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1 Frank-Wolfe algorithm

1.1 Introduction

In this lecture, we consider the minimization problem

g o)

under the following assumptions:

e gis convex and differentiable.

e B C R%isaconvex set.

e The linear optimization problem max,cs(c, w) is "easy".
A few applications in which this condition is reasonable:

1. The minimum norm problem min,ez, 3||wl|?

2. Minimize g(w) under the set B = conv(A), or the bounded atomic norm ||w||4 < R
(defined in Lecture 13).

We present here the Frank-Wolfe algorithm that solves the given optimization, which is
also called the conditional gradient method.

1.2 The algorithm
Frank-Wolfe algorithm
Start with w® € B. Fort =1,2,..T
e Compute s* € argmingep(s, Vg(w?))

o Set w!t = (1 — n)w + nst



Figure 1: Example step of Frank-Wolfe algorithm

Intuitively, at each step, one chooses a vertex s' that minimizes the current gradient, then
walk toward s’ with step size 7;. In case of convex polytope, the minimizers are the
vertices of the polytope.

How to choose 7;? There are a few possibilities, all of which achieves a convergence rate
of O(1):

1. Set e = H%

2. Another possibility is to pick the minimizing point on the segment (wy, s¢). Specifi-
cally:

m = arg min_g((1 —n)w’ + ns’)
n€(0,1]

3. We could also consider the complete history. Note that w'*! is a convex combination
of w?, st, .., s!, so we could try to solve the optimization problem:

t+1

w'™ = arg min g(qst + ... + st + ow?)

70,571t
The latter step choices will make each optimization more aggressive; however, it also
increases the time to find the minimizer.

So what is the advantages and disadvantages of the Frank-Wolfe algorithm? On one
hand, this algorithm has very slow convergence rate (at the order of O(1/t)). On the other



hand, this algorithm is very simple, using only linear optimization and iterates through
at most t vertices after ¢ steps. This helps maintain the sparsity of the candidate solution.
In certain applications (such as low-rank approximation), we typically start with a low
rank candidate and increase the rank by at most 1 in each step. This contrasts with the
projection algorithm, which one starts with a high rank solution and projects onto a low
rank space.

Example 1: consider the sparse approximation problem min,, 3|[Dw — y||? such that
l|w|[1 < 1. Thisis equivalent to optimizing over the A = conv({=*e;}).

We start with w® = e;. In each step, we compute

s' € arg I?n(Vg(wt), +e;)
€

where Vg(w) = DT (Dw — y). Therefore

t+1

wt = w' (1 =) + e

for some vertex e;.

Example 2: We want to minimize g(W) such that ¢tr(W) < 1. That is, the atomic norm
[W|la < 1where A = {uv”,|[u]| < 1,||v|| < 1}. To apply the Frank-Wolfe algorithm, one
needs to solve the linear optimizer maxg(S, M). The standard method requires comput-
ing the full SVD of M which takes O(mn?). However, given that the trace norm is the
convex hull of rank-1 matrices, we can write
min(S, W)= min o' Wu=o0,
o [lull<1,|[v]|<1

implying it suffices to approximate the maximum eigenvalue of M. Using Lanczos” algo-
rithm, for example, one can approximate with in error € in 6(%) where N, is the number
of non-zero entries in Vg(W).

Before proceeding, we shall argue that the O(7) is tight.
Lemma 1. ([2], Appendix C, Lemma 3) For f(z) = ||z||?and 1 < k <n
1

min T) = —
xeAn,Ha}Hogkf( ) k

This is achieved when exactly k of n components of x is 7. If the algorithms starts at
a vertex of the /;-ball (one nonzero entry in 29, in each iteration it can only add one
more nonzero entry, and hence after £ steps the solution has at most £ nonzero entries.
The optimal solution has value 1 (in R"), which can be arbitrarily small as n grows
large.

However, for certain problems, the convergence rate can be improved.



1.3 Primal Convergence

To prove the convergence of the Frank-Wolfe algorithm, we introduce the curvature con-
stant. The curvature constant C of a differentiable function g satisfies, for all w,w’ and
n € [0,1]

glw -+ (' —w) < glw) + n{Vo(w), v —w) + S’

We can see that, the curvature constant C' limits the deviation of the function from the lin-
ear approximation by Vg(w). The curvature bound is also related to Vg via this following
lemma:

Lemma 2. ([2], Appendix D, Lemma 7) If Ag is L-Lipschitz continuous with respect to some
norm ||.|| over the domain D, then

Cc<L- diamH.H(D)2

Now we prove the convergence. Consider the ¢-th iteration step

g(w™) = g((1 = nw' +1's")

C
< g(wh) + (st — w', Vg(w')) + 57)? (assume curvature constant)
< g(wh) + n(w* — wt, Vg(wh)) + 577? (since s’ minimizes the linear approximation)

= (1 m)glt) + mlglwt) + (' — wt, Vo(wt)) + St

C )
< (1 —=n)g(w) + neg(w*) + 517? (by convexity)

Therefore

o) — g(w") < (1~ n)(g(w') — g(w) + S n?

By choosing 7; = t% it follows that

t R c
g(w)*g(w)gm

Note that the Frank-Wolfe algorithm can be applied even if the linear optimization prob-
lem ming,ep(s, Vg(w')) can only be solved approximately. In this case, the bound be-
comes 20(1 + 8)
+
ty ¥« 22T T T
g(w!) = glw) < =

where ¢ is the approximation error.



2 Implication for submodular minimization

Consider the primal optimization problem
. Lo o2
min f(z) + Zf[]]
z 2

and its dual

T
max — ][ = — min 2 ful

Given a pair of candidate (x, w), define the duality gap to be

1 1
gap(w) = f(z) + §||96\|2 - (—§|\w|\2)
Theorem 1. (Bach) If gap(w') < € then there exists a level set S = {x' > 0} with

F(S) — F(5*) < V2ne

If we apply the Frank-Wolfe algorithm to the dual problem, the linear optimization step
becomes
t : t _ ot
s' € arg min (Vg(w'), s) = arg min (w', 5)
The Frank-Wolfe algorithm gives a bound on dual gap g(w') — g(w*). How does this
bound relate to the primal gap, and the duality gap?

From the duality theorem, f(z)+1||z||> = —%||w||? if and only if z* = —w*. That suggests
setting 2! = —w'. Consider the duality gap (using z = —w)

1 1 1 1
F@)+ Sl = (=5 lhel?) = f(=w) + 51 = wl + 5wl

_ . 2
= gelg;ds, w) + |w]|

= max(w — s, Vg(w))

seEBr

From the assumption of curvature bound

c
g(w™) < g(w') +mls' —w', Vg(w')) +

o) — g(w) < g(w) — g(w") + moap(ut) + 5 n?

With n, = 723, it follows g(w') — g(w*) < ;% and §71? = O(5%). Therefore gap(w') must
also converge to 0 with rate of at least O(%) In fact, we have the following theorem (stated
without proof):



Theorem 2. (Jaggi)
After T iterations, there isa 0 < t < T such that the duality gap

C
T+2

gap(w') <

3 Relation between Subgradient method and Conditional
gradient descent

Again, we consider the primal problem
. Lo o2
min f(z) + 5]

and its dual

1
Inaux—waH2
w 2

given f(z) = maxsep s’ .

Consider the subgradient method on the primal problem. First, rewrite the problem
as

1
min max s” z + — ||z
x  seB 2
The t-th step of the subgradient method becomes
= 2! — gy

gt = x; + arg max(s, z*)
seB

t t+1 ¢
Set 5!, = arg max,ep(s, z'), then 2! = 2* — ay (2’ + s)).

Now consider the conditional gradient method on the dual problem. We have Vg(w) =
w, and s' = arg mingep(s, w) and wt = (1 — n)w' + ns,.

Now comes the crucial observation. Set w! = —z!, then

sﬁ, = arg Tgagc(s, )

. t
= argmin(s, —x

& s€B< ’ >
. t t
= argmin(s,w') = s
& s€B< ’ > d

With that
e = 'ttt = —wl — ay(—wt + )



Negate the sign of two sides gives
w'™ = w! 4 oy (—w' 4 st)

However, from the dual problem, w'*! = w! + n;(—w! + st). Therefore, if we set 7, = v,
then the two algorithms are direct mirror of each other!

4 Applications

The Frank-Wolfe algorithm appears in many different contexts. Here are some exam-
ples.

4.1 Structured SVM

Given n samples ¢ = (z1, .., z) and their corresponding labels y = (y1,..,y,). Given a
weight vector w, we would like to minimize

. A2
serin (0, @a(y)) + Sl
This objective function is a support function (of the convex hull conv{®,(y) | y € {—1,1}" })
plus a squared norm. The dual of it can be derived analogously to that of the Lovasz ex-
tension plus squared norm, and looks similar to the min-norm problem for submodular
optimization. Applying the Frank-Wolfe algorithm to the dual is, according to our above
reasoning, equivalent to applying a subgradient method to the primal (non-smooth) SVM
problem.

The paper [3] shows a Frank-Wolfe method for the structured SVM, and derive a stochas-
tic block coordinate descent method. This can be related to a stochastic gradient method
in the primal.

4.2 Herding Problem

In the herding problem, we are are given a set of samples 1, .., z, and are trying to ap-
proximate a given mean (expectation of a feature function or sufficient statistic)

= Ep(z)q)(x)

by the average of a few sample points. The original Herding method picks those greedily.
This method can be viewed as a Frank-Wolfe method applied to the objective

. 2
min w — .
weconv({z;}7_;) H 'UIH



With an appropriately chosen step size, we get w = 1 23:1 ®(x;), and hence the differ-
ence between the empirical and the population mean

t
1
I > @) - pl?
j=1

that is being minimized.

The equivalence between Herding and Frank-Wolfe is discussed in [1].

4.3 Boosting

Boosting too can be viewed as a Frank-Wolfe method. Details are discussed in [4].

Suppose B is the convex hull of the set of all hypotheses. We aim to choose a weight
function w(z) that minimizes

w%%rels E, yLoss(w(x),y).
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