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Set functions

ground set

VY = <

F:2YV 5 R s
cost of buying items
F ( W % ) = together, or

utility, or

We will assume: probability, ...

. F() = 0

 black box “oracle” to evaluate F




Discrete Labeling

Building

Grass

F(S) = coherence + likelihood



Summarization




Informative Subsets
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|
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* where put sensors?
* which experiments?
* summarization

F(S) = “information”



Sparsity

Yy = Ax + noise

N

F(S) =“penalty

on support
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Formalization

 Formalization:
Optimize a set function F(S) (under constraints)

e 8
e, %
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« generally very hard ®

* submodularity helps:
efficient optimization & inference with guarantees!

©



Roadmap

 Submodular set functions
— what is this? where does it occur? how recognize?

* Maximizing submodular functions:
diversity, repulsion, concavity

greed is not too bad

* Minimizing submodular functions:
coherence, regularization, convexity

the magic of “discrete analog of convex”

e Other questions around submodularity & ML

more reading & papers: http://people.csail.mit.edu/stefije/miss/literature.pdf




Sensing
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) = all possible locations
F(S) = information gained from locations in S



Marginal gain
. Given set function F:2" =R

* Marginal gain:  F(s|A) = F(AU{s}) — F(A)
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i
Diminishing marginal gains

pIacement A {1,2} placement B ={1,...,5}
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F(AUs)— F(A) > F(BUs)— F(B)
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Submodularity

.

S~~~ ~——
A B
F(AUs) — F'(A) > F(BUs)— F(B)
extra cost: extra cost:
one drink free refill ©

diminishing marginal costs
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i
Submodular set functions

* Diminishing gains: forallA C B

® -

F(Aue)—F(A) > F(BUe)— F(B)

* Union-Intersection: forall S, T CV

v+ i) B« risor



The big picture

J. Edmonds

G. Choquet

submodular

- functions
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Examples

- each element e has a weight w(e)

F(8)=> wle)

ecS
ACB

F(AUe) — F(A) =w(e) = F(BUe)— F(B)=uw(e)

linear / modular function
F and -F always submodular!



Examples
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sensing:

F(S) = information gained from locations S



Example: cover

U area(v)

veS




i
More complex model for sensing

|l 4 @
= - Y.: temperature

at location s

X,: sensor value
at location s

'@ ' X, =Y, + noise

Joint probability distribution
P(Xl,...,Xn,Yl,...,Yn) = P(Yl,...,Yn) P(Xl,...,Xn | Yl,...,Yn)

H_J\ J
Y

Prior Likelihood

18



Sensor placement

Utility of having sensors at subset A of all locations

F(A) = HY) — H(Y | X4) =I1(Y;Xa)

—7 N,
Uncertainty Uncertainty
about temperature Y about temperature Y
before sensing after sensing
o LIojgy Yo ILI 1] Q& L1

e
S 2 L}
5 Dg%m Al D

A={1,2,3}: High value F(A) A={1,4,5}: Low value F(A)

e P

Dmgb@@ O
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Information gain

Xq1,...X,,Yq,... discrete random variables

F(A) Y XA ‘ . modular!

=) H(X;|Y)

1€ A

if all X;, X, conditionally
independent given Y

then F is submodular!




Entropy

X1,...,X, discrete random variables: X, € {1,...,m}

F(S) = H(Xg) = joint entropy of variables indexed by S

Z P(X.=x)log P(X. =)

discrete entropy is submodular!



Submodularity and independence

X1,...,X,, discrete random variables

X;,1 €85 statistically independent

& His modular/linearonS H(Xs) ZH
ecS

Similarly: linear independence

=1l

F(S) = rank( )

M} vectors in S linearly independent

< Fis modular/linear on S:
FS)=|S]



Maximizing Influence

F(S) = expected # infected nodes

(Kempe, Kleinberg & Tardos 2003) 23



Graph cuts

e Cut for one edge: @—@

- F({u}) + F({v}) = F({u,v}) + F(0)
veses oD O—0
Way Wy 0 0

e cut of one edge is submodular!
* large graph: sum of edges

Useful property: sum of submodular functions is submodular



Sets and boolean vectors

any set function ... IS @ function on
with [V| = n binary vectors!
F:2V 3R F:{0,1}" - R
A =14

@
® =
©
@

subset selection = binary labeling!

a
b
C
d

ololr|r

25



Attractive potentials

max P(x|z) xexp(—F(x;z))
xc{0,1}m A

labels  pixel

values N min  F(x;2z)
xe{0,1}"
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Attractive potentials

spatial coherence:

Eij(l,O) +Ez-j(0, 1) > Ez-j(0,0) +Ez-j(1,1)
i ] i ] | ] ]
S = {i} T = {;} SNT =0 SUT

F(S) + F(T) > F(SUT) + F(SNT)

27



Diversity priors

P(S | data) o« P(S) P(data|.5)

“spread out”



Determinantal point processes

S

e similarity matrix L
_ T
Lij = x; x;

e sample setY:

P(Y = S) o det(Lsg)

/ = Vol({z;}ies)’

! F(S) =logdet(Kg)
." IS submodular!




DPP sample

similarities:
sij = exp(—gzez |l — ;%)

uniform
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Submodularity: many examples

linear/modular functions

graph cut function

coverage

propagation/diffusion in networks

entropy
rank functions
information gain

log P(S|data) [repulsion]
or -log P(S|data) [coherence]




Closedness properties

F(S) submodular on V. The following are submodular:

* Restriction: F'(S)=F(SNW)

33



Closedness properties

F(S) submodular on V. The following are submodular:

e Restriction: F'(S)=F(SNW)

» Conditioning: F'(S)=F(SUW)

34



Closedness properties

F(S) submodular on V. The following are submodular:

* Restriction:  F'(S) = F(SNW)
» Conditioning: F’(S) = F(SUW)

* Reflection: F'(S)=F(V\S)

35



Submodularity ...

discrete convexity ....

V'

(\ ... Or concavity?
>

36



Convex functions (Lovasz, 1983)

* “occur in many models in economy, engineering and
other sciences”, “often the only nontrivial property that
can be stated in general”

e preserved under many operations and transformations:
larger effective range of results

e sufficient structure for a “mathematically beautiful and
practically useful theory”

o efficient minimization

“It is less apparent, but we claim and hope to prove to a
certain extent, that a similar role is played in discrete
optimization by submodular set-functions® [...]

they share the above four properties.




Convex aspects

e convex extension
— duality
— efficient minimization

But this is only
half of the story...

38



Concave aspects

* submodularity:
ACB, s¢ B:
F(AUs)— F(A)

@ s
* concavity:

a<b s>0:

fla+s) = fla)

F(A) “intuitively”
4

| A

v/
)
Ny
C
N
|
i
=

vV
=
S
_|_
N
|
=
=
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Submodularity and concavity
 suppose ¢g:N —= R and F(A) =g(|A])
F(A) submodular ifandonlyif... g is concave

V'

g(|A])

40



Max / min

e Maximum of convex functions is convex




Maximum of submodular functions

e F1(A),F>(A) submodular. What about
F(A) = max{ Fi(A), F5(A)} ?

max{ I}, F» } not submodular in general!

42



Max / min

 Minimum of concave functions is concave




Minimum of submodular functions

What about F(A) = min{ Fi(A), F»(A) } ?

0 0 1 0
F(A)+ F(B) > F(AUB)+ F(ANB)?
Fi(A) [ F,(A)
AN B|{ 0 0 ANB
A {a} 1 0 A
B {b} 0 1 B
AU B|{a,b} |1 1 AUB

min(F,,F,) not submodular in general!

44



Submodular optimization

CONVEX ... m
U ... and concave aspects!

* Maximizing submodular functions:
diversity, repulsion, concavity
greed is not too bad

* Minimizing submodular functions:
coherence, regularization, convexity

magic with polytopes, and “discrete analog of convex”



Submodular Maximization

e © * groun
. i ground set V
© e ® o0 o
Oo oogo * (scoring) function
C) . V
o of°°_ ° F:2" =Ry
o -
© @ ® o
C
SCVY

= max F(S)




Informative Subsets

O T
T R N I
|
|

* where put sensors?
* which experiments?
* summarization

F(S) = “information”

47



Maximizing Influence

F(S) = expected # infected nodes

o j O
o/jo P
O

Kempe, Kleinberg & Tardos 2003 48



Summarization

* videos, text, pictures ...

* would like:
relevance, reliability, diversity




Summarization

F(S) =

 Coverage / relevance

S u - =
™ . O
Sa,b
™ —
U ™ ™
i l
. o
[
[
¥ il

R(S) + D(95)

* Diversity

(Simon et al 2007, Lin & Bilmes 2011&2012, Tschiatschek et al 2014, Kim et al 2014, Gygli et al 2015, ...)



Diversity

* Diversity Another diversity function ...
D(S) =Y \/ISNF D(S)=— ) Sap
j=1 a,bes
™ ™
Epli ™ ii " g - o
u ™ W
“ a : O " .
= o
iP3U . o -
U - o W

increasing decreasing



Summarization: results

R F

L1(S) + ARg(95) 12.18 | 12.13

L1(S)+>0_ MR.x(S) 12.38 | 12.33

Toutanova et al. (2007) 11.89 | 11.89
Haghighi and Vanderwende (2009) 11.80 -
Celikyilmaz and Hakkani-tiir (2010) 11.40 -

Best system in DUC-07 (peer 15), using web search || 12.45 | 12.29

(Lin & Bilmes 2011)

Many more functions are possible ...

works even better!

=» Learn a weighted combination: structured prediction

(Lin & Bilmes 2012, Tschiatschek et al 2014, Gygli et al 2015, Xu et al 2015,...)



More maximization ...

co-segmentation

by maximizing
anisotropic diffusion
(Kim et al 2011)

environmental monitoring
(Krause, ...)

max F'(.5)

weakly supervised

object detection

(Song et al 2014) _
diverse

recommendations
(Yue & Guestrin)

boinaboinad

inferring networks
(Gomez Rodriguez et al 2012)




Monotonicity

if SCT then F(S)< F(T)




i
Monotonicity - how check?
if AC B then F(A) < F(B)

Let B=AU{a}. F(AU{a}) - F(A) 2 0.

-~

marginal gain

; gain: +5 -8

F(A) = U area(a)| — Z c(a)

acA acA




Maximizing monotone functions

if AC B then F(A) < F(B)

max F(S)

* NP-hard
* approximation: greedy algorithms



Maximizing monotone functions

max F(S) sit. S| <k

* greedy algorithm:

So=10
fori=0,..., k-1

* = F(S; U
¢ = arg max (S; U{e})

Sz'—|—1 — Sz U {6*}

How “good” is Sk ?



Pedestrian detection

X; = index of hypothesis

explaining x y; = 1: object i
present
y; = O: object i

not present

Voting elements Hypotheses

lllustrations courtesy of Pushmeet Kohli (Barinova et al.”10) o8



Pedestrian detection

X; = index of hypothesis
explaining x,

Voting elements

[llustrations courtesy of Pushmeet Kohli

y; = 1: object i
present

Joint MAP inference:
F(S) — E maxXx Ws 4

— €S
J

Weight of element x;wrt hyp.y;




Inference

Datasets from [Andriluka et al. CVPR 2008]
(with strongly occluded pedestrians added)

Using the Hough forest trained in [Gall&Lempitsky CVPRO9]

[llustrations courtesy of Pushmeet Kohli



How good is greedy? in practice...

empirically:

9

8_

7_

»

1N

information gain
(&) |

optimal

greedy

sensor placement

2 3 4
Number of sensors placed




How good is greedy? ... in theory

max F(S) sit. S| <k

Theorem (Nemhauser, Fisher, Wolsey “78)

F monotone submodular, S solution of greedy. Then

(1- 1) F(S*)

F(Sk)
e N

[V

optimal soluti

in general, no poly-time algorithm can do better than that!

on



Questions

 What if | have more complex constraints?
— budget constraints
— matroid constraints

* Greedy takes O(nk) time. What if n, k are large?

 What if my function is not monotone?



More complex constraints: budget
max F(S) s.t. Zc(e) <B

ecS
1. run greedy: S,

2. run a modified greedy: §

mod

c(e)

e" = arg max

3. pick better of Sy, S04

even better but less fast:
=>» approximation factor: partial enumeration
1 1 (Sviridenko, 2004) or
P ( ) filtering (Badanidiyuru &
Vondrak 2014)

(Leskovec et al 2007)



Other constraints: Camera network
* Ground set: V ={14,1p,...,54,5}
« Sensing quality model: F:2V - R

e Configuration (subset) is feasible if no camera is
pointed in two directions at once

e Constraints:

C
P = {1a71b}7"'7p5 — {5a75b}
require:

SN Pl <1




Generalization of Greedy algorithm

S =1
While de: S U e feasible
e* < argmax{F(SUe) | SU e feasible}

N

N,

S+ SUe”
Theorem (Nemhauser, Wolsey, Fisher 78) T
For monotone submodular functions: )
1 ]
F(Sgreeay) > $E(S) [T

* Does this always work? % i i

No. But works for matroid constraints.




Matroids: examples

set S is independent ( = feasible) if ...

. S| <K

Uniform matroid

« Sindependent = T C S also independent

67



Matroids

set S is independent ( = feasible) if ...

I 10 1 ¢ o ® i
o ; e 00 ’/Q ® () ®
... S contains at most
. |S] <k one element from
each group
Uniform matroid Partition matroid

I: - :I
... S contains no
cycles

Graphic matroid

S independent = T C Salso independent

Exchange property: S, U independent, |S| > |U|
=» some e € S can be added to U: U U e independent

All maximal independent sets have the same size

68



Generalization of Greedy algorithm

S =10
While de: S U e feasible

e* < argmax{F(SUe) | SU e feasible}
S+ SuUe”

Theorem (Nemhauser, Wolsey, Fisher 78)
For monotone submodular functions:

F(Sgreedy) > %F(S*)

 Works for matroid constraints
* |s this the best possible?

Can do a bit better with relaxation: (1-1/€)




Relax: Discrete to continuous

F(S ma
Igléa%( ( ) CIZECOD\}I((I) fM (:C)
1 1
o.al ?
f(€$$4: T
05 0.5 |
Algorithm:

1. approximately maximize f,,
(like Frank-Wolfe algorithm - next lecture)

2. round to discrete set (pipage rounding)

(Calinescu-Chekuri-Pal-Vondrak 2011)



Multilinear extension
 sample item e with probability z.

fu(z) = Egna [FI(5)]

=Y FS) [z ] -2

SCV e€S  e¢S




Questions

 What if | have more complex constraints?
— budget constraints
— matroid constraints

* Greedy takes O(nk) time. What if n, k are large?
— faster sequential algorithms
— filtering
— parallel / distributed

 What if my function is hot monotone?



Making greedy faster: stochastic

max F(S) st. S| <k

for i=1...k:

 randomly pliok set T of
size Zlog -
k €

e find besta elementinT
and add

i = F i
a; = argmax (a]Si—1)

S,,; < Sz'—l U {CLZ}

(Mirzasoleiman et al 2014)



stochastic
greedy

better solution

Performance

' @ “Lazy greedy”

A

A

EEEEDDD®

Lazy—-Greedy
Threshold-Greegy eps=0.7
Threshold-Greegy eps=0.8
Threshold—Greegy eps=0.9
Sample-Greedy p =0.13
Sample-Greedy p = 0.23
Sample-Greedy p = 0.33
Sample-Greedy p = 0.43
Rand-Greedy eps=.001
Rand-Greedy eps=.01
Rand-Greedy eps=0.1
RandGreedy eps=0.3
Multi-Greedy

2 4
Cost

6

8 10
x 10

faster



even more data S e
dlstnbuted greedy algorlthm’?




Distributed greedy algorithms

-‘% -‘%77 -‘% -‘%7 greedy is sequential.
000000 000000 000000 000000 pick in parallel??
000000 000000 000000 000000

000 pick k elements

\ \ // on each machine.
000 combine and run

greedy again.

Is this useful?



Distributed greedy algorithms
- - - -

000000 000000 000000 000000
000000 000000 000000 000000 o
l l l l pick in parallel
from m machines
YY)
Is this useful?

Approximation factor:

1
O(min{\/E, m}>

(Mirzasoleiman et al 2013)



Distributed/Centralized

Distributed Greedy

a=4/m | GreeDI (a=1)
1
In practice,
0.95¢ Glr\;:rdg):e/ Greﬁﬂdg)i —I——‘I”j:_‘ ~] performs often
,}/I" a=2/m quite well.
0.9 I’ ’\
I Rg”rgggy/ andom/ 1. special structure:

085} /' A Improved guarantees

2 if F is Lipschitz or
0.8 ‘ ‘ ‘ | a sum of many terms

2 4 6 8 10 2. randomization
# machines (# parts in partition)

(Mirzasoleiman et al 2013)



Distributed greedy algorithms

w - - -

randomly distribute
000000 000000

000000 000000 across machines
000000 000000 00000 O 000000

pick in parallel
__ from m machines

~~~~~~~~~~~~~~~~~~ "~~~\\ \

NNNNNN ~\~ \\ ‘I

N\N So \\ 1

. S \ 1

~~~~ \\\ \\ :

¢ ~~‘~ NS +

\
~~~~~~~~~~~~~ } 4
Pick the best of m+1 solutions

each machine: a—approximation algorithm
level 2: 5— approximation algorithm

= overall approximation factor: E[F(S)] > Ofﬁ
(87

F(S5™)

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)



Distributed greedy algorithms

- -% - - randomly distribute
000000 000000 000000 000000 across machines
000000 000000 000000 000000

pick in parallel
___ from m machines
~~~~~~~~~~~~~~~~~ ~~~\\ \
~~~~~~ S, !
Sso w5 \ 1
s~~ S \\ 1
S Ss S -
“uy Ss S !
¢ ~~~~~ \\\ \\ :
~ v

\
~~~~~~~~~~~~~ } <
Pick the best of m+1 solutions

With greedy algorithm on both levels:
a=8=1-— 1, overall factor:
(A

- )

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)



Questions

 What if | have more complex constraints?
— matroid constraints
— budget constraints

* Greedy takes O(nk) time. What if n, k are large?
— stochastic
— parallel / distributed
— filtering, structured, ...

 What if my function is not monotone?



Non-monotone functions

—if=5-CF—tirer—r < r—

still assume:

F(S5)>0 forallS 3 5 1




Greedy can fail ...

F(A) =
(4) = || ) area(a)

— > cla)

greed, gt =4
a a
F(A F(A) =95
/ sensor 1 \ / sensor 2 sensor 3 sensor 4 \

-

e

coverage: 100
cost: -60
gain 40

o

o

A

o

coverage: 30

cost:

\gain

coverage: 30
-1 cost: -1
29 gain 29

coverage: 40
cost: -
gain 3

Y

L

So

0

S =0U F
1 =0V argmax F(a)




greedy solution:

F(A) = 40

-

-

sensor 1

e

coverage: 100
cost: -60
gain 40

~

/

Greedy can fail ...

F(A) U area(a)

— > cla)

acA

optimal solution: F'(A) = 95

/ sensor 2

coverage: 30
cost: -1

' 29
\gam

sensor 3

o

A

coverage: 30
cost: -1
gain 29

sensor 4 \

.
coverage: 40
cost: 3
gain 3

Y




Double (bidirectional) greedy

¢ Start: A=1(, B=YV
V = - for i=1, ..., n //add or remove?
AL =40 e gain of adding (to A):
e gain of removing (from B):
A_ =60
A_=|F(B — F (B
B BT [F(B\a)~ F(B)],
—J

add with probability

ge: 100 Ay o
e gg\s/tera ) 60 P(add) :A+ N = 40%




Double (bidirectional) greedy

¢ Start: A=1(, B=YV
)™ Cl[mt e for i=1, ..., n //add or remove?
Ay =40 add with probability
A L e A_|_
P(add) =
Ay +
A_ =60
B = L} == add to A or Eemove from B]

coverage: 100
cost: -60




Double (bidirectional) greedy

'

Start: A = (D, B=Y

= |- for i=1, ..., n //add or remove?
Ay =29 add with probability
[ A 29
P(add) =——— = =
Ay + 29
A_ — [—29]+ — O
= B [add to A] or remove from B
_)

cost:

coverage: 30

-1




Double (bidirectional) greedy

¢ Start: A=1(, B=YV
Ve for i=1, ... n //add or remove?
) AL =29  add with probability
=l D == A 3
P(add) =————— ==
AL+ A 29
A_=0
B * Di@ [add to A] or remove from B
-

coverage: 30
cost: -1

B




Double greedy

max F'(5)
SCV

Theorem (Buchbinder, Feldman, Naor, Schwartz ‘12)

F submodular, S, solution of double greedy. Then

E[F(Sy)] =2 3F(57)

™

1
2

optimal solution




Non-monotone maximization

alternatives to double greedy?
local search (reige et al 2007)

constraints?
possible, but different algorithms

distributed algorithms? yes!

— divide-and-conquer as before (de Ponte Barbosa et al 2015)
— concurrency control / Hogwild (pan et al 2014)



Submodular maximization: summary

* many applications: diverse, informative subsets

* NP-hard, but greedy or local search
e distinguish monotone / hon-monotone

* several constraints possible
(monotone and non-monotone)



i
Submodularity and machine learning

distributions over labels, sets
log-submodular/

supermodular probability diffusion processes,
e.g. “attractive” graphical models, covering, rank
determinantal point processes connectivity
& machine economies of scale,
learning! summarization, ...
(convex) regularization , submodular
submodularity: “discrete | phenomena

convexity”
e.g. combinatorial sparse estimation

92



