
Submodular Functions – Part I

ML Summer School Cádiz
Stefanie Jegelka

MIT

Set functions

2

cost of buying items
together, or

utility, or

probability, …

V =

() = F

F : 2V ! R

We will assume:
•  .
•  black box “oracle” to evaluate F
F (;) = 0

ground set

Discrete Labeling

3	

Int J Comput Vis (2009) 82: 302–324 303

Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et

sky

tree
house

grass

Int J Comput Vis (2009) 82: 302–324 303

Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et

F (S) = coherence + likelihood

Summarization

4	

F (S) = relevance + diversity or coverage

Informative Subsets

5	

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

•  where put sensors?
•  which experiments?
•  summarization

F (S) = “information”

Sparsity

Submodularity (almost) everywhere
Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

F (S) =“penalty

on support

pattern”

y =
Ax

+ noise

Formalization
•  Formalization:

Optimize a set function F(S) (under constraints)

•  generally very hard L
•  submodularity helps:

efficient optimization & inference with guarantees!
J

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

Roadmap
•  Submodular set functions

–  what is this? where does it occur? how recognize?

•  Maximizing submodular functions:
diversity, repulsion, concavity
greed is not too bad

•  Minimizing submodular functions:
coherence, regularization, convexity
the magic of “discrete analog of convex”

•  Other questions around submodularity & ML

more reading & papers: http://people.csail.mit.edu/stefje/mlss/literature.pdf

Sensing

9	

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

 = all possible locations
F(S) = information gained from locations in S
V

•  Given set function

•  Marginal gain:

F : 2V ! R

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1
X2

new	
 sensor	
 s	

F (s|A) = F (A [{s})� F (A)

Xs	
 	
 	

Marginal gain

10

Diminishing marginal gains

11	

B

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1	

X2	

X3	

X4	

X5	

placement	
 B	
 =	
 {1,…,5}	

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1
X2

placement	
 A	
 =	
 {1,2}	

Adding	
 s	
 helps	
 a	
 lot!	
 Xs	
 	
 	

new	
 sensor	
 s	

A + s + s

Big	
 gain	
 small	
 gain	

F (A [s)� F (A) � F (B [s)� F (B)

A ✓ B

Submodularity

12

extra cost:
one drink

|{z}

extra cost:
free refill J

.| {z }

diminishing marginal costs

F (A [s)� F (A) � F (B [s)� F (B)

BA

A ✓ B

Submodular set functions

•  Diminishing gains: for all

•  Union-Intersection: for all

A B + e + e

A ✓ B

F (A [e)� F (A) � F (B [e)� F (B)

S, T ✓ V

F (S) + F (T) � F (S [T) + F (S \ T)

The big picture

submodular	

funcDons	

electrical	

networks	

(Narayanan	

1997)	

graph	

theory	

(Frank	
 1993)	

game	

theory	

(Shapley	
 1970)	

matroid	

theory	

(Whitney,	
 1935)	

stochasDc	
 	

processes	

(Macchi	
 1975,	
 	

Borodin	
 2003)	

combinatorial	

opDmizaDon	

machine	
 	

learning	

G. Choquet J. Edmonds

L.S. Shapley
L. Lovász

Examples
•  each element e has a weight

F (S) =
X

e2S

w(e)

F (A [e)� F (A) = w(e)

A ⇢ B

F (B [e)� F (B) = w(e)=

linear / modular function
F and –F always submodular!

+ +

w(e)

Examples

16	

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

sensing:
F(S) = information gained from locations S

Example: cover

F (S) =

�����
[

v2S

area(v)

�����

F (A [v)� F (A) F (B [v)� F (B)�

18	

More	
 complex	
 model	
 for	
 sensing	

Joint	
 probability	
 distribuDon	
 	

P(X1,…,Xn,Y1,…,Yn)	
 	
 =	
 P(Y1,…,Yn)	
 P(X1,…,Xn	
 |	
 Y1,…,Yn)	

Ys:	
 temperature	

at	
 locaDon	
 s	

Xs:	
 sensor	
 value	

at	
 locaDon	
 s	

Xs = Ys + noise

Prior	
 Likelihood	

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

Y1 Y2 Y3

Y6

Y5
Y4

X1	

X4	

X3	

X6	

X5	

X2	

Sensor placement
UDlity	
 of	
 having	
 sensors	
 at	
 subset	
 A	
 of	
 all	
 locaDons	

	

19	

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1

X2

X3

A={1,2,3}: High value F(A)

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X4

X5
X1

A={1,4,5}: Low value F(A)

F (A) = H(Y) � H(Y | XA)

Uncertainty	

about	
 temperature	
 Y	

before	
 sensing	

Uncertainty	

about	
 temperature	
 Y	

a6er	
 sensing	

= I(Y;XA)

Information gain
X1, . . . Xn, Y1, . . . , Ym discrete random variables

Y1 Y2 Y3

Y6

Y5
Y4

X1	

X4	

X3	

X6	
 X5	

X2	

XA

if all conditionally

independent given

then F is submodular!

Xi, Xj

Y

F (A) = I(Y ;XA) = H(XA)�H(XA|Y)

=
X

i2A

H(Xi|Y)

modular!

Entropy

F (S) = H(XS) = joint entropy of variables indexed by S

discrete random variables: X1, . . . , Xn

H(XA[e)�H(XA) = H(Xe|XA)

 H(Xe|XB)

= H(XB[e)�H(XB)

“information never hurts”

discrete entropy is submodular!

Xe 2 {1, . . . ,m}

H(X
e

) =

X

x2{1,...,m}

P (X
e

= x) logP (X
e

= x)

A ⇢ B, e /2 B F (A [e)� F (A) � F (B [e)� F (B)??

Submodularity and independence
discrete random variables X1, . . . , Xn

Xi, i 2 S statistically independent
H(XS) =

X

e2S

H(Xe)ó H is modular/linear on S

Similarly: linear independence

V =

F(S) = rank()

vectors in S linearly independent
ó F is modular/linear on S:
 F(S) = |S|

Maximizing Influence

23	

F (S [s)� F (S) F (T [s)� F (T)�

(Kempe, Kleinberg & Tardos 2003)

F (S) = expected # infected nodes

Graph cuts

•  Cut for one edge: vu

F ({u, v}) + F (;)

vuvu vu vu

�

0 0

•  cut of one edge is submodular!
•  large graph: sum of edges

Useful property: sum of submodular functions is submodular

F (S) =
X

u2S,v/2S

wuv

F ({u}) + F ({v})

wuv
wuv

Sets and boolean vectors

any set function
 with .

… is a function on
 binary vectors!

F : 2V ! R

|V | = n

a	

b	

d	

c	

A

25

1
1
0
0

=̂
a
b
c
d

x = 1A

subset selection = binary labeling!

F : {0, 1}n ! R

x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

z1 z2 z3 z4

z5 z6 z7 z8

z9 z10 z11 z12

Attractive potentials

26

/ exp(�E(x; z))

labels pixel
values

P (x | z)max

x2{0,1}n

min
x2{0,1}n

E(x; z),

label

pixel
x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

x1 x 2 x 3 x 4

x 5 x 6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

Attractive potentials

27

E(x; z) =
X

i
Ei(xi)+

X
ij
Eij(xi, xj)

Eij(1, 0) + Eij(0, 1) � Eij(0, 0) + Eij(1, 1)

spatial coherence:

S = {i} T = {j} S [TS \ T = ;

F (S) + F (T) � F (S [T) + F (S \ T)

/ exp(�E(x; z))

P (x | z)

 i j i j i j i j

Diversity priors

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

P (S | data) / P (S) P (data | S)

“spread out”

Determinantal point processes

S

S
•  similarity matrix

•  sample set Y:

F (S) = log det(KS)

is submodular!

L

L

P (Y = S) / det(LS)

Lij = x

>
i xj

= Vol({xi}i2S)
2

DPP sample
uniform DPP

sij = exp(� 1
2�2 kxi � xjk2) �2 = 35

similarities:

6 0 8 9 6 7 7 3 6 1 7 0 2 0 0 8 6 3 9 0 4 3 7 7 1 4 4 6 7 7

Submodularity: many examples
•  linear/modular functions
•  graph cut function
•  coverage

•  propagation/diffusion in networks

•  entropy
•  rank functions
•  information gain

•  log P(S|data) [repulsion]
or -log P(S|data) [coherence]

F (A [s)� F (A)

� F (B [s)� F (B)

.| {z }
B

|{z}
A

 submodular on . The following are submodular:

•  Restriction:

Closedness properties

33

F 0(S) = F (S \W)

S V S
W V

F (S) V

 submodular on . The following are submodular:

•  Restriction:

•  Conditioning:

Closedness properties

34

F 0(S) = F (S [W)

F 0(S) = F (S \W)

S V S
W V

F (S) V

Closedness properties

 submodular on . The following are submodular:

•  Restriction:

•  Conditioning:

•  Reflection:

35

F 0(S) = F (S [W)

F 0(S) = F (S \W)

S V

F 0(S) = F (V \ S)

F (S) V

Submodularity …

discrete convexity ….

… or concavity?

36

Convex functions (Lovász, 1983)
•  “occur in many models in economy, engineering and

other sciences”, “often the only nontrivial property that
can be stated in general”

•  preserved under many operations and transformations:
larger effective range of results

•  sufficient structure for a “mathematically beautiful and
practically useful theory”

•  efficient minimization

“It is less apparent, but we claim and hope to prove to a
certain extent, that a similar role is played in discrete
optimization by submodular set-functions“ […]
they share the above four properties.

Convex aspects

•  convex extension
– duality
– efficient minimization

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

But this is only
half of the story…

38

Concave aspects
•  submodularity:

•  concavity:
A + s B + s

F (A [s)� F (A) � F (B [s)� F (B)
A ✓ B, s /2 B :

a  b, s > 0 :

|A|

F(A) “intuitively”

1

s

⇣
f(a+ s)� f(a)

⌘
� 1

s

⇣
f(b+ s)� f(b)

⌘

39

Submodularity and concavity

•  suppose and

g : N ! R F (A) = g(|A|)

g(|A|)

|A|

F (A) submodular if and only if … g is concave

40

Max / min
•  Maximum of convex functions is convex

Maximum of submodular functions
•  submodular. What about

F1(A), F2(A)

|A|

F2(A)
F1(A)

42

max{F1(A), F2(A) }

F (A) = max{F1(A), F2(A) } ?

 not submodular in general! max{F1, F2 }

Fi(A) = gi(|A|)

Max / min
•  Minimum of concave functions is concave

Minimum of submodular functions
 What about ?

44	

F1(A)	
 F2(A)	
 F(A)	

{} 0	
 0	
 0	

{a}	
 1	
 0	
 0	

{b}	
 0	
 1	
 0	

{a,b}	
 1	
 1	
 1	

min(F1,F2) not submodular in general!

F (A) = min{ F1(A), F2(A) }

A

B

A [B

A \B

0 0 01
F (A) + F (B) � F (A [B) + F (A \B) ?

A

B

A [B

A \B

Submodular optimization

•  Maximizing submodular functions:
diversity, repulsion, concavity
greed is not too bad

•  Minimizing submodular functions:
coherence, regularization, convexity
magic with polytopes, and “discrete analog of convex”

convex …

 … and concave aspects!

Submodular Maximization

•  ground set V

•  (scoring) function

F : 2V ! R+

S ✓ V
max F (S)

Informative Subsets

47	

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

•  where put sensors?
•  which experiments?
•  summarization

F (S) = “information”

Maximizing Influence

48	
 Kempe, Kleinberg & Tardos 2003

F (S) = expected # infected nodes

Summarization
•  videos, text, pictures …
•  would like:

relevance, reliability, diversity
Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN)

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.

7

Summarization

•  Coverage / relevance •  Diversity

R(S) =
X

a2V
max

b2S
sa,b

sa,b

F (S) = R(S) + D(S)

D(S) =
mX

j=1

q
|S \ Pj |

(Simon et al 2007, Lin & Bilmes 2011&2012, Tschiatschek et al 2014, Kim et al 2014, Gygli et al 2015, …)

P1

P3

P2
S

Diversity

•  Diversity

D(S) =
mX

j=1

q
|S \ Pj |

P1

P3

P2

Another diversity function …

D(S) = �
X

a,b2S

sa,b

increasing decreasing

Summarization: results

(Lin & Bilmes 2011)

Many more functions are possible …
è Learn a weighted combination: structured prediction
 works even better!

(Lin & Bilmes 2012, Tschiatschek et al 2014, Gygli et al 2015, Xu et al 2015,…)

More maximization …

...

Algorithm 1: CoSand Cosegmentation.
Input: (1) Intra-image matrix G

i

for all I
i

2 I. (2) Number of
segments K. (3) Evaluation set size |L|.

Output: Cluster centers S
i

and segmented images for I
i

2 I.

1: foreach I
i

2 I do S
i

 ; end
2: foreach I

i

2 I do L
i

 AggloClust(G
i

, |L|) end
while |S

i

|  K do
foreach I

i

2 I do
foreach l

j

2 L
i

do
3: Solve u = L

i

u where L
i

is the Laplacian of
G

i

and u is an N
i

⇥1 vector with the constraints
of u({S

i

[l
j

}) = 1 and u(g) = 0.
4: Obtain the gain �U

i

(l
j

)=|u|1 (l-1 norm of u).
end

end
5: Solve the energy maximization by belief propagation
E(l)=

P
i2I �U

i

(l
i

)

` 1
|N (i)|

P
j2N (i) f(g(l

i

),g(l
j

))

´
.

{s1, · · · , sI} argmax

l1,··· ,lI E(l).
6: foreach I

i

2 I do S
i

 S
i

[s
i

end
end
foreach I

i

2 I do
7: Compute (N

i

�K)⇥K matrix X by solving L
u

X
= �BT I

s

where if we let X
i

= V
i

\S
i

, L
u

= L
i

(X
i

, X
i

),
B = L

i

(S
i

,X
i

), and I
s

is a K⇥K identity matrix.
8: A superpixel v

j

(2V
i

) is clustered c
j

= argmax

k

X(j, k).
end

Figure 3. An example of cosegmentation on MSRC cow images
(M=3, K=4). (a) Input images. (b) Likelihood of each segment
from white (high) to black (low). (c) Color-coded cosegmentation
outputs. (d) The 3rd and 4th segments from input images.

ranking and single-image segmentation, we compute the ex-
act solution for this step. However, we use belief propaga-
tion, which is an approximate maximization, for a large-
scale cosegmentation with full dependency. In most cases,
this relaxed solution is good enough to obtain a high-quality
segmentation result.

A more scalable setting: In practice, a large-scale im-
age set is likely to contain various noisy information as well.
If heterogeneous images are cosegmented, then the results
would be worsen than those of individual image segmen-
tation. Thus, one can first decompose I into disjoint sets
I = I1 [· · ·[IO so that each subset Io consists of similar
images. Then, Algorithm 1 can be applied to each Io sep-
arately. This decomposition can be done by the proposed

diversity ranking and clustering of Eq.(4) on the similarity
graph of I, which can be constructed by applying Gaussian
similarity to image descriptors (e.g. dense SIFT or GIST).

4. Experiments
We evaluate our approach with two different experi-

ments: (1) figure-ground segmentation with a pair of im-
ages (M=2 and K=2), and (2) scalability tests with a large
number of images (M⇠1000). The figure-ground tests are
performed to quantitatively compare our method with other
state-of-the-art cosegmentation techniques that are only ap-
plicable in this setting. The scalability tests evaluate how
well our algorithm works with real-world data.

Our Matlab toolbox including diversity ranking, single-
image segmentation, and cosegmentation, can be found at
http://www.cs.cmu.edu/⇠gunhee.

4.1. Evaluation on Figure-ground Cosegmentation

In the figure-ground tests, we use MSRC dataset [17],
which provides 30 pixel-wise labeled images per object.
Two recent cosegmentation methods, [6] and [7], are com-
pared using their implementation with the default parameter
setting8. We run [6], [7], and our method on randomly gen-
erated 100 pairs in each class.

Unlike the others, the method of [6] requires priori la-
bels of foreground (fg) and background (bg) RGB colors.
In order to obtain labels, we fist identify the fg and bg re-
gions of each image from the ground truth. Then, we apply
K-means to the RGB space of fg and bg pixels to compute
three cluster centers each, which are used as labels (i.e. total
6 fg and 6 bg RGB labels in each pair). These labels can be
regarded as strong supervision, but they were used because
the performance of [6] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground
segmentation, we add an additional step to generate the bi-
nary segmentation results. Our approach iteratively chooses
large and coherent regions across input images in a bottom-
up way. Thus, if the foreground object consists of several
distinct regions, it is likely to segment them into multiple
regions. For binary segmentation, we first safely coseg-
ment a pair of images with a large K (K=8 in our ex-
periments). Then, we apply Normalized cuts to the sim-
ilarity graph of eight pairs of cosegments to obtain two
balanced and discriminative partitions. We observed that
our approach showed excellent performance for detecting a
moderate number of cosegments but the final figure-ground
segmentation accuracy was dependent on this binarization.

Table 2 summarizes the segmentation accuracies on the
random test pairs of MSRC dataset. The accuracy is mea-
sured by the intersection-over-union metric that is a stan-
dard in PASCAL challenges (i.e. For each image, Ac =

8Codes are available at [6]: http://www.biostat.wisc.edu/⇠vsingh/, [7]:
http://www.di.ens.fr/⇠joulin/.

174

Algorithm 1: CoSand Cosegmentation.
Input: (1) Intra-image matrix G

i

for all I
i

2 I. (2) Number of
segments K. (3) Evaluation set size |L|.

Output: Cluster centers S
i

and segmented images for I
i

2 I.

1: foreach I
i

2 I do S
i

 ; end
2: foreach I

i

2 I do L
i

 AggloClust(G
i

, |L|) end
while |S

i

|  K do
foreach I

i

2 I do
foreach l

j

2 L
i

do
3: Solve u = L

i

u where L
i

is the Laplacian of
G

i

and u is an N
i

⇥1 vector with the constraints
of u({S

i

[l
j

}) = 1 and u(g) = 0.
4: Obtain the gain �U

i

(l
j

)=|u|1 (l-1 norm of u).
end

end
5: Solve the energy maximization by belief propagation
E(l)=

P
i2I �U

i

(l
i

)

` 1
|N (i)|

P
j2N (i) f(g(l

i

),g(l
j

))

´
.

{s1, · · · , sI} argmax

l1,··· ,lI E(l).
6: foreach I

i

2 I do S
i

 S
i

[s
i

end
end
foreach I

i

2 I do
7: Compute (N

i

�K)⇥K matrix X by solving L
u

X
= �BT I

s

where if we let X
i

= V
i

\S
i

, L
u

= L
i

(X
i

, X
i

),
B = L

i

(S
i

,X
i

), and I
s

is a K⇥K identity matrix.
8: A superpixel v

j

(2V
i

) is clustered c
j

= argmax

k

X(j, k).
end

Figure 3. An example of cosegmentation on MSRC cow images
(M=3, K=4). (a) Input images. (b) Likelihood of each segment
from white (high) to black (low). (c) Color-coded cosegmentation
outputs. (d) The 3rd and 4th segments from input images.

ranking and single-image segmentation, we compute the ex-
act solution for this step. However, we use belief propaga-
tion, which is an approximate maximization, for a large-
scale cosegmentation with full dependency. In most cases,
this relaxed solution is good enough to obtain a high-quality
segmentation result.

A more scalable setting: In practice, a large-scale im-
age set is likely to contain various noisy information as well.
If heterogeneous images are cosegmented, then the results
would be worsen than those of individual image segmen-
tation. Thus, one can first decompose I into disjoint sets
I = I1 [· · ·[IO so that each subset Io consists of similar
images. Then, Algorithm 1 can be applied to each Io sep-
arately. This decomposition can be done by the proposed

diversity ranking and clustering of Eq.(4) on the similarity
graph of I, which can be constructed by applying Gaussian
similarity to image descriptors (e.g. dense SIFT or GIST).

4. Experiments
We evaluate our approach with two different experi-

ments: (1) figure-ground segmentation with a pair of im-
ages (M=2 and K=2), and (2) scalability tests with a large
number of images (M⇠1000). The figure-ground tests are
performed to quantitatively compare our method with other
state-of-the-art cosegmentation techniques that are only ap-
plicable in this setting. The scalability tests evaluate how
well our algorithm works with real-world data.

Our Matlab toolbox including diversity ranking, single-
image segmentation, and cosegmentation, can be found at
http://www.cs.cmu.edu/⇠gunhee.

4.1. Evaluation on Figure-ground Cosegmentation

In the figure-ground tests, we use MSRC dataset [17],
which provides 30 pixel-wise labeled images per object.
Two recent cosegmentation methods, [6] and [7], are com-
pared using their implementation with the default parameter
setting8. We run [6], [7], and our method on randomly gen-
erated 100 pairs in each class.

Unlike the others, the method of [6] requires priori la-
bels of foreground (fg) and background (bg) RGB colors.
In order to obtain labels, we fist identify the fg and bg re-
gions of each image from the ground truth. Then, we apply
K-means to the RGB space of fg and bg pixels to compute
three cluster centers each, which are used as labels (i.e. total
6 fg and 6 bg RGB labels in each pair). These labels can be
regarded as strong supervision, but they were used because
the performance of [6] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground
segmentation, we add an additional step to generate the bi-
nary segmentation results. Our approach iteratively chooses
large and coherent regions across input images in a bottom-
up way. Thus, if the foreground object consists of several
distinct regions, it is likely to segment them into multiple
regions. For binary segmentation, we first safely coseg-
ment a pair of images with a large K (K=8 in our ex-
periments). Then, we apply Normalized cuts to the sim-
ilarity graph of eight pairs of cosegments to obtain two
balanced and discriminative partitions. We observed that
our approach showed excellent performance for detecting a
moderate number of cosegments but the final figure-ground
segmentation accuracy was dependent on this binarization.

Table 2 summarizes the segmentation accuracies on the
random test pairs of MSRC dataset. The accuracy is mea-
sured by the intersection-over-union metric that is a stan-
dard in PASCAL challenges (i.e. For each image, Ac =

8Codes are available at [6]: http://www.biostat.wisc.edu/⇠vsingh/, [7]:
http://www.di.ens.fr/⇠joulin/.

174

co-segmentation
by maximizing
anisotropic diffusion
(Kim et al 2011)

environmental monitoring
(Krause, …)

weakly supervised
object detection
(Song et al 2014)

max F (S)

inferring networks
(Gomez Rodriguez et al 2012)

diverse
recommendations
(Yue & Guestrin)

Monotonicity

if S ✓ T then F (S)  F (T)

3 5 1

Monotonicity – how check?

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

gain: +5 - 8

if A ✓ B then F (A)  F (B)

Let B = A [{a}. F (A [{a})� F (A) � 0.F (A [{a})� F (A)| {z }
marginal gain

� 0

Maximizing monotone functions

•  NP-hard
•  approximation: greedy algorithms

max

|S|k
F (S)

if A ✓ B then F (A)  F (B)

Maximizing monotone functions

max

S
F (S) s.t. |S|  k

•  greedy algorithm:

 for i = 0, …, k-1

S0 = ;

e⇤ = arg max

e2V\Si

F (Si [{e})

Si+1 = Si [{e⇤}

How “good” is ? Sk

Pedestrian detection

58

1

On Detection of Multiple Object Instances
using Hough Transforms
Olga Barinova Victor Lempitsky Pushmeet Kohli

Abstract—Hough transform based methods for detecting multiple objects use non-maxima suppression or mode-seeking to locate
and distinguish peaks in Hough images. Such postprocessing requires tuning of many parameters and is often fragile, especially when
objects are located spatially close to each other. In this paper, we develop a new probabilistic framework for object detection which is
related to the Hough transform. It shares the simplicity and wide applicability of the Hough transform but at the same time, bypasses
the problem of multiple peak identification in Hough images, and permits detection of multiple objects without invoking non-maximum
suppression heuristics. Our experiments demonstrate that this method results in a significant improvement in detection accuracy both
for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.

Index Terms—Hough Transforms, Object Detection in Images, Line Detection, Scene Understanding.

F

1 HOUGH TRANSFORM IN OBJECT DETEC-
TION
The Hough transform [1] is one of the classical computer
vision techniques which dates 50 years back. It was
initially suggested as a method for line detection in edge
maps of images but was then extended to detect general
low-parametric objects such as circles [2]. In recent years,
Hough-based methods were successfully adapted to the
problem of part-based category-level object detection
where they have obtained state-of-the-art results for
some popular datasets [3]–[8].

Both the classical Hough transform and its more mod-
ern variants proceed by converting the input image into
a new representation called the Hough image which lives
in a domain called the Hough space (Figure 1). Each point
in the Hough space corresponds to a hypothesis about
the object of interest being present in the original image
at a particular location and configuration. The dimen-
sionality of the Hough image thus equals the number of
degrees of freedom for the configuration(+location) of
the object.

Any Hough transform based method essentially works
by splitting the input image into a set of voting elements.
Each such element votes for the hypotheses that might
have generated this element. For instance, a feature that
fires on faces might vote for the presence of a person’s
centroid (torso) in location just below it. Of course,
voting elements do not provide evidence for the exact lo-
calization and thus their votes are distributed over many

. Olga Barinova is with Lomonosov Moscow State University, Moscow,
Russia. Email: obarinova@graphics.cs.msu.ru.
Victor Lempitsky is with Yandex, Moscow, Russia.
Email:victorlempitsky@gmail.com.
Pushmeet Kohli is with Microsoft Research, Cambridge, UK.
Email:pkohli@microsoft.com

Line detection task classic Hough transform

Pedestrian detection task Hough forest [5] transform

Fig. 1. Variants of Hough transform render the detection
tasks (left) into the tasks of peaks identification in Hough
images (right). As can be seen, in the presence of multiple
close objects identifying the peaks in Hough images is
a highly non-trivial problem in itself. The probabilistic
framework developed in this paper addresses this prob-
lem without invoking non-maxima suppression or mode
seeking heuristics.

different hypothesis in the Hough space. Large values
of the vote are given to hypotheses that might have
generated the voting element with high probability. The
votes from different voting elements pixels are added
together into a Hough image. The objects of interest
are then detected as peaks in the Hough image, with
the height of the peak providing the confidence of the
detection.

Voting elements Hypotheses

1

On Detection of Multiple Object Instances
using Hough Transforms
Olga Barinova Victor Lempitsky Pushmeet Kohli

Abstract—Hough transform based methods for detecting multiple objects use non-maxima suppression or mode-seeking to locate
and distinguish peaks in Hough images. Such postprocessing requires tuning of many parameters and is often fragile, especially when
objects are located spatially close to each other. In this paper, we develop a new probabilistic framework for object detection which is
related to the Hough transform. It shares the simplicity and wide applicability of the Hough transform but at the same time, bypasses
the problem of multiple peak identification in Hough images, and permits detection of multiple objects without invoking non-maximum
suppression heuristics. Our experiments demonstrate that this method results in a significant improvement in detection accuracy both
for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.

Index Terms—Hough Transforms, Object Detection in Images, Line Detection, Scene Understanding.

F

1 HOUGH TRANSFORM IN OBJECT DETEC-
TION
The Hough transform [1] is one of the classical computer
vision techniques which dates 50 years back. It was
initially suggested as a method for line detection in edge
maps of images but was then extended to detect general
low-parametric objects such as circles [2]. In recent years,
Hough-based methods were successfully adapted to the
problem of part-based category-level object detection
where they have obtained state-of-the-art results for
some popular datasets [3]–[8].

Both the classical Hough transform and its more mod-
ern variants proceed by converting the input image into
a new representation called the Hough image which lives
in a domain called the Hough space (Figure 1). Each point
in the Hough space corresponds to a hypothesis about
the object of interest being present in the original image
at a particular location and configuration. The dimen-
sionality of the Hough image thus equals the number of
degrees of freedom for the configuration(+location) of
the object.

Any Hough transform based method essentially works
by splitting the input image into a set of voting elements.
Each such element votes for the hypotheses that might
have generated this element. For instance, a feature that
fires on faces might vote for the presence of a person’s
centroid (torso) in location just below it. Of course,
voting elements do not provide evidence for the exact lo-
calization and thus their votes are distributed over many

. Olga Barinova is with Lomonosov Moscow State University, Moscow,
Russia. Email: obarinova@graphics.cs.msu.ru.
Victor Lempitsky is with Yandex, Moscow, Russia.
Email:victorlempitsky@gmail.com.
Pushmeet Kohli is with Microsoft Research, Cambridge, UK.
Email:pkohli@microsoft.com

Line detection task classic Hough transform

Pedestrian detection task Hough forest [5] transform

Fig. 1. Variants of Hough transform render the detection
tasks (left) into the tasks of peaks identification in Hough
images (right). As can be seen, in the presence of multiple
close objects identifying the peaks in Hough images is
a highly non-trivial problem in itself. The probabilistic
framework developed in this paper addresses this prob-
lem without invoking non-maxima suppression or mode
seeking heuristics.

different hypothesis in the Hough space. Large values
of the vote are given to hypotheses that might have
generated the voting element with high probability. The
votes from different voting elements pixels are added
together into a Hough image. The objects of interest
are then detected as peaks in the Hough image, with
the height of the peak providing the confidence of the
detection.

yi = 1: object i
 present
yi = 0: object i
 not present

xj = index of hypothesis
explaining xj

y1

y2

y3

x1=1

x2=1

x3=1

x4=1

x5=1

x6=1

x7=1

x8=1

Illustrations courtesy of Pushmeet Kohli (Barinova et al.’10)

Pedestrian detection

59

1

On Detection of Multiple Object Instances
using Hough Transforms
Olga Barinova Victor Lempitsky Pushmeet Kohli

Abstract—Hough transform based methods for detecting multiple objects use non-maxima suppression or mode-seeking to locate
and distinguish peaks in Hough images. Such postprocessing requires tuning of many parameters and is often fragile, especially when
objects are located spatially close to each other. In this paper, we develop a new probabilistic framework for object detection which is
related to the Hough transform. It shares the simplicity and wide applicability of the Hough transform but at the same time, bypasses
the problem of multiple peak identification in Hough images, and permits detection of multiple objects without invoking non-maximum
suppression heuristics. Our experiments demonstrate that this method results in a significant improvement in detection accuracy both
for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.

Index Terms—Hough Transforms, Object Detection in Images, Line Detection, Scene Understanding.

F

1 HOUGH TRANSFORM IN OBJECT DETEC-
TION
The Hough transform [1] is one of the classical computer
vision techniques which dates 50 years back. It was
initially suggested as a method for line detection in edge
maps of images but was then extended to detect general
low-parametric objects such as circles [2]. In recent years,
Hough-based methods were successfully adapted to the
problem of part-based category-level object detection
where they have obtained state-of-the-art results for
some popular datasets [3]–[8].

Both the classical Hough transform and its more mod-
ern variants proceed by converting the input image into
a new representation called the Hough image which lives
in a domain called the Hough space (Figure 1). Each point
in the Hough space corresponds to a hypothesis about
the object of interest being present in the original image
at a particular location and configuration. The dimen-
sionality of the Hough image thus equals the number of
degrees of freedom for the configuration(+location) of
the object.

Any Hough transform based method essentially works
by splitting the input image into a set of voting elements.
Each such element votes for the hypotheses that might
have generated this element. For instance, a feature that
fires on faces might vote for the presence of a person’s
centroid (torso) in location just below it. Of course,
voting elements do not provide evidence for the exact lo-
calization and thus their votes are distributed over many

. Olga Barinova is with Lomonosov Moscow State University, Moscow,
Russia. Email: obarinova@graphics.cs.msu.ru.
Victor Lempitsky is with Yandex, Moscow, Russia.
Email:victorlempitsky@gmail.com.
Pushmeet Kohli is with Microsoft Research, Cambridge, UK.
Email:pkohli@microsoft.com

Line detection task classic Hough transform

Pedestrian detection task Hough forest [5] transform

Fig. 1. Variants of Hough transform render the detection
tasks (left) into the tasks of peaks identification in Hough
images (right). As can be seen, in the presence of multiple
close objects identifying the peaks in Hough images is
a highly non-trivial problem in itself. The probabilistic
framework developed in this paper addresses this prob-
lem without invoking non-maxima suppression or mode
seeking heuristics.

different hypothesis in the Hough space. Large values
of the vote are given to hypotheses that might have
generated the voting element with high probability. The
votes from different voting elements pixels are added
together into a Hough image. The objects of interest
are then detected as peaks in the Hough image, with
the height of the peak providing the confidence of the
detection.

Voting elements Hypotheses

1

On Detection of Multiple Object Instances
using Hough Transforms
Olga Barinova Victor Lempitsky Pushmeet Kohli

Abstract—Hough transform based methods for detecting multiple objects use non-maxima suppression or mode-seeking to locate
and distinguish peaks in Hough images. Such postprocessing requires tuning of many parameters and is often fragile, especially when
objects are located spatially close to each other. In this paper, we develop a new probabilistic framework for object detection which is
related to the Hough transform. It shares the simplicity and wide applicability of the Hough transform but at the same time, bypasses
the problem of multiple peak identification in Hough images, and permits detection of multiple objects without invoking non-maximum
suppression heuristics. Our experiments demonstrate that this method results in a significant improvement in detection accuracy both
for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.

Index Terms—Hough Transforms, Object Detection in Images, Line Detection, Scene Understanding.

F

1 HOUGH TRANSFORM IN OBJECT DETEC-
TION
The Hough transform [1] is one of the classical computer
vision techniques which dates 50 years back. It was
initially suggested as a method for line detection in edge
maps of images but was then extended to detect general
low-parametric objects such as circles [2]. In recent years,
Hough-based methods were successfully adapted to the
problem of part-based category-level object detection
where they have obtained state-of-the-art results for
some popular datasets [3]–[8].

Both the classical Hough transform and its more mod-
ern variants proceed by converting the input image into
a new representation called the Hough image which lives
in a domain called the Hough space (Figure 1). Each point
in the Hough space corresponds to a hypothesis about
the object of interest being present in the original image
at a particular location and configuration. The dimen-
sionality of the Hough image thus equals the number of
degrees of freedom for the configuration(+location) of
the object.

Any Hough transform based method essentially works
by splitting the input image into a set of voting elements.
Each such element votes for the hypotheses that might
have generated this element. For instance, a feature that
fires on faces might vote for the presence of a person’s
centroid (torso) in location just below it. Of course,
voting elements do not provide evidence for the exact lo-
calization and thus their votes are distributed over many

. Olga Barinova is with Lomonosov Moscow State University, Moscow,
Russia. Email: obarinova@graphics.cs.msu.ru.
Victor Lempitsky is with Yandex, Moscow, Russia.
Email:victorlempitsky@gmail.com.
Pushmeet Kohli is with Microsoft Research, Cambridge, UK.
Email:pkohli@microsoft.com

Line detection task classic Hough transform

Pedestrian detection task Hough forest [5] transform

Fig. 1. Variants of Hough transform render the detection
tasks (left) into the tasks of peaks identification in Hough
images (right). As can be seen, in the presence of multiple
close objects identifying the peaks in Hough images is
a highly non-trivial problem in itself. The probabilistic
framework developed in this paper addresses this prob-
lem without invoking non-maxima suppression or mode
seeking heuristics.

different hypothesis in the Hough space. Large values
of the vote are given to hypotheses that might have
generated the voting element with high probability. The
votes from different voting elements pixels are added
together into a Hough image. The objects of interest
are then detected as peaks in the Hough image, with
the height of the peak providing the confidence of the
detection.

y1=1

yi = 1: object i
 present
yi = 0: object i
 not present

xj = index of hypothesis
explaining xj

y2=1

y3=0

x1=1

x2=1

x3=1

x4=2

x5=2

x6=0

x7=2

x8=2

Illustrations courtesy of Pushmeet Kohli

Joint MAP inference:

Weight of element wrt hyp.

F (S) =
X

j

max

i2S
wij

xj yi

Inference

Using the Hough forest trained in [Gall&Lempitsky CVPR09]

Datasets from [Andriluka et al. CVPR 2008]
(with strongly occluded pedestrians added)

Illustrations courtesy of Pushmeet Kohli

How good is greedy? in practice…

SE RVE R

LAB

KI TCHEN

COPYELEC

PH ONEQUIET

ST ORAGE

CONFERENC E

OFFICEOFFICE50

51

52 53

54

46

48

49

47

43

45

44

42 41

3739

38 36

33

3

6

10

11

12

13 14

15
16

17

19

20
21

22

2425
26283032

31

2729

23

18

9

5

8

7

4

34

1

2

35
40

sensor placement

in
fo

rm
at

io
n

ga
in

optimal
greedy

empirically:

How good is greedy? … in theory

max

S
F (S) s.t. |S|  k

Theorem (Nemhauser, Fisher, Wolsey `78)

F monotone submodular, solution of greedy. Then

Sk

F (Sk) �
⇣
1� 1

e

⌘
F (S⇤)

in general, no poly-time algorithm can do better than that!

optimal solution

Questions
•  What if I have more complex constraints?

–  budget constraints
–  matroid constraints

•  Greedy takes O(nk) time. What if n, k are large?

•  What if my function is not monotone?

More complex constraints: budget

1.  run greedy:
2.  run a modified greedy:

3.  pick better of ,

è approximation factor:

max F (S) s.t.

X

e2S

c(e)  B

e⇤ = argmax

F (Si [{e})� F (Si)

c(e)

Sgr

S
mod

Sgr S
mod

1

2

⇣
1� 1

e

⌘

(Leskovec et al 2007)

even better but less fast:
partial enumeration
(Sviridenko, 2004) or
filtering (Badanidiyuru &
Vondrák 2014)

Other constraints: Camera network
•  Ground set:
•  Sensing quality model:

•  Configuration (subset) is feasible if no camera is
pointed in two directions at once

•  Constraints: 1a

1b
3b

3a

V = {1a, 1b, . . . , 5a, 5b}

P1 = {1a, 1b}, . . . , P5 = {5a, 5b}

|S \ Pi|  1

require:

Generalization of Greedy algorithm

1a

3b

Theorem (Nemhauser, Wolsey, Fisher 78)
For monotone submodular functions:

F (Sgreedy) � 1
2F (S⇤)

•  Does this always work?

S = ;
While 9e : S [e feasible

e⇤ argmax{F (S [e) | S [e feasible}
S S [e⇤

No. But works for matroid constraints.

Matroids: examples

67

set S is independent (= feasible) if …

… |S| ≤ k

Uniform matroid

… S contains at most

one element from
each group

Partition matroid

 … S contains no

cycles

 Graphic matroid

•  S independent è T S also independent

✓

Matroids

68

set S is independent (= feasible) if …

… |S| ≤ k

Uniform matroid

… S contains at most

one element from
each group

Partition matroid

 … S contains no

cycles

 Graphic matroid

•  S independent è T S also independent

•  Exchange property: S, U independent, |S| > |U|
è some can be added to U: independent

•  All maximal independent sets have the same size

✓

e 2 S U [e

Generalization of Greedy algorithm

1a

3b

Theorem (Nemhauser, Wolsey, Fisher 78)
For monotone submodular functions:

F (Sgreedy) � 1
2F (S⇤)

•  Works for matroid constraints
•  Is this the best possible?

S = ;
While 9e : S [e feasible

e⇤ argmax{F (S [e) | S [e feasible}
S S [e⇤

Can do a bit better with relaxation: (1-1/e)

Relax: Discrete to continuous

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

max

S2I
F (S) max

x2conv(I)
f

M

(x)

Algorithm:
1.  approximately maximize fM

(like Frank-Wolfe algorithm – next lecture)
2.  round to discrete set (pipage rounding)

(Calinescu-Chekuri-Pal-Vondrak 2011)

Multilinear extension
•  sample item e with probability xe

= E
S⇠x

[F (S)]fM (x)

0.5

1.0

0.2

0.2

0.5

x

p(1) =

p(2) =

p(3) =

fM (x) =
X

S✓V
F (S)

Y

e2S

xe

Y

e/2S

(1� xe)

Questions
•  What if I have more complex constraints?

–  budget constraints
–  matroid constraints

•  Greedy takes O(nk) time. What if n, k are large?
–  faster sequential algorithms
–  filtering
–  parallel / distributed

•  What if my function is not monotone?

Making greedy faster: stochastic

for i=1…k:

•  randomly pick set T of
size

•  find best a element in T
and add

max

S
F (S) s.t. |S|  k

n

k
log

1

✏

Si Si�1 [{ai}

ai = argmax

a2T
F (a|Si�1)

(Mirzasoleiman et al 2014)

S

Performance
0 50 100 150 200

0

5

10

15

20

25

k

U
til

ity

Lazy−Greedy
Threshold−Greedy eps=0.2
Threshold−Greedy eps=0.3
Threshold−Greedy eps=0.4
Multi−Greedy
Rand−Greedy eps=0.01
Rand−Greedy eps=0.1
Rand−Greedy eps=0.3
Rand−Greedy eps=0.9
Random Selection

(a) Parkinsons

0 50 100 150 200
0

1

2

3

4

5

6

7

8 x 104

k

C
os

t

Lazy−Greedy

Random Selection

Threshold−Greedy eps = 0.2

Threshold−Greedy eps =0 .3

Rand−Greedy eps = 0.9

Threshold−Greedy eps = 0.4

Rand−Greedy eps = 0.01

Rand−Greedy eps = 0.3

Rand−Greedy eps = 0.1

(b) Parkinsons

0 2 4 6 8
x 104

18

18.5

19

19.5

20

Cost

U
til

ity

Lazy−Greedy
Threshold−Greegy eps=0.2
Threshold−Greegy eps=0.3
Threshold−Greegy eps=0.4
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Rand−Greedy eps = 0.001
Rand−Greedy eps = 0.01
Rand−Greedy eps = 0.1
Rand−Greedy eps = 0.3

(c) Parkinsons

0 50 100 150 200

1.5

1.55

1.6

1.65

1.7

1.75

x 104

k

U
til

ity

Lazy−Greedy
Threshold−Greegy eps=0.7
Threshold−Greegy eps=0.8
Threshold−Greegy eps=0.9
Multi−Greedy
Rand−Greedy eps=0.01
Rand−Greedy eps=0.1
Rand−Greedy eps=0.3
Rand−Greedy eps=0.9
Random Selection

(d) Images 10K

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9 x 104

k

C
os

t

Random Selection

Threshold−Greedy eps = 0.7

Threshold−Greedy eps = 0.9

Multi−Greedy

Rand−Greedy eps = 0.01
Rand−Greedy eps = 0.1

Rand−Greedy eps = 0.3

Rand−Greedy eps = 0.9

Lazy−Greedy

Threshold−Greedy eps = 0.8

(e) Images 10K

0 2 4 6 8 10
x 104

1.752

1.754

1.756

1.758

1.76

1.762

1.764

1.766

1.768

1.77

1.772
x 104

Cost

U
til

ity

Lazy−Greedy
Threshold−Greegy eps=0.7
Threshold−Greegy eps=0.8
Threshold−Greegy eps=0.9
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Rand−Greedy eps=.001
Rand−Greedy eps=.01
Rand−Greedy eps=0.1
RandGreedy eps=0.3
Multi−Greedy

(f) Images 10K

0 50 100 150 200
7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

x 104

k

U
til

ity

Sample−Greedy p = 0.03
Sample−Greedy p = 0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Rand−Greedy eps = 0.3
Rand−Greedy eps = 0.9
Rand−Greedy eps = 0.1

(g) Images 50K

0 50 100 150 200
0

2

4

6

8

10

12

14 x 104

k

C
os

t

Sample−Greedy p = 0.43

Sample−Greedy p = 0.33

Sample−Greedy p = 0.23

Sample−Greedy p = 0.03
Sample−Greedy p = 0.13

Random Selection

Rand−Greedy eps = 0.3
Rand−Greedy eps = 0.1

Rand−Greedy eps = 0.9

(h) Images 50K

0 5 10 15
x 104

8.72

8.74

8.76

8.78

8.8

8.82

8.84 x 104

Cost

U
til

ity

Sample−Greedy p = 0.03
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Rand−Greedy eps = 0.1
Rand−Greedy eps = 0.3
Rand−Greedy eps = 0.9

(i) Images 50K

Figure 1: Performance comparisons. a), d) and g) show the performance of
all the algorithms for different values of k on a set of 10,000 Tiny Images,
Parkinsons Telemonitoring, and a set of 50,000 Tiny Images respectively. b), e)
and h) show the cost of all the algorithms for different values of k on the same
datasets. c), f), i) show the utility obtained versus cost for a fixed k = 200.

Lemma 2. Given a current solution A, the expected gain of Rand-Greedy

in one step is at least 1−ε
k

∑

a∈A∗\A ∆(a|A).

Proof. Let us estimate the probability that R∩ (A∗ \A) "= ∅. The set R consists
of s = n

k
log 1

ε
random samples from V \A (w.l.o.g. with repetition), and hence

Pr[R ∩ (A∗ \A) = ∅] =

(

1−
|A∗ \A|

|V \A|

)s

≤ e−s
|A∗\A|
|V \A|

≤ e−
s
n |A∗\A|.

Therefore, by using the concavity of 1 − e−
s
nx as a function of x and the fact

that x = |A∗ \A| ∈ [0, k], we have

9

stochastic
greedy

“Lazy greedy”

faster

be
tte

r s
ol

ut
io

n

Distributed greedy algorithms

even more data …
 distributed greedy algorithm?

Distributed greedy algorithms

greedy is sequential.
pick in parallel??

pick k elements
on each machine.

combine and run
greedy again.

Is this useful?

Distributed greedy algorithms

pick in parallel
from m machines

Is this useful?

(Mirzasoleiman et al 2013)

Approximation factor:

O
⇣ 1

min{
p
k,m}

⌘

Distributed Greedy

2 4 6 8 10
0.8

0.85

0.9

0.95

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

Greedy/
Max

Greedy/
Merge

Random/
RandomRandom/

Greedy

α=2/m

GreeDI (α=1)α=4/m

(a) Tiny Images 10K
2 4 6 8 10

0.8

0.85

0.9

0.95

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDI (α=1) α=4/m

Greedy/
Merge

Greedy/
Max α=2/m

Random/
RandomRandom/

Greedy

(b) Tiny Images 10K
10 20 30 40 50 601.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2 x 104

k

D
is

tri
bu

te
d Random/

Greedy

α=4/m
α=2/m

Greedy/
Max

Greedy/
Merge

Random/
random

GreeDI (α=1)

(c) Tiny Images 80M (d)

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDI (α=1)

Greedy/
Max

Random/
Random

Random/
Greedy α=4/m

α=2/m
Greedy/

Merge

(e) Parkinsons Telemonitoring
20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

k

D
is
tri
bu
te
d/
C
en
tra
liz
ed

GreeDI (α=1)α=4/m

α=2/m Greedy/
Merge

Random/
Greedy Greedy/

Max

Random/
Random

(f) Parkinsons Telemonitoring
20 40 60 80 100 120

0

5

10

15

20

25

30

35

k

D
is

tri
bu

te
d

α=2/m
α=4/m

Random/
Greedy

Random/
randomGreedy/

Merge

Greedy/
Max

GreeDI (α=1)

(g) Yahoo! front page (h)

Figure 1: Performance of GREEDI compared to the other benchmarks. a) and b) show the mean and standard
deviation of the ratio of distributed vs. centralized solution for global and local objective functions with budget
k = 50 and varying the number m of partitions, for a set of 10,000 Tiny Images. c) shows the distributed
solution with m = 8000 and varying k for local objective functions on the whole dataset of 80,000,000 Tiny
Images. e) shows the ratio of distributed vs. centralized solution with m = 10 and varying k for Parkinsons
Telemonitoring. f) shows the same ratio with k = 50 and varying m on the same dataset, and g) shows the
distributed solution for m = 32 with varying budget k on Yahoo! Webscope data. d) shows a set of cluster
exemplars discovered by GREEDI, and each column in h) shows 8 images nearest to exemplars 9 and 16 in d).

from people with early-stage Parkinson’s disease. We normalized the vectors to zero mean and unit
norm. Fig. 1f compares the performance GREEDI to the benchmarks with fixed k = 50 and varying
number of partitions m. Similarly, Fig 1e shows the results for fixed m = 10 and varying k. We
find that GREEDI significantly outperforms the benchmarks.

Large scale experiments with Hadoop. Our second large scale experiment consists of 45,811,883
user visits from the Featured Tab of the Today Module on Yahoo! Front Page [26]. For each visit,
both the user and each of the candidate articles are associated with a feature vector of dimension 6.
Here, we used the normalized user features. Our experimental setup was a cluster of 5 quad-core ma-
chines running Hadoop with the number of reducers set to m = 32. Each reducer performed the lazy
greedy algorithm on its own set of 1,431,621 vectors (⇡34MB) in order to extract 128 elements with
the highest marginal gains w.r.t the local elements of the dataset in that particular partition. We then
merged the results and performed another round of lazy greedy selection on the merged results to ex-
tract the final active set of size 128. The maximum running time per reduce task was 2.5 hours. Fig.
1g shows the performance of GREEDI compared to the benchmarks. We note again that GREEDI
significantly outperforms the other distributed benchmarks and can scale well to very large datasets.

6 Conclusion
We have developed an efficient distributed protocol GREEDI, for maximizing a submodular function
subject to cardinality constraints. We have theoretically analyzed the performance of our method and
showed under certain natural conditions it performs very close to the centralized (albeit impractical
in massive data sets) greedy solution. We have also demonstrated the effectiveness of our approach
through extensive large scale experiments using Hadoop. We believe our results provide an impor-
tant step towards solving submodular optimization problems in very large scale, real applications.

Acknowledgments. This research was supported by SNF 200021-137971, DARPA MSEE
FA8650-11-1-7156, ERC StG 307036, a Microsoft Faculty Fellowship, an ETH Fellowship,
Scottish Informatics and Computer Science Alliance.

8

machines (# parts in partition)

(Mirzasoleiman et al 2013)

In practice,
performs often
quite well.

1.  special structure:
Improved guarantees
if F is Lipschitz or
a sum of many terms

2.  randomization

Distributed greedy algorithms

pick in parallel
from m machines

Pick the best of m+1 solutions

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

randomly distribute
across machines

•  each machine: approximation algorithm
•  level 2: approximation algorithm
è overall approximation factor:

↵�
��

E[F (bS)] � ↵�

↵+ �
F (S⇤)

Distributed greedy algorithms

pick in parallel
from m machines

Pick the best of m+1 solutions

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

randomly distribute
across machines

E[F (bS)] � ↵�

↵+ �
F (S⇤) With greedy algorithm on both levels:

 , overall factor:

1
2 (1�

1
e)

↵ = � = 1� 1
e

Questions
•  What if I have more complex constraints?

–  matroid constraints
–  budget constraints

•  Greedy takes O(nk) time. What if n, k are large?
–  stochastic
–  parallel / distributed
–  filtering, structured, …

•  What if my function is not monotone?

Non-monotone functions

if S ✓ T then F (S)  F (T)

3 5 1 F (S) � 0 for all S
still assume:

F (A) = 95

optimal solution
F (A) = 40
greedy solution:

Greedy can fail …

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4

coverage: 100
cost: -60
gain 40

coverage: 30
cost: - 1
gain 29

coverage: 30
cost: - 1
gain 29

coverage: 40
cost: - 3
gain 37

S1 = ; [argmax

a2V
F (a)S0 = ;

F (A) = 95optimal solution: F (A) = 40
greedy solution:

Greedy can fail …

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4

coverage: 100
cost: -60
gain 40

coverage: 30
cost: - 1
gain 29

coverage: 30
cost: - 1
gain 29

coverage: 40
cost: - 3
gain 37

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

•  gain of adding (to A):

•  gain of removing (from B):

P(add) = �+

�+ +��

coverage: 100
cost: -60

�+ = 40

�� = 60

= 40%

add with probability

�+ = [F (A [ai)� F (A)]+

�� = [F (B \ a)� F (B)]+

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 100
cost: -60

�+ = 40

�� = 60

add with probability

add to A or remove from B

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 30
cost: - 1

add with probability

add to A or remove from B

�+ = 29

�� = [�29]+ = 0

=
29

29

=
29

29

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 30
cost: - 1

add with probability

add to A or remove from B

�+ = 29

=
37

40

�� = 0

Double greedy

Theorem (Buchbinder, Feldman, Naor, Schwartz ‘12)

F submodular, solution of double greedy. Then

 optimal solution

Sg

max

S✓V
F (S)

E[F (Sg)] � 1
2F (S⇤)

Non-monotone maximization
•  alternatives to double greedy?

local search (Feige et al 2007)

•  constraints?
possible, but different algorithms

•  distributed algorithms? yes!
–  divide-and-conquer as before (de Ponte Barbosa et al 2015)
–  concurrency control / Hogwild (Pan et al 2014)

Submodular maximization: summary
•  many applications: diverse, informative subsets

•  NP-hard, but greedy or local search
•  distinguish monotone / non-monotone

•  several constraints possible
(monotone and non-monotone)

Submodularity and machine learning

92	

bla blablala oh bla bl abl lba bla
gggg hgt dfg uyg sd djfkefbjal
odh wdbfeowhjkd fenjk jj

bla blablala oh bla dw
bl abl lba bla gggg hgt dfg uyg
sd djfkefbjal odh wdbfeowhjkd
fenjk jj

bla blablala oh bla bl abl lba bla
gggg hgt dfg uyg efefm o

sd djfkefbjal odh wdbfeowhjkd
fenjk jj ef

owskf wu

6

1st iteration 2nd iteration 3rd iteration 8th iteration

Fig. 4. Greedy MAP-inference in our model for pedestrian-detection example from Figure 1. For each iteration, we
give the Hough image M

t (top) and highlight in red the detection corresponding to its maximum (bottom). Note how
the Hough images M

t

(h) are changed between iterations, so that implicit “non-maximum suppression” driven by the
probability function is performed. As a result, multiple pedestrians are detected despite significant overlaps between
them.

including performing loopy belief-propagation [22] in
the bipartite graph defined by (9). The special form
of the pairwise terms permits a very compact message
representation (the same as used in the affinity prop-
agation [23]). We have also tried simulated annealing
optimization for the binary-labelled function (10).

Both loopy belief propagation (LBP) and simulated
annealing (SA) were not able to handle the very high
order potentials present in our model. To overcome this
problem, we adaptively reduced the size of our hypoth-
esis space. We did this by using standard Hough voting
to find (sample) a moderately large number (dozens to
hundreds) of peaks in the Hough image. We then restrict
the Hough space H to these peaks. As the majority of
voting element vote for a limited number hypotheses
each (p(x

i

|I
i

) = 0 for many assignments values of x

i

),
we were able to reduce the size of the Hough space
considerably without loss of many energy terms.

In our experiments LBP and SA gave reasonable
results with the adaptive sparsification heuristics dis-
cussed above. However, they were still quite computa-
tionally expensive. Also the inability of these inference
methods to handle large set of hypotheses is a significant
limitation which potentially can lead to loss of detections
and lower recall rate of object detection performance.
Submodularity and connection with uncapacitated fa-
cility location problem.

The maximization of (10) can be viewed as the well
studied in operation research community facility location
task, that considers the problem of optimal placement of
facilities (detected objects) in order to minimize trans-
portation costs (negative votes from voting element).
One of the well-known properties of the objective func-
tion of facility location problem (10) is it’s submodu-

larity (see e.g. [24]) Unlike the problem of minimizing
submodular functions, the problem of maximizing sub-
modular functions is NP-hard. But approximations have
been studied extensively for both the general task of
submodular function maximization and the particular
problem of facility location. The best approximation
factor known for facility location is 0.828 that is achieved
by polynomial-time algorithm based on the idea of
randomized rounding [25].

The greedy algorithm, that iteratively augments a cur-
rent solution with an element of maximum incremental
value, is proven to have an approximation factor 0.632
for the task of submodular functions maximization [26].
This simple method has been shown to be an efficient
heuristic for both maximizing submodular functions
over different constraint structures (e.g. [27]) and facility
location problem (e.g. [28]). Not surprisingly, in our
framework greedy algorithm showed approximately the
same accuracy as LBP and SA. Moreover in contrast
to LBP and SA, it turned out that the iterative greedy
inference doesn’t require reducing the hypothesis space.
This property potentially allows greedy algorithm to
achieve higher recall compared to LBP and SA.

Iterative sampling with dense set of hypotheses. The
greedy iterative algorithm starts with all y

h

set to 0 and
x

i

set to 0 (background). In step t the algorithm makes a
hypothesis h

t active (by setting y

h

t
= 1), simultaneously

switching some of x

i

to h

t (x
i

is switched to h

t only if
this increases the posterior). The hypothesis h

t is picked
so that the biggest increase of the posterior is obtained.

In each iteration, it identifies the optimal hypothesis
h

t to be made active by using Hough voting. In iteration

distributions over labels, sets
log-submodular/

supermodular probability
e.g. “attractive” graphical models,

determinantal point processes

(convex) regularization
submodularity: “discrete

convexity”
e.g. combinatorial sparse estimation

diffusion processes,
covering, rank,
connectivity,

entropy,
economies of scale,
summarization, …

submodular
phenomena

submodularity
& machine
learning!

