6.883 Learning with Combinatorial Structure
 Note for Lecture 9
 Author(s): Yeesian Ng

1 Minimizing a submodular function

1.1 Lovász extension as a continuous relaxation

Previously, we spoke about constructing the Lovász extension, which is a continuous extension of the original submodular function. To minimize the submodular function

$$
\begin{equation*}
\min _{S \subseteq \mathcal{V}} F(S)=\min _{x \in\{0,1\}^{n}} F(x) \tag{1}
\end{equation*}
$$

we might minimize the Lovász extension (section 2.1 of Lecture 7)

$$
\begin{equation*}
\min _{x \in[0,1]^{n}} f(x) \tag{2}
\end{equation*}
$$

which is a convex optimization problem, that can be solved using a subgradient method. It can be shown ${ }^{1}$ that the relaxation is exact, so we can recover an optimal set S^{*} to (1) from an optimal solution x^{*} to (2).

1.2 Difficulties with solving the Dual

Alternatively, we can consider the dual of (1)

$$
\begin{equation*}
f(x)=\max _{y \in \mathcal{B}_{F}} \sum_{i=1}^{n} \min \left\{y_{i}, 0\right\} \tag{3}
\end{equation*}
$$

as an optimization over the base polytope \mathcal{B}_{F}.
To test membership in the polytope is to test whether $y(S) \leq F(S)$ for all S. One possibility is to check whether $F(S)-y(S) \geq 0$ for all S. But this is equivalent to

$$
\begin{equation*}
\min _{S \subseteq \mathcal{V}}[F(S)-y(S)] \geq 0 \tag{4}
\end{equation*}
$$

which requires the minimization of another submodular function $g(S)=F(S)-y(S)$.
By the ed of the lecture, we will discover that projections onto the base polytope are equivalent to solving a parametric submodular minimization problem.

[^0]
2 Parametric Submodular Minimization

Consider the following formulation

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x)+\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right) \tag{5}
\end{equation*}
$$

where $\psi_{i}(\cdot)$ is strictly convex and continuously differentiable, and $\lim _{x \rightarrow \infty} \psi_{i}^{\prime}(x)=\infty$ and $\lim _{x \rightarrow-\infty} \psi_{i}^{\prime}(x)=-\infty$.

To see its connection to submodular minimization ${ }^{2}$, we study the problem of solving

$$
\begin{equation*}
S_{\alpha}^{*} \in \underset{S \subseteq \mathcal{V}}{\arg \min } F(S)+\alpha|S| \tag{6}
\end{equation*}
$$

where we introduce a penalty $\alpha|S|$ on the cardinality of the function.
Observe that $\lim _{\alpha \rightarrow \infty} S_{\alpha}^{*}=\emptyset$ and $\lim _{\alpha \rightarrow-\infty} S_{\alpha}^{*}=\mathcal{V}$. More generally, we consider some weight function $w_{\alpha}: \mathcal{V} \mapsto \mathbb{R}$, which must strictly increase with respect to α. ${ }^{3,4}$

Proposition 1 (Monotonicity). The set of solutions is going to be monotone, i.e.

$$
\alpha<\beta \Longrightarrow S^{\beta} \subseteq S^{\alpha}
$$

where $S^{\alpha} \in \underset{S \subseteq \mathcal{V}}{\arg \min } F(S)+w_{\alpha}(S)$.
Proof. By the optimality of S^{α}, we have

$$
\begin{array}{ll}
F\left(S^{\alpha}\right)+w_{\alpha}\left(S^{\alpha}\right) \leq F\left(S^{\alpha} \cup S^{\beta}\right)+w_{\alpha}\left(S^{\alpha} \cup S^{\beta}\right) & \forall S^{\beta} \\
F\left(S^{\beta}\right)+w_{\beta}\left(S^{\beta}\right) \leq F\left(S^{\alpha} \cap S^{\beta}\right)+w_{\beta}\left(S^{\alpha} \cup S^{\beta}\right) & \forall S^{\alpha}
\end{array}
$$

By summing them up, and rearranging terms, we get

$$
\begin{aligned}
0 & \geq F\left(S^{\alpha} \cup S^{\beta}\right)+F\left(S^{\alpha} \cap S^{\beta}\right)-\left(F\left(S^{\alpha}\right)+F\left(S^{\beta}\right)\right) \\
& \geq w_{\alpha}\left(S^{\alpha}\right)+w_{\beta}\left(S^{\beta}\right)-w_{\alpha}\left(S^{\alpha} \cup S^{\beta}\right)-w_{\beta}\left(S^{\alpha} \cap S^{\beta}\right) \\
& =-w_{\alpha}\left(S^{\beta} \backslash S^{\alpha}\right)+w_{\beta}\left(S^{\beta} \backslash S^{\alpha}\right) \\
& =\left|S^{\beta} \backslash S^{\alpha}\right|\left(w_{\beta}-w_{\alpha}\right)
\end{aligned}
$$

Since $w_{\beta}-w_{\alpha}>0$, it must be that $S^{\beta} \subseteq S^{\alpha}$.

[^1]Proposition 2. Define $u \in \mathbb{R}^{n}$ such that $u_{j}=\sup \left\{\alpha \in \mathbb{R} \mid j \in S^{\alpha}\right\}$. Then u is the unique optimal solution of (5), i.e.

$$
u=\underset{x \in \mathbb{R}^{n}}{\arg \min } f(x)+\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right)
$$

Proof. Let z be an arbitrary solution, and $\beta=\min \left\{z_{i}, u_{i}\right\}_{1 \leq i \leq n}$. The idea is to write the Lovász extension as an integral.

$$
\begin{aligned}
\psi\left(u_{j}\right) & =\psi(\beta)+\int_{\beta}^{u_{j}} \psi^{\prime}(\alpha) \mathrm{d} \alpha=\psi(\beta)+\int_{\beta}^{\infty} \psi^{\prime}(\alpha) \mathbb{I}\left[u_{j} \geq \alpha\right] \mathrm{d} \alpha \\
f(u) & =\int_{\beta}^{0}[F(\{u \geq \alpha\})-F(\mathcal{V})] \mathrm{d} \alpha+\int_{0}^{\infty} F(\{u \geq \alpha\}) \mathrm{d} \alpha
\end{aligned}
$$

Letting $w_{\alpha}(S)=\sum_{j \in S} \psi_{j}^{\prime}(\alpha)$, we get

$$
\begin{aligned}
f(u)+\sum_{j=1}^{n} \psi\left(u_{j}\right) & =\int_{\beta}^{\infty}\left[F(\{u \geq \alpha\})+\sum_{j=1}^{n} \psi^{\prime}(\alpha) \mathbb{I}\left[u_{j} \geq \alpha\right]\right] \mathrm{d} \alpha+n \psi(\beta)-\int_{\beta}^{0} F(\mathcal{V}) \mathrm{d} \alpha \\
& \leq \int_{\beta}^{\infty}\left[F(\{z \geq \alpha\})+\sum_{j=1}^{n} \psi^{\prime}(\alpha) \mathbb{I}\left[z_{j} \geq \alpha\right]\right] \mathrm{d} \alpha+n \psi(\beta)-\int_{\beta}^{0} F(\mathcal{V}) \mathrm{d} \alpha \\
& =\int_{\beta}^{\infty}\left[F(\{z \geq \alpha\})+\sum_{j=1}^{n} \psi^{\prime}(\alpha) \mathbb{I}\left[z_{j} \geq \alpha\right]\right] \mathrm{d} \alpha+n \psi(\beta)-\int_{\beta}^{0} F(\mathcal{V}) \mathrm{d} \alpha \\
& =f(z)+\sum_{j=1}^{n} \psi\left(z_{j}\right)
\end{aligned}
$$

for any arbitrary $z_{j} \in\left\{\alpha \in \mathbb{R} \mid j \in S^{\alpha}\right\}$, where the first inequality follows from the monotonicity of S^{α}, and the last inequality comes from rearranging terms. Hence u is optimal to (5).

Remark: Observe that for any α, u encodes the parametric solution S^{α} through

$$
\{u>\alpha\} \subseteq S^{\alpha} \subseteq\{u \geq \alpha\}
$$

where $\{u>\alpha\}$ is a shorthand for the minimal minimizer $\left\{j \mid u_{j}>\alpha\right\}$, and $\{u \geq \alpha\}$ for the maximal minimizer $\left\{j \mid u_{j} \geq \alpha\right\}$.

3 Minimum norm Problem

Now consider the case $\psi_{j}(x)=x^{2}$ for all j. Then $\psi_{j}(\alpha)=\alpha$, and we have

$$
\begin{equation*}
f(x)+\frac{1}{2}\|x\|^{2} \equiv F(S)+\alpha|S| \tag{7}
\end{equation*}
$$

by propositions (1) and (2). Thus, by solving the LHS, we can read out all the solutions of the RHS, and the entries of the vector x will have the form

$$
x_{j}^{*}=\frac{F\left(S_{i}\right)-F\left(S_{i-1}\right)}{\left|S_{i} \backslash S_{i-1}\right|}
$$

for all $j \in S_{i} \backslash S_{i-1}\left(S_{k} \subset S_{k-1} \subset \ldots\right)$.
Taking the dual, we have

$$
\begin{align*}
\min _{x} f(x)+\frac{1}{2}\|x\|^{2} & =\min _{x} \max _{y \in \mathcal{B}_{F}} y^{\top} x+\frac{1}{2}\|x\|^{2} \tag{8}\\
& =\max _{y \in \mathcal{B}_{F}} \min _{x} y^{\top} x+\frac{1}{2}\|x\|^{2} \tag{9}\\
& =\max _{y \in \mathcal{B}_{F}}-\frac{1}{2}\|y\|^{2} \tag{10}\\
& =-\min _{y \in \mathcal{B}_{F}} \frac{1}{2}\|y\|^{2} \tag{11}
\end{align*}
$$

where the second equality follows from strong duality, by observing that the expression is concave (linear) in y and convex in x, which satisfies the saddle-point property.

Therefore, it can be seen that solving the projection problem (i.e. by projecting 0 onto the polytope) is as difficult as solving the parametric submodular problem (6), which by setting $\alpha=0$, which is at least as hard as solving the original problem (1).

Remark: The optimal solution to the dual problem $\max _{y \in \mathcal{B}_{F}}-\frac{1}{2}\|y\|^{2}$ (which by negation is same as that of the primal problem) has the following properties

- nested sublevel sets $S_{1} \subset S_{2} \subset \cdots \subset S_{k}$
- "tight sets": for all sublevel sets, we have $y^{*}\left(S_{j}\right)=F\left(S_{j}\right)$.
- for $i \in S_{j} \backslash S_{j-1}$, we have $y_{i}^{*}=\frac{F\left(S_{j}\right)-F\left(S_{j-1}\right)}{\left|S_{j} \backslash S_{j-1}\right|}$
- y^{*} is the lexicographically maximal base (Fujishige 1980)

4 Convergence Bounds

Suppose we are interested in solving (1), and have an iterative method for the minimization of (7), which generated a primal-dual candidate (x, y). From duality, we have

$$
\tilde{f}(x)-\tilde{f}\left(x^{*}\right) \leq \tilde{f}(x)-\tilde{g}(y)
$$

where the RHS is called the duality gap, with $\tilde{f}(x)=f(x)+\frac{1}{2}\|x\|^{2}$ and $\tilde{g}(y)=-\frac{1}{2}\|y\|^{2}$.
Then we have the following result (stated here without proof):
Theorem 1 (Bach 2013). If $\tilde{f}(x)-\tilde{g}(y) \leq \epsilon^{\prime}$, then there exists an α such that the discrete duality gap is bounded as

$$
F\left(S^{\alpha}\right)-F\left(S^{*}\right) \leq F\left(S^{\alpha}\right)-y_{-}(\mathcal{V}) \leq \sqrt{\left(2 n \epsilon^{\prime}\right)}
$$

where $S^{\alpha}=\left\{e \mid-y_{e} \geq \alpha\right\}$.

5 Min-norm point Algorithm

Here we describe an active set method for solving the min-norm problem. Briefly: it starts with a polytope with many vertices ${ }^{5,6}$. It maintains an active set of vertices, and iteratively alternates between optimizing over the convex hull of those vertices, and updating the active set of vertices to optimize over.

1. Pick any corner point v_{i}, and set $y=v_{i}$, and $S=\left\{v_{i}\right\}$.
2. Find $v^{\prime} \in \arg \min _{v \in \mathcal{B}_{F}} y^{\top} v$, and test for optimality (i.e. $\left.\left\langle v^{\prime}, y\right\rangle \stackrel{?}{=}\|y\|\right)^{7}$. If y is not optimal, set $S=S \cup\left\{v^{\prime}\right\}$ and continue.
3. Find a min-norm point z in the affine hull of S, i.e.

$$
\begin{aligned}
& \min _{\eta} \frac{1}{2}\left\|\sum_{v_{i} \in S} \eta_{i} v_{i}\right\|^{2} \\
& \text { s.t. } \sum_{i} \eta_{i}=1
\end{aligned}
$$

4. Let η be the solution obtained. If $z:=\sum_{v_{i} \in S} \eta_{i} v_{i} \in \operatorname{conv}(S)$, set $y=z$ and continue with (2). Otherwise "correct" by

[^2]

Figure 9.1: Illustration of Frank-Wolfe minimum-norm-point algorithm: (a) initialization with $J=\{2\}($ step (1)), (b) check optimality (step (5)) and take $J=\{2,5\}$, (c) compute affine projection (step (2)), (d) check optimality and take $J=\{1,2,5\}$, (e) perform line search (step (3)) and take $J=\{1,5\}$, (f) compute affine projection (step (2)) and obtain optimal solution.

Figure copied from Bach, Learning with Submodular Functions - A Convex Optimization Perspective
a) Set y to $y_{\text {new }}=\alpha y+(1-\alpha) z=\alpha\left(\sum_{i} \eta_{i} v_{i}\right)+(1-\alpha)\left(\sum_{i \in S} \gamma_{i} v_{i}\right)$ for the smallest α satisfying $\alpha \eta_{i}+(1-\alpha) \gamma_{i} \geq 0$ for all i.
b) Drop points with $\eta_{\text {new }, i}=0$ from S. and continue with (3).

[^0]: ${ }^{1}$ See Problem 2 of Homework 2

[^1]: ${ }^{2}$ Optimizing (6) does not always lead to the same optimal solution as that for (5)
 ${ }^{3}$ Although the w 's can be made coordinate-dependent, we'll skip that development for this lecture
 ${ }^{4}$ If we let $w_{\alpha}(S)=\alpha|S|$, we recover (6)

[^2]: ${ }^{5}$ potentially exponential in the number of dimensions of the polytope
 ${ }^{6}$ for n dimensions, you need at most n vertices to represent any point in the polytope
 ${ }^{7}$ The optimality conditions follow from looking at the saddle point conditions for the optimization problem
 (9): we need that $\nabla_{x} \phi(x, y)=0$ and $\nabla_{y} \phi(x, y)=0$, so $\left\langle x^{*}, y^{*}\right\rangle=\left\langle y^{*}, y^{*}\right\rangle$ here.

