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1 Frank-Wolfe algorithm

1.1 Introduction

In this lecture, we consider the minimization problem

min
w∈B

g(w)

under the following assumptions:

• g is convex and differentiable.

• B ⊂ Rd is a convex set.

• The linear optimization problem maxs∈B〈c, w〉 is "easy".

A few applications in which this condition is reasonable:

1. The minimum norm problem minw∈BF
1
2 ||w||

2

2. Minimize g(w) under the set B = conv(A), or the bounded atomic norm ||w||A ≤ R
(defined in Lecture 13).

We present here the Frank-Wolfe algorithm that solves the given optimization, which is
also called the conditional gradient method.

1.2 The algorithm

Frank-Wolfe algorithm
Start with w0 ∈ B. For t = 1, 2, ..T

• Compute st ∈ arg mins∈B〈s,∇g(wt)〉

• Set wt+1 = (1− ηt)wt + ηts
t
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Figure 1: Example step of Frank-Wolfe algorithm

Intuitively, at each step, one chooses a vertex st that minimizes the current gradient, then
walk toward st with step size ηt. In case of convex polytope, the minimizers are the
vertices of the polytope.

How to choose ηt? There are a few possibilities, all of which achieves a convergence rate
of O(1

t ):

1. Set ηt = 2
t+2 .

2. Another possibility is to pick the minimizing point on the segment (wt, st). Specifi-
cally:

ηt = arg min
η∈[0,1]

g((1− η)wt + ηst)

3. We could also consider the complete history. Note thatwt+1 is a convex combination
of w0, s1, .., st, so we could try to solve the optimization problem:

wt+1 = arg min
η̃0,..,η̃t

g(η̃1s
1 + ...+ η̃ts

t + η̃0w
0)

The latter step choices will make each optimization more aggressive; however, it also
increases the time to find the minimizer.

So what is the advantages and disadvantages of the Frank-Wolfe algorithm? On one
hand, this algorithm has very slow convergence rate (at the order ofO(1/t)). On the other
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hand, this algorithm is very simple, using only linear optimization and iterates through
at most t vertices after t steps. This helps maintain the sparsity of the candidate solution.
In certain applications (such as low-rank approximation), we typically start with a low
rank candidate and increase the rank by at most 1 in each step. This contrasts with the
projection algorithm, which one starts with a high rank solution and projects onto a low
rank space.

Example 1: consider the sparse approximation problem minw
1
2 ||Dw − y||2 such that

||w||1 ≤ 1. This is equivalent to optimizing over theA = conv({±ei}).

We start with w0 = e1. In each step, we compute

st ∈ arg min
±ei
〈∇g(wt),±ei〉

where∇g(w) = DT (Dw − y). Therefore

wt+1 = wt(1− ηt) + ηtej

for some vertex ej .

Example 2: We want to minimize g(W ) such that tr(W ) ≤ 1. That is, the atomic norm
||W ||A ≤ 1 where A =

{
uvT , ||u|| ≤ 1, ||v|| ≤ 1

}
. To apply the Frank-Wolfe algorithm, one

needs to solve the linear optimizer maxS〈S,M〉. The standard method requires comput-
ing the full SVD of M which takes O(mn2). However, given that the trace norm is the
convex hull of rank-1 matrices, we can write

min
S
〈S,W 〉 = min

||u||≤1,||v||≤1
vTWu = σ1

implying it suffices to approximate the maximum eigenvalue of M . Using Lanczos’ algo-
rithm, for example, one can approximate with in error ε in Õ(

Ng√
ε
) whereNg is the number

of non-zero entries in∇g(W ).

Before proceeding, we shall argue that the O(1
t ) is tight.

Lemma 1. ([2], Appendix C, Lemma 3) For f(x) = ||x||2 and 1 ≤ k ≤ n

min
x∈∆n,||x||0≤k

f(x) =
1

k

This is achieved when exactly k of n components of x is 1
k . If the algorithms starts at

a vertex of the `1-ball (one nonzero entry in x0, in each iteration it can only add one
more nonzero entry, and hence after k steps the solution has at most k nonzero entries.
The optimal solution has value 1

n (in Rn), which can be arbitrarily small as n grows
large.

However, for certain problems, the convergence rate can be improved.
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1.3 Primal Convergence

To prove the convergence of the Frank-Wolfe algorithm, we introduce the curvature con-
stant. The curvature constant C of a differentiable function g satisfies, for all w,w′ and
η ∈ [0, 1]

g(w + η(w′ − w′)) ≤ g(w) + η〈∇g(w), w′ − w〉+
C

2
η2

We can see that, the curvature constant C limits the deviation of the function from the lin-
ear approximation by∇g(w). The curvature bound is also related to∇g via this following
lemma:

Lemma 2. ([2], Appendix D, Lemma 7) If ∆g is L-Lipschitz continuous with respect to some
norm ||.|| over the domain D, then

C ≤ L · diam||.||(D)2

Now we prove the convergence. Consider the t-th iteration step

g(wt+1) = g((1− ηt)wt + ηtst)

≤ g(wt) + ηt〈st − wt,∇g(wt)〉+
C

2
η2
t (assume curvature constant)

≤ g(wt) + ηt〈w∗ − wt,∇g(wt)〉+
C

2
η2
t (since st minimizes the linear approximation)

= (1− ηt)g(wt) + ηt(g(wt) + 〈w∗ − wt,∇g(wt)〉) +
C

2
η2
t

≤ (1− ηt)g(wt) + ηtg(w∗) +
C

2
η2
t (by convexity)

Therefore
g(wt+1)− g(w∗) ≤ (1− ηt)(g(wt)− g(w∗)) +

C

2
η2
t

By choosing ηt = 2
t+2 it follows that

g(wt)− g(w∗) ≤ C

t+ 2

Note that the Frank-Wolfe algorithm can be applied even if the linear optimization prob-
lem minw∈B〈s,∇g(wt)〉 can only be solved approximately. In this case, the bound be-
comes

g(wt)− g(w∗) ≤ 2C(1 + δ)

t+ 2

where δ is the approximation error.
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2 Implication for submodular minimization

Consider the primal optimization problem

min
x
f(x) +

1

2
||x||2

and its dual
max
w
−1

2
||w||2 = −min

w

1

2
||w||2

Given a pair of candidate (x,w), define the duality gap to be

gap(w) = f(x) +
1

2
||x||2 − (−1

2
||w||2)

Theorem 1. (Bach) If gap(wt) ≤ ε then there exists a level set S =
{
xt ≥ θ

}
with

F (S)− F (S∗) ≤
√

2nε

If we apply the Frank-Wolfe algorithm to the dual problem, the linear optimization step
becomes

st ∈ arg min
s∈BF
〈∇g(wt), s〉 = arg min

s∈BF
〈wt, s〉

The Frank-Wolfe algorithm gives a bound on dual gap g(wt) − g(w∗). How does this
bound relate to the primal gap, and the duality gap?

From the duality theorem, f(x)+ 1
2 ||x||

2 = −1
2 ||w||

2 if and only if x∗ = −w∗. That suggests
setting xt = −wt. Consider the duality gap (using x = −w)

f(x) +
1

2
||x||2 − (−1

2
||w||2) = f(−w) +

1

2
|| − w||2 +

1

2
||w||2

= max
s∈BF
〈s,−w〉+ ||w||2

= max
s∈BF
〈w − s,∇g(w)〉

From the assumption of curvature bound

g(wt+1) ≤ g(wt) + ηt〈st − wt,∇g(wt)〉+
C

2
η2
t

g(wt+1)− g(w∗) ≤ g(wt)− g(w∗) + ηtgap(w
t) +

C

2
η2
t

With ηt = 2
t+2 , it follows g(wt) − g(w∗) ≤ C

t+2 and C
2 η

2
t = O( 1

t2
). Therefore gap(wt) must

also converge to 0 with rate of at leastO(1
t ). In fact, we have the following theorem (stated

without proof):
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Theorem 2. (Jaggi)
After T iterations, there is a 0 ≤ t ≤ T such that the duality gap

gap(wt) ≤ 7C

T + 2

3 Relation between Subgradient method and Conditional
gradient descent

Again, we consider the primal problem

min
x
f(x) +

1

2
||x||2

and its dual
max
w
−1

2
||w||2

given f(x) = maxs∈B s
Tx.

Consider the subgradient method on the primal problem. First, rewrite the problem
as

min
x

max
s∈B

sTx+
1

2
||x||2

The t-th step of the subgradient method becomes

xt+1 = xt − αtgt
gt = xt + arg max

s∈B
〈s, xt〉

Set stp = arg maxs∈B〈s, xt〉, then xt+1 = xt − αt(xt + stp).

Now consider the conditional gradient method on the dual problem. We have ∇g(w) =
w, and st = arg mins∈B〈s, w〉 and wt+1 = (1− ηt)wt + ηts

t
d.

Now comes the crucial observation. Set wt = −xt, then

stp = arg max
s∈B
〈s, xt〉

= arg min
s∈B
〈s,−xt〉

= arg min
s∈B
〈s, wt〉 = std

With that
xt+1 = −wt+1 = −wt − αt(−wt + st)
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Negate the sign of two sides gives

wt+1 = wt + αt(−wt + st)

However, from the dual problem, wt+1 = wt + ηt(−wt + st). Therefore, if we set ηt = αt,
then the two algorithms are direct mirror of each other!

4 Applications

The Frank-Wolfe algorithm appears in many different contexts. Here are some exam-
ples.

4.1 Structured SVM

Given n samples x = (x1, .., xn) and their corresponding labels y = (y1, .., yn). Given a
weight vector w, we would like to minimize

min
y∈{−1,+1}n

〈w,Φx(y)〉+
λ

2
||w||2

This objective function is a support function (of the convex hull conv{Φx(y) | y ∈ {−1, 1}m })
plus a squared norm. The dual of it can be derived analogously to that of the Lovász ex-
tension plus squared norm, and looks similar to the min-norm problem for submodular
optimization. Applying the Frank-Wolfe algorithm to the dual is, according to our above
reasoning, equivalent to applying a subgradient method to the primal (non-smooth) SVM
problem.

The paper [3] shows a Frank-Wolfe method for the structured SVM, and derive a stochas-
tic block coordinate descent method. This can be related to a stochastic gradient method
in the primal.

4.2 Herding Problem

In the herding problem, we are are given a set of samples x1, .., xn and are trying to ap-
proximate a given mean (expectation of a feature function or sufficient statistic)

µ = Ep(x)Φ(x)

by the average of a few sample points. The original Herding method picks those greedily.
This method can be viewed as a Frank-Wolfe method applied to the objective

min
w∈conv({xj}nj=1)

‖w − µ‖2.
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With an appropriately chosen step size, we get w = 1
t

∑t
j=1 Φ(xj), and hence the differ-

ence between the empirical and the population mean

‖1

t

t∑
j=1

Φ(xj)− µ‖2

that is being minimized.

The equivalence between Herding and Frank-Wolfe is discussed in [1].

4.3 Boosting

Boosting too can be viewed as a Frank-Wolfe method. Details are discussed in [4].

Suppose B is the convex hull of the set of all hypotheses. We aim to choose a weight
function w(x) that minimizes

min
w(x)∈B

Ex,yLoss(w(x), y).

References

[1] Francis Bach, Simon Lacoste-Julien, and Guillaume Obozinski. On the equivalence
between herding and conditional gradient algorithms. arXiv preprint arXiv:1203.4523,
2012.

[2] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages
427–435, 2013.

[3] Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher.
Block-coordinate frank-wolfe optimization for structural svms. arXiv preprint
arXiv:1207.4747, 2012.

[4] Tong Zhang. Sequential greedy approximation for certain convex optimization prob-
lems. Information Theory, IEEE Transactions on, 49(3):682–691, 2003.

8


