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1 Minimizing a submodular function

1.1 Lovász extension as a continuous relaxation

Previously, we spoke about constructing the Lovász extension, which is a continuous ex-
tension of the original submodular function. To minimize the submodular function

min
S⊆V

F (S) = min
x∈{0,1}n

F (x) (1)

we might minimize the Lovász extension (section 2.1 of Lecture 7)

min
x∈[0,1]n

f(x) (2)

which is a convex optimization problem, that can be solved using a subgradient method.
It can be shown1 that the relaxation is exact, so we can recover an optimal set S∗ to (1)
from an optimal solution x∗ to (2).

1.2 Difficulties with solving the Dual

Alternatively, we can consider the dual of (1)

f(x) = max
y∈BF

n∑
i=1

min{yi, 0} (3)

as an optimization over the base polytope BF .

To test membership in the polytope is to test whether y(S) ≤ F (S) for all S. One possibil-
ity is to check whetherF (S)−y(S) ≥ 0 for all S. But this is equivalent to

min
S⊆V

[F (S)− y(S)] ≥ 0 (4)

which requires the minimization of another submodular function g(S) = F (S)−y(S).

By the ed of the lecture, we will discover that projections onto the base polytope are equiv-
alent to solving a parametric submodular minimization problem.

1See Problem 2 of Homework 2
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2 Parametric Submodular Minimization

Consider the following formulation

min
x∈Rn

f(x) +

n∑
i=1

ψi(xi) (5)

where ψi(·) is strictly convex and continuously differentiable, and limx→∞ ψ
′
i(x) =∞ and

limx→−∞ ψ
′
i(x) = −∞.

To see its connection to submodular minimization2, we study the problem of solving

S∗α ∈ argmin
S⊆V

F (S) + α|S| (6)

where we introduce a penaltyα|S| on the cardinality of the function.

Observe that limα→∞ S
∗
α = ∅ and limα→−∞ S

∗
α = V . More generally, we consider some

weight functionwα : V 7→ R, which must strictly increase with respect toα.3,4

Proposition 1 (Monotonicity). The set of solutions is going to be monotone, i.e.

α < β =⇒ Sβ ⊆ Sα

where Sα ∈ argmin
S⊆V

F (S) + wα(S).

Proof. By the optimality of Sα, we have

F (Sα) + wα(S
α) ≤ F (Sα ∪ Sβ) + wα(S

α ∪ Sβ) ∀Sβ

F (Sβ) + wβ(S
β) ≤ F (Sα ∩ Sβ) + wβ(S

α ∪ Sβ) ∀Sα

By summing them up, and rearranging terms, we get

0 ≥ F (Sα ∪ Sβ) + F (Sα ∩ Sβ)− (F (Sα) + F (Sβ))

≥ wα(Sα) + wβ(S
β)− wα(Sα ∪ Sβ)− wβ(Sα ∩ Sβ)

= −wα(Sβ \ Sα) + wβ(S
β \ Sα)

= |Sβ \ Sα|(wβ − wα)

Since wβ − wα > 0, it must be that Sβ ⊆ Sα.

2Optimizing (6) does not always lead to the same optimal solution as that for (5)
3Although the w’s can be made coordinate-dependent, we’ll skip that development for this lecture
4If we let wα(S) = α|S|, we recover (6)
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Proposition 2. Define u ∈ Rn such that uj = sup{α ∈ R | j ∈ Sα}. Then u is the unique
optimal solution of (5), i.e.

u = argmin
x∈Rn

f(x) +
n∑
i=1

ψi(xi)

Proof. Let z be an arbitrary solution, and β = min{zi, ui}1≤i≤n. The idea is to write the
Lovász extension as an integral.

ψ(uj) = ψ(β) +

∫ uj

β
ψ′(α) dα = ψ(β) +

∫ ∞
β

ψ′(α)I[uj ≥ α] dα

f(u) =

∫ 0

β
[F ({u ≥ α})− F (V)] dα+

∫ ∞
0

F ({u ≥ α}) dα

Letting wα(S) =
∑

j∈S ψ
′
j(α), we get

f(u) +
n∑
j=1

ψ(uj) =

∫ ∞
β

F ({u ≥ α}) + n∑
j=1

ψ′(α)I[uj ≥ α]

dα+ nψ(β)−
∫ 0

β
F (V)dα

≤
∫ ∞
β

F ({z ≥ α}) + n∑
j=1

ψ′(α)I[zj ≥ α]

dα+ nψ(β)−
∫ 0

β
F (V)dα

=

∫ ∞
β

F ({z ≥ α}) + n∑
j=1

ψ′(α)I[zj ≥ α]

dα+ nψ(β)−
∫ 0

β
F (V)dα

= f(z) +
n∑
j=1

ψ(zj)

for any arbitrary zj ∈ {α ∈ R | j ∈ Sα}, where the first inequality follows from the
monotonicity of Sα, and the last inequality comes from rearranging terms. Hence u is
optimal to (5).

Remark: Observe that for anyα, u encodes the parametric solution Sα through

{u > α} ⊆ Sα ⊆ {u ≥ α}

where {u > α} is a shorthand for the minimal minimizer {j | uj > α}, and {u ≥ α} for
the maximal minimizer {j | uj ≥ α}.
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3 Minimum norm Problem

Now consider the caseψj(x) = x2 for all j. Thenψj(α) = α, and we have

f(x) +
1

2
||x||2 ≡ F (S) + α|S| (7)

by propositions (1) and (2). Thus, by solving the LHS, we can read out all the solutions of
the RHS, and the entries of the vector x will have the form

x∗j =
F (Si)− F (Si−1)
|Si \ Si−1|

for all j ∈ Si \ Si−1 (Sk ⊂ Sk−1 ⊂ . . . ).

Taking the dual, we have

min
x
f(x) +

1

2
||x||2 = min

x
max
y∈BF

yTx+
1

2
||x||2 (8)

= max
y∈BF

min
x
yTx+

1

2
||x||2 (9)

= max
y∈BF

−1

2
||y||2 (10)

= − min
y∈BF

1

2
||y||2 (11)

where the second equality follows from strong duality, by observing that the expression is
concave (linear) in y and convex in x, which satisfies the saddle-point property.

Therefore, it can be seen that solving the projection problem (i.e. by projecting 0 onto the
polytope) is as difficult as solving the parametric submodular problem (6), which by set-
tingα = 0, which is at least as hard as solving the original problem (1).

Remark: The optimal solution to the dual problem maxy∈BF −1
2 ||y||

2 (which by negation
is same as that of the primal problem) has the following properties

• nested sublevel sets S1 ⊂ S2 ⊂ · · · ⊂ Sk
• “tight sets": for all sublevel sets, we have y∗(Sj) = F (Sj).

• for i ∈ Sj \ Sj−1, we have y∗i =
F (Sj)−F (Sj−1)
|Sj\Sj−1|

• y∗ is the lexicographically maximal base (Fujishige 1980)
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4 Convergence Bounds

Suppose we are interested in solving (1), and have an iterative method for the minimiza-
tion of (7), which generated a primal-dual candidate (x, y). From duality, we have

f̃(x)− f̃(x∗) ≤ f̃(x)− g̃(y)

where the RHS is called the duality gap, with f̃(x) = f(x)+1
2 ||x||

2 and g̃(y) = −1
2 ||y||

2.

Then we have the following result (stated here without proof):

Theorem 1 (Bach 2013). If f̃(x)− g̃(y) ≤ ε′, then there exists an α such that the discrete duality
gap is bounded as

F (Sα)− F (S∗) ≤ F (Sα)− y−(V) ≤
√
(2nε′)

where Sα = {e | − ye ≥ α}.

5 Min-norm point Algorithm

Here we describe an active set method for solving the min-norm problem. Briefly: it starts
with a polytope with many vertices5,6. It maintains an active set of vertices, and iteratively
alternates between optimizing over the convex hull of those vertices, and updating the
active set of vertices to optimize over.

1. Pick any corner point vi, and set y = vi, and S = {vi}.

2. Find v′ ∈ argminv∈BF yTv, and test for optimality (i.e. 〈v′, y〉 ?
= ||y||)7. If y is not

optimal, set S = S ∪ {v′} and continue.

3. Find a min-norm point z in the affine hull of S, i.e.

min
η

1

2
||
∑
vi∈S

ηivi||2

s.t.
∑
i

ηi = 1

4. Let η be the solution obtained. If z :=
∑

vi∈S ηivi ∈ conv(S), set y = z and continue
with (2). Otherwise “correct” by

5potentially exponential in the number of dimensions of the polytope
6for n dimensions, you need at most n vertices to represent any point in the polytope
7The optimality conditions follow from looking at the saddle point conditions for the optimization problem

(9): we need that ∇xφ(x, y) = 0 and ∇yφ(x, y) = 0, so 〈x∗, y∗〉 = 〈y∗, y∗〉 here.
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9.2. Iterative algorithms - Exact minimization 293

(a)1
2

3

4
5

0
(b)1

2

3

4
5

0
(c)1

2

3

4
5

0

(d)1
2

3

4
5

0
(e)1

2

3

4
5

0
(f)1

2

3

4
5

0

Figure 9.1: Illustration of Frank-Wolfe minimum-norm-point algorithm: (a) initial-
ization with J = {2} (step (1)), (b) check optimality (step (5)) and take J = {2, 5},
(c) compute affine projection (step (2)), (d) check optimality and take J = {1, 2, 5},
(e) perform line search (step (3)) and take J = {1, 5}, (f) compute affine projection
(step (2)) and obtain optimal solution.

Figure copied from Bach, Learning with Submodular Functions – A Convex Optimization Perspective
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a) Set y to ynew = αy+(1−α)z = α(
∑

i ηivi)+ (1−α)(
∑

i∈S γivi) for the smallest
α satisfying αηi + (1− α)γi ≥ 0 for all i.

b) Drop points with ηnew,i = 0 from S.

and continue with (3).
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