
6.883 Learning with Combinatorial Structure
Note for Lecture 19

Author: Michael Cohen

1 Other submodular problems

We briefly mention some additional problems on submodular functions.

1.1 Submodular minimization under constraints

Submodular minimization finds the exact overall minimum of a submodular function F ,
but we might want to minimize the function with respect to additional constraints.

In general, this can be hard to solve exactly. However, relaxing the problem or approx-
imating the function F can lead to efficient algorithms. One approach is to use linear
approximation–replacing F with a linear function that dominates it. Another approach,
from [Goemans et al, 2004], starts with the representation of a submodular function F in
terms of its base polytope B:

F (S) = f(1S) = max
y∈B

yT1S

The idea is to approximate the base polytope B with another region, leading to a more
tractable function approximating F . Specifically, this approach replaced B with an ellip-
soid.

1.2 Learning submodular functions

Another problem is to (approximately) learn a submodular function, given only limited
access to the function. There are several different variants of this problem, depending the
available information and the desired guarantee.

One relatively strong model is “active” learning, in which one is given oracle access to
the function, but can make only a limited number of queries. Even in this model, how-
ever, it has been shown to be hard to learn a submodular function up to multiplicative
error.

A weaker model provides only observations of evaluations of the function on specific in-
puts: that is, one is given a set of ordered pairs (S, F (S)), rather than being able to choose

1

S. Since this model is strictly weaker than the active one, it is still hard to achieve multi-
plicative error. However, even this weaker model can learn F up to additive error: that is,
it can produce a function G such that |F (S)−G(S)| ≤ ε for all S.

Another model is an instance of structured prediction. Here, one is given access to pairs
(Vi, Si) such that

Vi = arg max
S⊆Vi

F (S)

Here, it is not necessarily possible to learn the entire submodular function, but one can
obtain a function F̂ for which these structured prediction queries will produce similar
results.

2 Online learning

We move on to a new topic: online learning. There are several different problems in this
setting. Here, “online” means that one receives information over time, and must make
decisions as it arrives (as opposed to e.g. first being given all the examples and then
processing all of them as a batch).

In this lecture we focused on a specific type of problem: online optimization or regret
minimization.

2.1 Online optimization

The basic setting of online optimization is a game between a player and an “adversary”,
running for T rounds. The goal is to design a strategy for the player that achieve guar-
antees that are valid, regardless of the choices of the adversary. It is therefore valid even in
adversarial conditions–thus the choice of name. The guarantees will be in terms of the
player’s “regret”, which will be defined below.

The player has an allowable set of “actions”, K, for each round. Round t proceeds as
follows:

• The player chooses any action wt from K.

• The adversary chooses a loss function `t, mapping K to real numbers.

• The player incurs a loss of `t(wt), and receives some feedback.

The specifics of the problem still depend on the set of actions available K, constraints on
the loss function chosen by the adversary, and the feedback given.

2

2.2 Prediction from expert advice

A simple instance of this type of online learning problem is “prediction from expert ad-
vice”. Here, there are n experts. Each round, the player can choose one expert, i, to
listen to. They then incur a loss of `t(i), the values of which are constrained to lie in
[0, 1].

One might try to model this by setting K to {1, 2, . . . , n}. However, plugging this in to
the game described above does not allow the player to achieve strong guarantees (the
adversary can always choose to inflict loss on whoever the player chose). Instead, we
think of the player as being allowed to randomly choose an expert–but with the adversary
not able to observe the random choice before choosing `t–and track their expected loss.
This means that our actions are not actually single experts but probability distributions
over experts, so K = ∆n, the probability simplex.

The loss functions `t are then linear functions whose coefficients lie in [0, 1] (as expected
loss is linear in the choice of probability distribution).

2.3 Online shortest paths and structured problems

A more structured example is online shortest paths. Here, there is some graph with a
source vertex s and a destination vertex t, and each round the player chooses an s-t path.
The adversary chooses weights for each edge, and the loss incurred is the length of the
path according to those weights.

One could try to reduce this to the experts scenario by creating an expert for each path.
However, there would then be exponentially many experts, making this approach infea-
sible.

Instead, we can also just directly set K to the convex hull of all allowable choices (in this
case, unit s-t flows), and attempt to solve the problem directly.

Other structured online learning problems, such as picking permutations and subsets, are
similar.

2.4 Regret minimization

We are seeking algorithms with guarantees independent of the choices of the adversary,
so clearly we do not want to ask for a universal bound on the loss (since the adversary
could simply max out all losses each round). Instead, we might wish to compare the
loss with the best possible loss achievable in retrospect–however, this clearly also cannot

3

work, since the adversary could assign the losses with no pattern, making them impossi-
ble to “guess”.

Therefore, we instead define the regret Rt as the difference between the loss incurred and
the best loss achievable by a fixed strategy (that is, playing the same action every round).
In the case of experts, this means comparing the loss incurred to the loss of the single best
expert.

RT =

T∑
t=1

`t(wt)−min
u∈K

T∑
t=1

`t(u)

The goal will be to design a strategy for which this regret is uniformly bounded over
all choices of the adversary. Furthermore, we would like these bounds to show that the
average regret RT

T can go to 0 as T →∞.

2.5 Full information vs bandit

The remaining important piece in defining these online optimization problems is specify-
ing the nature of the feedback given to the player. The two major possibilities are:

• Full information: the player is given the complete function `t after each round.

• Bandit: the player is only told their actual loss incurred–only one value of the func-
tion `t.

For the rest of this lecture, we will be focusing on the full information case only.

2.6 Linear and convex loss functions

We will only be considering linear loss functions (and convex regionsK).

Note, however, that if the loss functions `t were convex rather than linear, we could re-
place them with a local linear approximation (∇`t(wt))>w. One then can see that by the
convexity of the loss functions, this can only overestimate the regret, meaning that regret
guarantees for the linear case imply them for the convex case (as long as the gradients
or subgradients of the convex function lie in the domain we allow for the linear loss
functions). In fact, this means that these online optimization algorithms automatically
imply algorithms for minimizing convex functions using gradients, just by applying this
argument to a fixed convex function (which will still have varying linear approximations
between rounds). That is one way to derive the convex optimization algorithm mirror
descent.

4

3 Strategies for online learning/optimization

We will now discuss actual strategies for these problems.

3.1 Follow-the-leader

A very simple and natural strategy is “follow-the-leader”: choosing the action that mini-
mizes the loss function from the rounds seen so far:

wt = arg min
w∈K

T−1∑
τ=1

`τ (w)

Note that in the case of experts, this will always choose a single fixed expert rather than a
probability distribution. This type of strategy can never achieve vanishing regret bounds.
Intuitively, picking the single best action is too unstable: a tiny change in the losses
can make a big change to the leader, giving the adversary too much power to manip-
ulate.

3.2 Stabilizing

We then can try to modify this strategy to make it more stable. In general, we can look at
strategies of the form

wt = arg min
w∈K

η
T−1∑
τ=1

`τ (w) +R(w)

One idea–follow-the-perturbed-leader–is to makeR a random linear function–in other words,
follow-the-leader with extra noise added to the loss function. This causes a random
choice of w and makes the algorithm more stable.

If the coefficients of this linear function are chosen from a uniform distribution, this gives
an expected regret bound of at most

m
√

2dT

wherem is maximum `1 norm insideK. This is from [Kalai, Vempala 2005].

We will focus on a different approach: follow-the-regularized-leader. Here, R is set to
a deterministic but nonlinear function which acts as a regularizer. Recall that this still
corresponds to a randomized strategy in most instances, since we interpret the result as a
probability distribution.

5

3.3 Follow-the-regularized-leader

In this approach, we specifically want R to be a strongly convex regularizer. Important
special cases are:

• The squared `2 norm:
R(w) = ‖w‖22

This leads to an algorithm resembling (sub)gradient descent.

• The entropy regularizer:

R(w) =
∑
i

wi logwi − wi

On the simplex, this leads to the “multiplicative weights update method”.

3.4 Bounds on follow-the-regularized-leader

We now state the generic bounds on this method. Let ∇2R indicate the Hessian (ma-
trix of second partial derivatives) of R. Then, for any sequence of loss vectors `t de-
fine

G = max
t

max
w∈K

`>t (∇2R(w))−1`t

This essentially measures the (squared) max norm of any loss vector according to the
strong convexity ofR. Additionally, define the diameter-like

D =

(
max
u∈K

R(u)

)
−
(

min
w∈K

R(w)

)

Then setting η optimally one can achieve a regret bound of

RT ≤ 2
√

2GDT

For the special case of the d-dimensional simplex with the entropy regularizer, we can see
thatD is log d (since entropy is always positive and maximized at log d). If the coefficients
of the loss vector at at most 1, then we can show thatG ≤ 1. This results in a regret bound
of

RT ≤ 2
√

2 log(d)T

6

3.5 Proving the bounds

To prove this bound, we begin by defining

φt(w) = η
t−1∑
τ=1

`>τ w +R(w)

We can then prove the following lemma:

Lemma 1. For any u ∈ K,

T∑
t=1

`>t (wt − u) ≤
T∑
t=1

`>t (wt − wt+1) +
D

η

Proof. First, by the definition of our strategy, wt is the minimizer of φt. Thus, we have

φT+1(wT+1) ≤ φT+1(u)

= η
T−1∑
t=1

`>t u+R(u)

Now, again using the definition of w,

φt+1(wt+1)− φt(wt) ≥ φt+1(wt+1)− φt(wt+1)

= η`>t wt+1

= η`>t wt + η`>t (wt+1 − wt)

Summing this, we get

φT+1(wT+1) ≥ φ1(w1) + η

T∑
t=1

(`>t wt + `>t (wt+1 − wt))

7

Combining the upper and lower bounds, we get

φ1(w1) + η
T∑
t=1

(`>t wt + `>t (wt+1 − wt)) ≤ η
T−1∑
t=1

`>t u+R(u)

η
T∑
t=1

`>t (wt − u) ≤ η
T∑
t=1

`>t (wt − wt+1) + (R(u)− φ1(w1))

T∑
t=1

`>t (wt − u) ≤
T∑
t=1

`>t (wt − wt+1) +
1

η
(R(u)−R(w1))

≤
T∑
t=1

`>t (wt − wt+1) +
D

η

Now we wish to bound `>t (wt − wt+1). First, define the W norm.

‖x‖2X = max
w∈K

x>(∇2R(w))−1x

Define the Z norm as the dual norm to this. By construction, R, and thus the φt, are 1-
strongly convex with respect to the Z norm (since their Hessian norms dominate it). In
particular, we can write

φt+1(wt+1 + w′)− φt+1(wt+1) ≥
1

2
‖w′‖2Z

Note that by definition, φt(wt) ≤ φt(wt+1), or

φt+1(wt+1 + (wt − wt+1))− η`>t wt ≤ φt+1(wt+1)− η`>t wt+1

φt+1(wt+1 + (wt − wt+1))− φt+1(wt+1) ≤ η`>t (wt − wt+1)

1

2
‖wt − wt+1‖2Z ≤ η‖`t‖X‖wt − wt+1‖Z (by duality of norms)

‖wt − wt+1‖Z ≤ 2η‖`t‖X
= 2η

√
G

Applying the dual norm inequality again, we get

`>t (wt − wt+1) ≤ 2ηG

Plugging this into 1, we get a regret bound of

2ηGT +
D

η

Setting η =
√

2GDT gives 2
√

2GDT , as desired.

8

4 Other variants

There is an alternative version of this strategy that uses only a savedwt, rather than saving
the sum of the `t. This achieves the same bounds, and can be formulated in terms of the
“Bregman divergence.”

9

