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1 Maximizing influence and diffusion

We started the lecture with a brief summary of the diffusion models discussed last time.!
We then introduced a general diffusion model defined as follows.

1.1 A general diffusion model

Let S; C V be the set of nodes active at time ¢, starting with some initial set of active notes
So. Moreover, each node v € V has a uniformly random activation threshold 6, and an
activation function f, : 2" — R defined on all subsets of the nodes. Given the set of active
nodes S;_1, we update the set of active nodes as follows:

1. Set St — Stfl.

2. Forallv € V'\ S;_1, we check whether f,(S;—1) > 6,. If this is the case, the node v
becomes active and we set S; < S; U {v}.

This diffusion model generalizes both the linear threshold model and the independent
cascade model discussed in the previous lecture [KKT03]. Morever, a theorem of Mossel
and Roch shows that the expected “influence” induced by the initial set Sy is monotone
submodular as long as the activations and influence are monotone submodular. Here, the
influence of a set S is defined via a monotone submodular set function w : V' — R. In
particular, we are interested in the expected influence after n steps of the above diffusion
process, which defines the following quantity:

ow(S0) = E[w(Sy)] -
Formally, we have the following result.

Theorem 1 ([MR10]). If all activation functions f, and the weight function w are monotone
submodular, then o,,(Sg) is monotone and submodular.

1.2 Further questions

Next, we discussed further questions related to diffusion processes.

1See notes for Lecture 17.



Learning. A natural question is how to learn a diffusion function. One appraoch is to
first learn the underlying diffusion model, which is related to graph learning and sparse
estimation problems. Given the learnt diffusion model, we can then evaluate the dif-
fusion function for new sets. Another recent approach [DLBS14] bypasses the model
learning stage and directly learns the resulting diffusion function, which is sufficient in
cases where we are only interested in estimating the influence of certain sets but not the
entire graph structure. The approach of [DLBS14] is based on the fact that many influence
functions are coverage functions, which can be approximated by a sum of simpler binary
reachability functions.

Evaluation of influence functions. Even if the diffusion model is given, the influence
function 0,,(Sp) is still hard to compute in many cases because o, is defined as an expec-
tation. Researchers have proposed several different approaches for efficiently evaluating
influence functions.

e Approximation via hypergraphs [BBCL14, TXS14, TSX15].
Sketching [CDPW14].

e Approximating Riemann sum [LOS15].
Sparsification [MBC*11].

Heuristics, e.g., degree discount [CWY09].

2 Making greedy faster

Yet another approach for evaluating influence functions more efficiently is making the
greedy algorithm itself faster. Besides influence functions, a faster greedy algorithm is
useful in many other submodular maximization problems over large domains. While
the “rectangular” running time of O(nk) for the regular greedy algorithm is sufficient
for small- and medium-scale problems, larger instances with large values of n and k can
become computationally expensive. Therefore, several ways of speeding up the greedy
algorithm have been proposed.

e The lazy greedy algorithm — we will explore this algorithm in the next problem set
[Min78].

¢ Instead of picking only the single best element in each iteration of the greedy algo-
rithm, we can also pick all elements above a certain treshold [BV14]. This leads to a
time complexity of O(% log 2).



e We can achieve an even better running time of O(nlog %) using randomization:
instead of considering all elements, we pick the best element from a small sam-
ple [MBK"15].

¢ Gain maximization as optimization [P]B14].

e Parallel and distributed algorithms for monotone function maximization [KMVV13,
MKSK13, WIB14, PJG'14].

e Algorithms working in an online or streaming setting [BMKK14].

2.1 Stochastic greedy

The stochastic greedy algorithm addresses the usual problem of maximizing a monotone
submodular function F' : 2 — R subject to a cardinality constraint:

argmax F'(S5) .
SCV,|S|<k

The stochastic greedy algorithm repeats the following steps for i = 1, ..., k, starting with
an initially empty set of selected elements Sy = {}.
1. Randomly pick aset T; C V' \ S;_1 of size |T;| = % log %

2. Find the best element a; in T*:

a; = argmax F(a|Sj—1) = argmax F({a}US;_1) .
a€T; a€T;

3. Add the element q; to the set of selected elements:

S; +— S;_1 U {az} .

Compared to the standard greedy algorithm, the stochastic greedy algorithm only searches
over a smaller set of candidate elements 7" in each iteration. Hence the time complexity
of the stochastic greedy algorithm is clearly better than that of standard greedy. The total
number of oracle calls O(nlog %) stated above directly follows from the cardinality of the
sets T;.

In addition to the good running time, the stochastic greedy algorithm still achieves a good
expected approximation ratio. In particular, we have

E[F(Sy)] > (1 - é - 5) .OPT — (1 1 g> max  F(S).

e SCV,|S|<k



The expectation is over the randomness of the algorithm. Note that the approximation
ratio is only worse by an additive € compared to the guarantee for the standard greedy
algorithm. Moreover, the stochastic greedy algorithm has good empirical performance
(see plot in the slides).

We now proof the main lemma for the stochastic greedy algorithm. Similar to the stan-
dard greedy algorithm, we show that every iteration of the algorithm makes at least a
certain amount of progress (now in expectation).

Lemma 1 ([MBK™"15]). The expected gain of one iteration of the stochastic greedy algorithm is

at least
1—¢

k
where S* is an optimal set, i.e., we have F'(S*) = OPT.

E[F(S;) — F(Si-1)] > E[(F(S™) = F(Si-1))]

Proof. Let T; be the random set picked by the stochastic greedy algorithm. Using 1 + = <
exp(z) and [V '\ S;_1| < n, we then get Then we have

P[T; N (S*\ Si—1) = @] = <1 - m>
[V \ Si1]
< exp (<157 Si1)

< exp (m

Now, note that 1 — exp(—"%z) is a concave function of z € [0,1]. Combined with 0 <
‘S*ik\s‘ < 1, we use this get the following lower bound:

PIT; N (S"\ Si-1) £ 2] 2 1—exp (- 215"\ Sial)

> (1 ~exp <_”;k>> S\ks—ﬂ

2(1_5)‘5\;%'—1"

Next, we bound the marginal increase of the best element in 7;. The stochastic greedy
algorithm picks the best element a; € T;, and hence the marginal gain of element q; is at
least as good as a random element in 7;. Since we pick the set 7; uniformly at random,
every element of S* \ S;_; has the same probability of being in 7;. So conditioned on the
event that 7; N (S*\ S;—1) # O, the expected marginal gain of element q; is at least as good



as that of a uniformly random element from S* \ S;_;. Since the function F' is monotone,
all marginal gains are non-negative and we get

E[F(a; | Si—1) | Si—1] = P[T;N(S*\ Si—1) # 2] - E[F(a; | Sic1) [T 0 (S™\ Si—1) # @, Sii]

|S*\ Si—1] 1
> (1—c¢ . F(el|S;_
= ( ) L |S*\Sz_1| eGS*Z\;gi_l ( | 1)
1—c¢
= — > Fle]Sia) .
CES*\SZ'_1

From monotonicity and submodularity of F', we have

F(S*) —F(Si_l) F(S* USi_l) —F(Si_l)
F((S™\ Si-1) USi—1) — F(Si-1)
= F(S"\ Si—1|Si-1)

Z F<€|Si_1) .

eES*\Si,1

IA

Combining the above two inequalities yields

1—¢
k

E[F(a;| Si—1) | Si1] = (F(S%) = F(Si—1)) -
Applying the definition of S; and the tower property of expectation gives the statement
of the lemma. O

The overall approximation guarantee of the stochastic greedy algorithm now follows
from a similar argument as for the standard greedy algorithm.

2.2 Distributed greedy

Another important direction for speeding up the greedy algorithm is by designing a dis-
tributed variant. In the distributed setting, we have a fixed number of machines, each of
which contains a subset of the ground set V. A natural approach is to run the standard
greedy algorithm independently on each machine in order to determine a local solution
of the desired size with a provable approximation guarantee. We can then send the lo-
cal solutions to a central machine, where we run the greedy algorithm again to find an
overall solution with cardinality k.



2.2.1 A counterexample

While this approach is intuitive, it can lead to an approximation ratio that is arbitrarily
close to 0 as a function of the number of machines. The main problem is that the local
greedy decisions are only good with respect to the local set of elements (the marginal
gains are only relative to the local subset of the ground set). To see this, consider the
counderexample in Figure 1. Here, our goal is to maximize a cardinality constrained
coverage function

max F(95) where F(S) =
SCV,|S|<k

U area(e)

The area of an element is simply the sum of the numbers in the respective rectangles.
The local elements (i.e., subsets of the cross-pattern in this example) at each machine are
two or three nonempty sets and a several empty sets (displayed in the top row of Fig-
ure 1). The arrows indicate which elements each machine sends to the central machine.
Note that the example is set up so that the marginal gains of the “border” elements (sub-
sets in colors green, yellow, light blue, and dark blue) are 0 in the local runs of the greedy
algorithm, and hence the local solutions can exclude an empty set instead of the border el-
ements. However, at the central machine it is now impossible to find the optimal solution
over the entire ground set because the border elements have already been discarded (for
cardinality constraint & = 6, the optimal solution is a full cover).

Parametrized by the number of machines ¢, this counterexample can be constructed so
that the number of machines is ¢2 + 1, the cardinality constraint is k = ¢ + 22, and the
distributed greedy solution is 2¢2. In contrast, a full cover with total area 2 + ¢3 is still
possible, and hence the approximation ratio becomes arbitrarily small for large values
of £.

2.2.2 Randomized distributed greedy

While this counterexample demonstrates that the distributed greedy algorithm does not
have a constant factor approximation guarantee, the algorithm usually works well in
practice [MKSK13]. We now show that we can explain this behavior by assuming that the
elements are distributed randomly across the machines. In particular, we consider the
following algorithm for a set of m machines:

1. Randomly distribute the data set: for each element e € V' and each machine 7, assign
element e to machine ¢ with probability 1. Let V; be the set of elements assigned to
machine i.

2. Run the greedy algorithm locally on each machine.
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Figure 1: Counterexample for the distributed greedy algorithm.



3. Send the solution sets Sg to the central machine. Let Vo = |, SiG be the set of
elements at the central machine.

4. Run the greedy algorithm centrally on V- and let S¢ be the solution..

5. Pick the best solution among the m local solutions and the central solution S¢. We
call this solution Spg.

This algorithm gives an approximation guarantee of

1 1

2.2.3 Analysis

We now give a sketch of the analysis in [BENW15]. An important quantity is the follow-
ing vector of probabilities p € RV, In the definition of p, we let A C V be a set of elements
such that Ple € A] = L foralle € V. Moreover, foraset B C V, we let GREEDY(B) denote
the solution of the greedy algorithm run on the set B.

{PA[e € GREEDY(A U {e})] ifee S*
DPe =

0 otherwise

We first prove the following lemma:

Lemma 2. If machine i uses a greedy algorithm that guarantees

F(SL) > F(S
(5¢) = @ scviiSi<h (%)

then '
E[F(Ss)] > aF(ls- —p)

where f : RVl — R is the Lovasz extension of F.
Proof. First, we define the following set:

0; = {e€ S"|e ¢ GREEDY(V; UO;)} .
From this definition, it follows that

Si, = GREEDY(V;) = GREEDY(V; UO;) .



Using the assumption in the lemma, we now get

F(SY) > a max F(S)
SCV;U0;
|S|<k

Since the V; are chosen randomly, we have

1—p. ifeeS*

P[eEOi]:l—P[(iEOi]: .
0 otherwise

from the definition of the probability vector p. It is now easy to see that E[1p,] = 15+ — p.
Combined with Jensen’s inequality and the definition of the Lovasz extension, this yields

E[F(Sg)]

v

aE[F(0;)]

= aE[f(1o,)]

Ozf(E]loi)
(

= af(ls: —p)

v

which is precisely the statement of the lemma. O

For the proof of the overall approximation guarantee, we use another lemma that we only
state.

Lemma 3. If the central machine uses an algorithm that guarantees

F(Sc) > ’Bsc%‘?ﬁémﬂs)
then
E[F(Spc)] = Bf(p) -

We now sketch how the proof proceeds given the above two lemmas. First, note that we
have ‘
F(Spg) > max F(Sg) and F(Spg) > F(S¢)

from the definition of the distributed greedy algorithm. Hence Lemma 2 implies E[F'(Spg)] >
af(lg« —p) and Lemma 3 implies E[F'(Spg)] > Bf(p). Combining these two inequalities
yields

(a+BE[F(Spc)] > aB(f(ls- —p) + f(p))
aff(ls- —p+p)

aBF(S*)

>
>



where we used the convexity and positive homogeneity of the Lovasz extension. The
above argument gives an overall approximation guarantee of

B[F(Soc)] 2 -

F(S*) .

2.2.4 Further remarks

The approach outlined above is fairly general and applies to any local (and central) algo-
rithm with a constant approximation ratio. Moreover, the approach generalizes to var-
ious down-monotone constraints and non-monotone submodular maximization. Better
approximation ratios can be achieved if items are selected with multiplicity. For fur-
ther work on distributed submodular maximization, see [MKSK13, IMMM14, MZ15,
BENW15].

3 Futher submodular problems

We ended the lecture with a high-level discussion of further submodular problems. So
far, the class has mostly focused on submodular problems that can be solved fairly well
(exact solution or constant factor approximation in polynomial time). However, there are
other classes of problems that are significantly harder.

One example is submodular minimization with constraints. In the constrained setting,
the Lovasz extension does not give an exact relaxation any more and there are several
approximation lower bounds of the form Q(n¢) for ¢ > 0. These lower bounds are
information-theoretic (lower bounds for oracle access to the objective function F) and
apply to constraints such as perfect matchings or minimum cuts. In contrast to these
lower bounds, maximization is usually more robust and still allows constant-factor ap-
proximations for many types of constraints in polynomial time. Solution strategies for
constrained submodular minimization problems include convex relaxations combined
with rounding, approximating the objective F' with an easier function, and sampling-
based approaches.

In practice there is often additional structure that allows us to avoid the worst case behav-
ior on many instances. We briefly talked about an example in image segmentation. Many
segmentation algorithms are based on min-cut approaches, which favor short boundaries.
This leads to problems when segmenting long and thin objects such as tree branches. One
way to design a more robust algorithm is via “cooperative cuts” [JB11]. The idea is that
the cut boundary should not only be short but also homogeneous, which allows for a
trade-off between homogeneity and cut energy. In practice, approximate algorithms work
very well on these problem instances. One additional helpful property on these instances
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is the notion of curvature, which quantifies the deviation from linearity of a submodular
function. By taking curvature into account, it is possible to prove better approximation
ratios [IJB13].
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