Proposition 3 (Bach, Prop. 5.3). Assume y has an absolute continuous density w.r.t. Lebesgue
measure, and X>X is invertible. Then the minimizer

ŵ ∈ arg minw
1

2
‖Xw − y‖2 + λf(|w|) (9)

is unique and with probability one its support is a stable set.

The key for generalization to high dimensions is decomposability. Please refer to Bach
2010 for details of results on support recovery and errors.

7

3 Proximal Gradient Descent

Our formulation of convex relaxed problem can be written in the regularization form
as

min
w
L(w) + λf(|w|) (10)

where L(w) is the loss function, which is usually smooth and convex (e.g. the square
loss), while f(·) is the Lovász extension of some submodular function F (·). So f(|w|) is
convex, but usually not smooth.

In order to solve this problem, we can use subgradient descent, which gives us an ap-
proximation error of O(1/

√
t) for t iterations. Gradient descent gives faster rate, but it

cannot be applied here because f(|w|) is non-differentiable. But by using the fact that
L(w) is still smooth, we can potentially use the proximal gradient method to achieve 1/t
convergence rate.

The proximal gradient method is a generalization of the projected gradient method. Re-
call that the projected gradient method is developed to solve a constrained optimization
problem. By using the indicator function of the constraint setC, we can write the problem
as

min
w
L(w) + δC(w) (11)

which could be solved by the following iterations:

wt+1 ← ΠC(wt − ηt∇L(wt)) (12)

Now if we replace δC(w) by a general convex function h(w) in (11), we can solve the new
problem by modified iterations:

wt+1 = proxα,h(wt − ηt∇L(wt)) (13)

where prox is the Euclidean proximity operator, defined by

proxα,h(z) = arg minw h(w) +
1

2α
‖w − z‖2 (14)

Note that if h(w) = δC(w), then the proximity operator is equivalent to the projection op-
erator ΠC(·). If the proximity operator is easy to compute for our h(w), then we get a prac-
tical algorithm to solve (10). Some familiar special cases include

• Lasso: when h(w) = λ‖w‖1, the proximity operator has a closed form solution,
because the operator is exactly computing (1), whose solution is completely char-
acterized by (2). The resulting algorithm also has a specific name: ISTA (Iterative
Shrinkage-Thresholding Algorithm).

8

• Submodular penalty: when h(w) = λf(|w|) for f being the Lovász extension of
some submodular function. Then computing the proximity operator is equivalent
to solving a minimum-norm point problem, similar to the problems in Homework
2 (see also Bach 2010).

If we expand the definition of the proximal operator, and let α = ηt

wt+1 = proxηt,h(wt − ηt∇L(wt))

= arg minw h(w) +
1

2ηt
‖w − (wt − ηt∇L(wt))‖2

= arg minw h(w) + L(wt) +∇L(wt)>(w − wt) +
1

2ηt
‖w − wt‖2

where in the last equality we removed the constant ‖∇L(wt)‖2 and add the constantL(wt)
since those constants does not change the optimum.

We can interpret this as solving an approximation to the original problem by locally ap-
proximating the part L(w) by a linear function. Note only L(w) is approximated, while
h(w) is untouched, intuitively because we know L(w) is smooth, so the local linear ap-
proximation is “nicer”. The extra quadratic term ‖w − wt‖2 is added to prevent us from
going too far away from wt, which is the starting point of the local linear approxima-
tion.

Note w∗ is a stationary point of the proximal iteration if and only if

w∗ = proxηt,h(w∗ − ηt∇L(w∗))

which is equivalent to

0 ∈ ∂h(w∗) +
1

2ηt
∇
(
‖w − (w∗ − ηt∇L(w∗))‖2

)
|w=w∗

Plugging in the gradient, we get

0 ∈ ∂h(w∗) +∇L(w∗)

which is exactly the optimality condition of the original problem (10). The convergence of
the proximal gradient descent algorithm will be covered in the next lecture.

9

