
6.883 Learning with Combinatorial Structure
Notes for Lecture 7

Scribe: Matthew Staib

1 Submodularity in graphical models

1.1 Log-submodularity for faster inference

Last time we looked at some graphical or structural properties of graphical models which
make inference easier, such as treewidth or other properties relating to clique size. Alter-
natively, we could ignore the structure and instead focus on properties of the potential
functions themselves. Consider a distribution of the form

p(x;w) ∝
∏
C∈C

ψC(xC ;w). (1)

Suppose the variables xi are binary and the density function p(x;w) is log-supermodular,
i.e. for all S, T ⊆ V ,

p(1S)p(1T) ≤ p(1S∪T)p(1S∩T). (2)

We can then find the mode of the distribution in polynomial time by maximizing a log-
supermodular function.

1.2 Checking log-submodularity

One way to get a log-supermodular density function is to have log-supermodular poten-
tial functionsψC , as the product of log-supermodular functions is log-supermodular.

In the case where we have pairwise potentials, i.e. |C| ≤ 2 for all C ∈ C, to check log-
supermodularity, we need only check that

ψ′ij(0, 1) + ψ′ij(1, 0) ≥ ψ′ij(0, 0) + ψ′ij(1, 1), (3)

where ψ′ij(xi, xj) = − logψij(xi, xj).

For maximal cliques of arbitrary size, we can instead check

ψ′C(z, 0, 1) + ψ′C(z, 1, 0) ≥ ψ′C(z, 0, 0) + ψ′C(z, 1, 1) (4)

for all assignments z = xC\i,j ∈ {0, 1}|C|−2.

1

2 Extensions of submodular functions

Now that we have a submodular optimization problem, it is natural to want to extend
the set function F : {0, 1}n → R 1 to a function f : Rn+ → R, so that we can leverage
techniques from continuous optimization. Ideally, the functions F and f would agree on
{0, 1}n, i.e. f(1S) = F (S) for all S ⊆ V . But how might we consistently interpret x when
x 6∈ {0, 1}n?

2.1 Lovász extension

One idea is to write x =
∑k

i=1 αi1Si as a way of interpolating between some collection
of subsets Si. We could then write f(x) =

∑k
i=1 αiF (Si). However, there are many such

possible collections of sets Si to use here in the decomposition. We need to define a
unique collection {Si} for each x with consistent behavior in terms of how we choose
αi.

One way to choose {Si} is to think of x as a bar diagram, with bars for each components
corresponding to the component values. We can then think of “level sets” of x: for any
θ ∈ [0, 1], we define

Sθ = {i : xi ≥ θ}. (5)

Since x has finitely many components, as we decrease θ from one down to zero, we get a
sequence of sets S1 ⊂ S2 ⊂ · · · ⊂ Sk = V . This collection of sets is well-defined for each
x, so we will use it as a decomposition for x.

We will now give two interpretations of how to decompose x (i.e. find the coefficients αi)
and thus define f(x).

2.1.1 Extensions from expectations

For the moment, suppose x ∈ [0, 1]n. Let θ now be a random variable, uniform over [0, 1].
Then, define our extension as

f(x) = Eθ[F (Sθ)], (6)

where Sθ = {i : xi ≥ θ} as in 5. We can equivalently write this as

f(x) =

∫ 1

0
F (Sθ) dθ, (7)

which is known as the Choquet integral. Note that, while we get a distribution of sets Sθ,
the only sets we will ever see from this distribution are the level sets S1 ⊂ S2 ⊂ · · · ⊂
Sk = V from earlier.

1Here, {0, 1}n is a representation of the powerset of V with |V| = n

2

2.1.2 Extensions from sorting x

We now give an equivalent definition of this extension which works for x not necessarily
in [0, 1]n. Define a permutation π(·) which sorts x in descending order:

xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n). (8)

Then, defining Si = {π(1), . . . , π(i)} and S0 = ∅, we can write

f(x) =

n∑
i=2

(xπ(i−1) − xπ(i))F (Si) + xπ(n)F (V) (9)

=

n∑
i=1

xπ(i)(F (Si)− F (Si−1)). (10)

The main takeaway from this version of the definition for the Lovász extension is that f
is a linear function of x as long as the permutation stays the same, i.e. the extension f(x)
is piecewise linear.

2.1.3 Lovász extension examples

Example 2.1. Consider F (S) = min{1, |S|}, which is zero for S = ∅ and one elsewhere.
Then, we have

f(x) =
∑
i

αiF (Si) =
∑
i

αi = max
j
xj . (11)

Example 2.2. Consider a graph with two nodes u, v and an edge between them with
weight ν. Let F (S) be the graph cut function, i.e.

F (S) =

{
ν if |S| = 1 (i.e. if we cut)
0 otherwise.

(12)

Assume without loss of generality that xu > xv. Then,

f(x) = ν(xu − xv) = ν(max
j
xj −min

j
xj) = ν|xu − xv|. (13)

This is also called total variation, which is used heavily in signal processing.

3

2.2 Multilinear extension

Before further exploring the Lovász extension, we note that there are other ways to define
an extension from an expectation of F (S), depending on how we sample S. One specific
other way is, given x ∈ [0, 1]n, sample each element iwith probability xi:

fM (x) = ES∼x[F (S)] (14)

=
∑
S⊆V

F (S)
∏
e∈S

xe
∏
e6∈S

(1− xe). (15)

This function fM (x) is called the multilinear extension of F (S). There are a couple of im-
portant comparisons to draw versus the Lovász extension:

1. Even when F (S) is submodular, fM (x) is not convex in general. For the graph cut
function (example 2.2), the associated multilinear extension is

fM (x) = xu + xv − 2xuxv. (16)

2. The Lovász extension is actually a lower bound on all possible extensions of F (S)
that one can get from taking expectations over F (S), including the multilinear ex-
tension. Hence, fL(x) ≤ fM (x) for all x.

3 Properties of the Lovász extension

First, some basic properties of the Lovász extension f(x):

1. For any A ⊆ V , f(1A) = F (A).

2. The Lovász extension is positively homogeneous, meaning f(λx) = λf(x) for all λ ≥ 0.

3. Note that 1V is the all-ones vector. By looking at the Choquet integral, for λ ≥ 0 we
find that f(x+ λ1V) = f(x) + λF (V).

4. If F (S) is symmetric (F (S) = F (V \ S)), then f(−x) = f(x).

Perhaps the most useful property of the Lovász extension is the following theorem:

Theorem 3.1. The Lovász extension f(x) is convex if and only if the original function F (S) is
submodular.

4

Proof. First, we prove the =⇒ direction:

Assume the Lovász extension is convex. Let A,B ⊆ V , and note that 1A + 1B = 1A∪B +
1A∩B . By convexity and then positive homogeneity (for λ = 2), we see that f(1A + 1B) ≤
f(1A) + f(1B). Then, by the definition of the Lovász extension,

F (A) + F (B) = f(1A) + f(1B)

≥ f(1A∪B + 1A∩B)

(a)
= f(1A∪B) + F (A ∩B)

= F (A ∪B) + F (A ∩B)

where (a) is by looking at the sorting definition of f(x). Specifically, note that the decom-
position {Si} corresponds to S1 = A ∩ B ⊂ A ∪ B = S2. The inequality we have just
proved is the definitely of a submodular function, so F (S) is submodular.

Now, we prove the⇐= direction:

Assume that F (S) is submodular. Then, we have (but will not prove) that

f(x) = max
y∈BF

yTx, (17)

where BF is the so-called base polytope. As a maximum of convex functions over the
convex set BF , it follows that f(x) is convex.

3.1 Submodular polyhedra and base polytopes

To help understand the meaning of (17), we will define the base polytope BF . First, we
must define the submodular polyhedron:

Definition 3.1. The submodular polyhedron of a submodular function F (S) is the polyhe-
dron defined by

PF = {y ∈ Rn : y(A) ≤ F (A) for all A ⊆ V}.

Here we are writing y(A) as shorthand for
∑

a∈A ya. The set PF is the set of all linear
(modular) functions which are dominated by the function F (S). The base polytope BF is
a subset of PF of linear functions which are dominated by F (S) but agree with F (S) on
the full ground set V :

Definition 3.2. The base polytope of a submodular function F (S) is the polyhedron defined
by

BF = {y ∈ PF : y(V) = F (V)}.

5

Geometrically, the base polytope is one face of the submodular polyhedron.

We will now look at some examples.

Example 3.1. Consider the function F (A) for A ⊆ {a, b}, defined below:

A F (A)

∅ 0
{a} −1
{b} 2
{a, b} 0

We can write
PF = {y ∈ R2 : ya ≤ −1, yb ≤ 2, ya + yb ≤ 0} (18)

and
BF = {y ∈ R2 : ya ≤ −1, yb ≤ 2, ya + yb = 0}. (19)

This is illustrated graphically in figure 3.1.

Example 3.2. Consider the cut function from example 2.2. This function has

PF = {y ∈ R2 : yu, yv ≤ ν, yu + yv ≤ 0} (20)

and
BF = {y ∈ R2 : yu, yv ≤ ν, yu + yv = 0} (21)

This is illustrated graphically in figure 3.1.

Example 3.3. Consider a modular function defined by F (S) =
∑

i∈S wi, where S ⊆ V =
{1, 2}. Then the submodular polyhedron is

PF = {y ∈ R2 : y1 ≤ w1, y2 ≤ w2, y1 + y2 ≤ w1 + w2}. (22)

The last constraint is actually implied by the first two, so

PF = {y ∈ R2 : y1 ≤ w1, y2 ≤ w2}. (23)

The base polytope is the subset of PF where the last constraint is tight, but the only way
to make this constraint tight is to set y1 = w1 and y2 = w2, so that Bf = {(w1, w2)}. This
is illustrated graphically in figure 3.1.

6

Figure 1: In clockwise order starting from the top left, the submodular polyhedron PF
and the base polytope BF for examples 3.1, 3.2, and 3.3

7

3.2 Computing the Lovász extension (optimizing over the base polytope)

We turn our attention to actually computing f(x) = maxy∈BF y
Tx. As we saw in the

previous section, BF is defined by linear constraints, which is good news. The bad news
is that there is a linear constraint for each subset S ⊆ V , so we have exponentially many
linear constraints (in n = |V|).

Despite this shortfall, we can actually solve this maximization problem in O(n log n) time
with the following greedy algorithm:

1. Sort the elements of x, i.e. find a permutation π(·) so that

xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n).

2. Initialize the sets S0 = ∅ and Si = {π(1), π(2), . . . , π(i)} for 1 ≤ i ≤ n.

3. For 1 ≤ i ≤ n, set yπ(i) = F (Si)− F (Si−1).

Intuitively, we look at the constraint yπ(1) ≤ F ({π(1)}) = F (S1) and make it tight. Then,
we look at the constraint yπ(1) + yπ(2) ≤ F ({π(1), π(2)}) = F (S2), and make it tight by
setting yπ(2) = F (S2)− yπ(1) = F (S2)− F (S1). We continue until all components of y are
assigned.

3.2.1 Duality background

Before we can prove that the above procedure actually results in optimal y, we need to
review duality theory. Suppose we have a problem of the form

minimize f(x)
s.t. Ax ≤ b. (24)

We form what is called the Lagrangian:

L(x, λ) = f(x) +

m∑
i=1

λi(a
T
i x− bi) (25)

= f(x) + λT (Ax− b), (26)

where λ ≥ 0. Note that if we take the supremum over all λ ≥ 0, if any constraint in-
equality is not satisfied, we can take the corresponding λi → ∞, and the Lagrangian is
unbounded above. Otherwise, all constraints are satisfied, so one optimal solution is to
set all λi = 0, in which case L(x, λ) is just f(x).

We can also form the Lagrange dual function g(λ) = infx L(x, λ). As the infimum of affine
functions of λ, g(λ) is concave. Furthermore, if the optimal value of the primal problem

8

24 is p?, we have that g(λ) ≤ p?. This is because for any feasible x̃, we haveL(x̃, λ) ≤ f(x̃);
the result follows by taking the infimum over x̃.

By using this fact and maximizing g(λ) over all λ ≥ 0, we have what is called weak dual-
ity:

d? = max
λ≥0

g(λ) ≤ p?. (27)

Under certain conditions, we get what is called strong duality, where d? = p?, or in other
words, the primal problem and the dual problem maxλ≥0 g(λ) have the same optimal
value.

3.2.2 Proof of correctness of the greedy algorithm

It happens that strong duality holds for the problem maxy∈BF y
Tx. With this in mind, our

strategy will be to construct a y and a λ so that yTx = g(λ), which can only happen if y
and λ are optimal for the primal and dual problems, respectively. First, we must compute
the Lagrangian and then the dual function g(λ) for this problem: 2

L(y, λ) = −xT y +
∑
S⊆V

λS(y(S)− F (S)) (28)

=
∑
a∈V

ya

(
−xa +

∑
S:a∈S

λS

)
−
∑
S⊆V

λSF (S) (29)

If the coefficient of any ya is nonzero, we can take ya to ±∞ and the problem is un-
bounded. Hence, we can write

g(λ) = inf
y
L(y, λ) =

{∑
S⊆V λSF (S) if xa =

∑
S:a∈S λS for all a

−∞ otherwise.
(30)

Note that
xa =

∑
S:a∈S

λS ∀a ∈ V ⇔ x =
∑
S⊆V

λS1S , (31)

and therefore the dual problem is

maximize
∑

S⊆V λSF (S)

s.t. x =
∑

S⊆V λS1S
λ ≥ 0.

(32)

2Instead of dealing with the equality constraint y(V) = F (V) directly, we will assume x ≥ 0, so that there
is always incentive to increase y; therefore we can replace this equality constraint with y(V) ≤ F (V).

9

One way to get a feasible solution to this problem is take each λS from the level sets
(sorting) definition of the Lovász extension, from equation 9. That is, set λV = xπ(n) and
λSi = xπ(i−1) − xπ(i) for other Si. This produces

g(λ) =

n∑
i=2

(xπ(i−1) − xπ(i))F (Si) + xπ(n)F (V). (33)

For the primal problem, we can take yπ(i) = F (Si)−F (Si−1), so that

xT y =

n∑
i=1

xπ(i)(F (Si)− F (Si−1). (34)

This is just equation 10, which we already saw was equal to equation 9. Hence, g(y) =
xT y, so y and λ are primal- and dual-optimal, respectively. The greedy algorithm results
in the same vector y, so the greedy algorithm is optimal.

3.2.3 Implications

Now that we can compute f(x) = maxy∈BF x
T y, there are a few important implica-

tions:

1. We can compute a vertex of BF . In general, unless x is perpendicular to BF or some
edge thereof, the optimal y will be the vertex of BF most “aligned” with x.

2. We can compute subgradients of the Lovász extension. This is because f(x) is writ-
ten as a maximum of affine functions xT y, so all we need to do is find a maximizing
y, and then y ∈ ∂f(x).

10

	Submodularity in graphical models
	Log-submodularity for faster inference
	Checking log-submodularity

	Extensions of submodular functions
	Lovász extension
	Extensions from expectations
	Extensions from sorting x
	Lovász extension examples

	Multilinear extension

	Properties of the Lovász extension
	Submodular polyhedra and base polytopes
	Computing the Lovász extension (optimizing over the base polytope)
	Duality background
	Proof of correctness of the greedy algorithm
	Implications

