
6.883 Learning with Combinatorial Structure
Notes for Lecture 20

Author: Tuhin Sarkar

1 Recap

Last class we talked about online learning problems. Today we will develop regret bounds
for the regularized FTL algorithm, introduce online mirror descent and bandit feedback
problems. We will also discuss optimal regret bounds for each of these problems.

2 Online Gradient Descent

In the last class, we talked about a few examples:

• Prediction from expert advice: In this decision maker chooses from the advice of n
experts. Each expert has unknown loss function lt(i) ∈ [0, 1]. To learn which one is
good, we maintain a distribution w over the experts, and pick i to be the next expert
with probability w(i). The hedge algorithm updates those weights in each round
multiplicatively:

yt+1(i) = wt(i)e
−ηlt(i)

wt+1(i) =
yt+1(i)∑
i yt+1(i)

• Online Shortest paths: In this method we use the regularized follow the leader (FTL)
as discussed in the last class.

Next we will derive regret bounds for Regularized FTL given as:

wt = arg min
w∈K

η

t−1∑
τ=1

lτ (w) +R(w) (1)

hereK is a convex set andR(·) is a strongly smooth, convex function.

1

2.1 Online Gradient Descent and its generalization

Both of the above methods will turn out to be closely related to online gradient descent
(analyzed in [5]). Online gradient updates its weight vector as follows:

wt = ΠK(wt−1 − ηlt−1)

= arg min
w∈K

ηlt(w) +
1

2
||w − wt−1||2

One may thing of this as a linear local approximation to lt, and the last term encourages
the next iterate to be close to the previous one, adding stability.

The connection comes from a generalization: replace the squared Euclidean distance by
a Bregman divergence DR(·):

wt = arg min
w∈K

ηlt(w) +DR(w,wt−1). (2)

(This is also a Bregman Proximity Operator.)

2.2 Bregman Divergence

A Bregman divergence is determined by a strictly convex function R, and is defined
as

DR(x, y) = R(x)−R(y)− (x− y)T∇R(y)

Below are some properties of Bregman divergences:

• DR(x, y) ≥ 0 and, for a strictly convex function R, DR(x, y) = 0 if and only if x = y

• DR(x, y) is convex in x

• The Bregman projection on a convex set exists and is unique:

w′ = arg min
w∈K

DR(w, y)

Examples of DR(x, y) for different R:

1. For R(x) =
1

2
||x||2 we have DR(x, y) =

1

2
||x− y||2.

2. For the entropy function,R(x) =
∑n

i=1 xi log xi−xi =⇒ DR(x, y) =
∑n

i=1 xi log
xi
yi
−∑

i xi +
∑

i yi.

2

2.2.1 Rewriting the Bregman update step

Next, we rewrite the Bregman proximity operator (2). It can be decomposed into two
sub-steps, using an auxiliary intermediate variable yt+1:

1. Unconstrained step:

yt+1 = arg min
w∈Rd

ηlt(w) +DR(w,wt) (3)

2. Projection step:
wt+1 = arg min

w∈K
DR(w, yt+1) (4)

In the unconstrained step, we obtain yt+1 by setting the derivative to zero:

0 = ηlt +∇R(yt+1)−∇R(wt) ⇔ ∇R(yt+1) = ∇R(wt)− ηlt. (5)

When R(x) is the entropy function, and K = ∆d, i.e., the probability simplex, then
∇R(w) = logw. Then, in the unconstrained Step 1 we choose yt+1 such that log yt+1(i) =
logwt(i) − ηlt(i) =⇒ yt+1(i) = wt(i)e

ηlt(i). Then the projection, Step 2, is wt+1 =
yt+1∑
i yt+1(i)

. This is exactly the Hedge algorithm!

Next, we write the algorithm in terms of the update rule (5) that we obtained from the
optimality conditions (zero gradient).

3 Online Mirror Descent (OMD)

Online Mirror Descent is the following algorithm:

For t = 1, . . . , T :

• Gradient update: if t = 1, set yt such that∇R(yt) = 0. If t > 1, choose yt such that

∇R(yt) = ∇R(wt−1)− ηlt−1 (active version) (6)
∇R(yt) = ∇R(yt−1)− ηlt−1 (passive version)

• Projection (link): wt = arg minw∈KDR(w, yt)

3

Figure 1: Descent in mirrored space

The active version is equivalent to online gradient descent, and the passive version to
RFTL. This may be seen by setting derivatives to zero as we did above. If K = Rn, then
passive and active are the same (wt = yt).

The updates (6) resemble gradient descent steps. Indeed, OMD may be seen as perform-
ing gradient descent steps in a dual space, and then going back to the original space via
the projection (Step 2, also called a link function) that yields wt. This is illustrated in
Figure 1. If R is strictly convex, then there is a one-to-one mapping between gradients
∇R(y) and iterates y. The figure uses the language of conjugate functions. Indeed, the
link / projection step 2 may be seen as a gradient mapping ∇R∗ = (∇R)−1 using the
conjugate dual function R∗(u) = supv(u

>v −R(v)).

Let us take the example whenR(x) =
1

2
||x||2. The active OMD gives

wt+1 = arg min
w∈K
||w − (wt − ηlt)||2 = arg min

w∈K
ηl>t w + 1

2‖w − wt‖
2,

which is the online gradient descent.

The passive OMD collects the sum of all gradients in yt: It uses the updates

∇R(yt+1) = ∇R(yt)− ηlt

=⇒ yt+1 = yt − ηlt = y0 − η
t∑

τ=1

lτ .

Plugging this into the projection step 2, with y0 = 0, we obtain

wt+1 = arg min
w∈K
||yt+1 − w||2 = arg min

w∈K
‖ − η

t∑
τ=1

lτ − w‖2

= arg min
w∈K

t∑
τ=1

ηlTτw +
1

2
||w||2.

4

This is the regularized FTL algorithm.

So, OMD captures both the RFTL and the Online gradient descent algorithms. In the
previous section, we saw that it also captures multiplicative updates (the Hedge algo-
rithm), when using the negative entropy for R. Hence, OMD provides a unified view
on many of the existing online algorithms, which were derived originally as separate
algorithms. Consequently, analyzing OMD yields an analysis of this entire family of al-
gorithms.

3.1 Application to Combinatorial Structures

One of our initial motivations was to do online prediction of combinatorial structures
(paths, subsets S of a certain size m, etc.). All of these structures can be viewed as sub-
sets (e.g., a path is a set of edges in a graph). To apply OMD to this problem, we need a
continuous vector w. Hence, we view w ∈ K as defining a distribution over structures,
where we do a randomized prediction: we find a probability distribution pw over struc-
tures such that ES∼pw [1S] = w. The convex set K here is the convex hull of the indicator
vectors of all feasible structures.

The expected loss (with linear loss functions) is then E[l>1S] = l>E[1S] = l>w. This is
useful since the same analysis as for continuous predictions w will hold, in expectation.
We already did this for the experts problem, where we always pick exactly one expert
(subset of size 1).

What do the OMD steps look like for combinatorial problems?

• Step a.
∇R(yt) = ∇R(wt−1)− ηlt−1 (easy)

• Step b.
wt = arg min

w∈K
DR(w, yt)

Step b. is a convex optimization over a convex hull K. The difficulty of this prob-
lem depends on K. In many cases, this can be solved e.g. with the Frank-Wolfe
algorithm.

• Step c. Play randomized such that E[1St] = wt.
Finding the appropriate distribution pw and then sampling from it may be hard to
do sometimes.

It will turn out that using OMD with R to be the negaive entropy yields the optimal
regret.

5

3.2 Regret Bounds for OMD

Theorem 1. Let R be such that DR(x, y) ≥ ||x − y||2 in some norm || · ||, and ||lt||∗ ≤ G for

all t ≥ 0. Further, if DR(w,w1) ≤ D2 ∀w ∈ K, then the regrent of OMD with η =
D

2G
√
T

is

bounded as RT ≤ DG
√
T .

The proofs can be found in Chapter 2 of [1].

Example: Let us use the entropy function as R, and a scaled version of the probability
simplex, K = α∆ = {w | ||w||1 = α and w ≥ 0}. By Pinsker’s inequality, we have

DR(x, y) ≥ 1

α
||x − y||21 on α∆ = K. Hence, our norm will be a scaled version of the

`1-nomr. The dual norm of 1√
α
‖ · ‖1 is

√
α‖ · ‖∞. So we can set the constant G to be

G =
√
αmaxt ||lt||∞.

For the special case of K being the probability simplex ∆d, we obtain the “diameter”
constant D2 = log d.

Now consider the combinatorial setting, and assume for simplicity that we pick sets of
cardinality m, i.e., |St| ≤ m. The convex hull of the corresponding indicator vectors is
K = m∆ (setting α = m above). In this case, it can be shown that D2 = m log (d/m) (the
proof is in [6]). If for the loss functions we have that lt ∈ [0, 1]d, then we can set G =

√
m

and obtain RT = m
√
T log (d/m), which is optimal.

4 Bandit Feedback

So far, we assumed the full information setting, where in each step we observe the full
loss function lt after making a choice wt (St in the discrete setting). In the bandit setting,
in step t we only observe the loss evaluated at the particular point we picked, i.e., lt(wt)
(or lt(St) in the discrete setting): the feedback is reduced from an entire function to a
scalar.

We run into two challenges:

• OMD assumes knowledge of the full loss to compute gradients; but we don’t know
the full loss function

• We need to trade off between exploring and exploiting our knowledge on what has
been good so far

6

The basic idea to tackle these challenges is to use a perturbed version of wt (exploring)
and replace the gradient in the descent by a one-shot estimate l̂t that matches the actual
gradient in expectation.

4.1 Online stochastic mirror descent

If we have an estimate l̂t of the gradient at step t, we can plug this into our OMD and
proceed as before:

w1 = arg minw∈KR(w)
For t = 1, . . . , T

• play a random w
′
t ∼ pt based on wt

– observe feedback

• compute random estimate l̂t of lt

• use estimate as gradient:

∇R(yt+1) = ∇R(wt)− ηl̂t
wt+1 = arg min

w∈K
DR(w, yt+1)

The key question is how to obtain the gradient estimate. We will explore this with an
example.

4.2 Example: The multi armed bandit problem

The multi-armed bandit problem is the bandit version of the experts problem: there are
d arms (experts), and in each online round the learner chooses one of the arms, denoted
by pt. Then the learner only receives the cost of lt(pt). We use OMD and plug in an
estimate of the gradient since true gradient of lt is unknown. In round t, we proceed as
follows:

• play arm at based on the current weight vector wt.

• estimated gradient:

l̂t(i) =

{
lt(i)/wt(i) if at = i

0 otherwise.

7

• Using l̂t leads to the weight updates

yt+1(i) =

{
wt(at)e

−ηl̂t(at) if i = at

wt(i) otherwise
, wt+1 = yt+1/

d∑
i=1

yt+1(i) (7)

Since the learner picks arm i with probability wt(i), we have that

E[l̂t(j)|l̂1, . . . , l̂t−1] = wt(j)
lt(j)
wt(j)

= lt(j).

Therefore, l̂t is an unbiased estimator of lt.

Let us show a regret bound for this method. First, by a similar proof as the one we
saw in the last lecture for the full-information case, one can show that for any u ∈
K:

RT ≤
T∑
t=1

〈wt − u, lt〉 ≤ log(d)/η + η
T∑
t=1

∑
i

wt(i)l
2
t (i).

This holds for any non-negative vector lt (Theorem 2.22 in [1]). The part log(d)/η comes
from the “diameter”. Taking expectations on both sides we get (Theorem 4.1 in [1]),

E

[
T∑
t=1

(ft(wt)− ft(u))

]
≤ log(d)/η + η

T∑
t=1

E

[∑
i

wt(i)l̂
2
t (i)

]

E

[∑
i

wt(i)l
2
t (i) | lt−1, . . . , l1

]
=

d∑
j=1

P(at = j)
d∑
i=1

wt(i)
l2t (i)
wt(i)2

1[i = j]

=
∑
i

l2t (i)

≤ d

Thus the regret bound is log d/η + ηdT . Note that there is a bump up of d because we
only observe 1/d of complete feedback. Plugging in η =

√
log d/dT (which minimizes

the bound with respect to η) yields E[RT] ≤
√
dT log d.

References

[1] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations
and Trends in ML, 2011.

[2] E. Hazan. Introduction to Online convex Optimization.

8

Figure 2: Regret Bounds in different settings (adapted from [4])

[3] S. Bubeck, N. Cesa-Bianchi. Regret Analysis of stochastic and non-stochastic multi-
armed bandit problems. Foundations and Trends in ML, 2012.

[4] J. Audibert, S. Bubeck, G. Lugosi. Regret in Online Combinatorial Optimization.
Math. of OR 2014

[5] M. Zinkevich. Online Convex Programming and Generalized Infinitesimal Gradient
Ascent. ICML 2003.

[6] S. Bubeck. Introduction to Online Optimization (Lecture notes). 2011.

9

