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Set functions 
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cost of buying items  
together, or 
 

utility, or 
 

probability, … 

V =

(                )  = F

F : 2V ! R

We will assume: 
•  . 
•  black box “oracle” to evaluate F 
F (;) = 0

ground set 
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Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et
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field (CRF). Although their method produced good segmen-
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of extracting accurate boundaries of objects is considerably
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F (S) = coherence + likelihood
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F (S) = relevance + diversity or coverage
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•  where put sensors? 
•  which experiments? 
•  summarization 

F (S) = “information”



Sparsity 

Submodularity (almost) everywhere
Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

F (S) =“penalty

on support

pattern”

y =
Ax

+ noise



Formalization 
•  Formalization: 

Optimize a set function F(S)  (under constraints) 

•  generally very hard L 
•  submodularity helps:  

efficient optimization & inference with guarantees! 
J 
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Roadmap 
•  Submodular set functions 

–  what is this? where does it occur? how recognize? 

•  Maximizing submodular functions: 
diversity, repulsion, concavity 
greed is not too bad 
 

•  Minimizing submodular functions: 
coherence, regularization, convexity 
the magic of “discrete analog of convex” 
 

•  Other questions around submodularity & ML 

more reading & papers:  http://people.csail.mit.edu/stefje/mlss/literature.pdf 
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        = all possible locations 
F(S) = information gained from locations in S 
V



•  Given set function    

•  Marginal gain: 
 

F : 2V ! R
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new	
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F (s|A) = F (A [ {s})� F (A)

Xs	
  	
  	
  

Marginal gain 
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Diminishing marginal gains 
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X1 
X2 

placement	
  A	
  =	
  {1,2}	
  

Adding	
  s	
  helps	
  a	
  lot!	
   Xs	
  	
  	
  

new	
  sensor	
  s	
  
A +      s +      s 

Big	
  gain	
   small	
  gain	
  

F (A [ s)� F (A) � F (B [ s)� F (B)

A ✓ B



Submodularity 
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extra cost:  
one drink 

|{z}

extra cost:  
free refill J 

.| {z }

diminishing marginal costs 

F (A [ s)� F (A) � F (B [ s)� F (B)

BA

A ✓ B



Submodular set functions 

•  Diminishing gains:  for all 

•  Union-Intersection:  for all  
 

A B +    e +    e 

A ✓ B

F (A [ e)� F (A) � F (B [ e)� F (B)

S, T ✓ V

F (S) + F (T ) � F (S [ T ) + F (S \ T )



The big picture 

submodular	
  
funcDons	
  

electrical	
  
networks	
  
(Narayanan	
  

1997)	
  

graph	
  
theory	
  

(Frank	
  1993)	
  

game	
  
theory	
  

(Shapley	
  1970)	
  

matroid	
  
theory	
  

(Whitney,	
  1935)	
  
stochasDc	
  	
  
processes	
  
(Macchi	
  1975,	
  	
  
Borodin	
  2003)	
  

combinatorial	
  
opDmizaDon	
  

machine	
  	
  
learning	
  

G. Choquet J. Edmonds 

L.S. Shapley 
L. Lovász 



Examples 
•  each element e has a weight   

F (S) =
X

e2S

w(e)

F (A [ e)� F (A) = w(e)

A ⇢ B

F (B [ e)� F (B) = w(e)=

linear / modular function 
F and –F always submodular! 

+ + 

w(e)



Examples 

16	
  

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

sensing: 
F(S) = information gained from locations S 



Example: cover 

F (S) =

�����
[

v2S

area(v)

�����

F (A [ v)� F (A) F (B [ v)� F (B)�
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More	
  complex	
  model	
  for	
  sensing	
  

Joint	
  probability	
  distribuDon	
  	
  
P(X1,…,Xn,Y1,…,Yn)	
  	
  =	
  P(Y1,…,Yn)	
  P(X1,…,Xn	
  |	
  Y1,…,Yn)	
  

Ys:	
  temperature	
  
at	
  locaDon	
  s	
  

Xs:	
  sensor	
  value	
  
at	
  locaDon	
  s	
  

Xs = Ys + noise 

Prior	
   Likelihood	
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Sensor placement 
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SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X4 

X5 
X1 

A={1,4,5}: Low value F(A) 

F (A) = H(Y) � H(Y | XA)

Uncertainty	
  
about	
  temperature	
  Y	
  
before	
  sensing	
  

Uncertainty	
  
about	
  temperature	
  Y	
  
a6er	
  sensing	
  

= I(Y;XA)



Information gain 
X1, . . . Xn, Y1, . . . , Ym discrete random variables 

Y1 Y2 Y3 

Y6 

Y5 
Y4 

X1	
  

X4	
  

X3	
  

X6	
  X5	
  

X2	
  

XA

if all                conditionally  
 

independent given 
 

then F is submodular! 

Xi, Xj

Y

F (A) = I(Y ;XA) = H(XA)�H(XA|Y )

=
X

i2A

H(Xi|Y )

modular! 



Entropy 

F (S) = H(XS) = joint entropy of variables indexed by S

discrete random variables: X1, . . . , Xn

H(XA[e)�H(XA) = H(Xe|XA)

 H(Xe|XB)

= H(XB[e)�H(XB)

“information never hurts” 

discrete entropy is submodular! 

Xe 2 {1, . . . ,m}

H(X
e

) =

X

x2{1,...,m}

P (X
e

= x) logP (X
e

= x)

A ⇢ B, e /2 B F (A [ e)� F (A) � F (B [ e)� F (B)??



Submodularity and independence 
discrete random variables X1, . . . , Xn

Xi, i 2 S statistically independent 
H(XS) =

X

e2S

H(Xe)ó  H is modular/linear on S 

Similarly: linear independence 

V =

F(S) = rank( ) 

vectors in S linearly independent 
ó  F is modular/linear on S:  
      F(S) = |S| 



Maximizing Influence 
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F (S [ s)� F (S) F (T [ s)� F (T )�

(Kempe, Kleinberg & Tardos 2003) 

F (S) = expected # infected nodes



Graph cuts 

•  Cut for one edge: vu

F ({u, v}) + F (;)

vuvu vu vu

�

0 0 

•  cut of one edge is submodular! 
•  large graph:  sum of edges 

 
Useful property:   sum of submodular functions is submodular 

F (S) =
X

u2S,v/2S

wuv

F ({u}) + F ({v})

wuv 
wuv 



Sets and boolean vectors 

any set function 
   with               . 

… is a function on  
  binary vectors! 

 
F : 2V ! R

|V | = n

a	
  

b	
  

d	
  

c	
  

A 

25 

1 
1 
0 
0 

=̂
a 
b 
c 
d 

x = 1A

subset selection = binary labeling! 

F : {0, 1}n ! R
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z1 z2 z3 z4
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Attractive potentials 

26 

/ exp(�E(x; z))

labels pixel  
values 

P (x | z)max

x2{0,1}n

min
x2{0,1}n

E(x; z),

label 

pixel 
x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12
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x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

Attractive potentials 
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E(x; z) =
X

i
Ei(xi)+

X
ij
Eij(xi, xj)

Eij(1, 0) + Eij(0, 1) � Eij(0, 0) + Eij(1, 1)

spatial coherence: 

S = {i} T = {j} S [ TS \ T = ;

F (S) + F (T ) � F (S [ T ) + F (S \ T )

/ exp(�E(x; z))

P (x | z)

 i   j   i   j   i   j   i   j  



Diversity priors 
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Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.
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P (S | data) / P (S) P (data | S)

“spread out” 



Determinantal point processes 

S

S
•  similarity matrix 

•  sample set Y: 

F (S) = log det(KS)

is submodular! 

L

L

P (Y = S) / det(LS)

Lij = x

>
i xj

= Vol({xi}i2S)
2



DPP sample 
uniform DPP 

sij = exp(� 1
2�2 kxi � xjk2) �2 = 35

similarities: 
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Submodularity: many examples 
•  linear/modular functions 
•  graph cut function 
•  coverage 

•  propagation/diffusion in networks 

•  entropy 
•  rank functions 
•  information gain 

•  log P(S|data)           [repulsion]   
or  -log P(S|data)     [coherence]   
 

F (A [ s)� F (A)

� F (B [ s)� F (B)

.| {z }
B

|{z}
A



          submodular on    . The following are submodular: 

•  Restriction:        

Closedness properties 
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F 0(S) = F (S \W )

S V S 
W V 

F (S) V



          submodular on    . The following are submodular: 

•  Restriction:        

•  Conditioning: 

Closedness properties 

34 

F 0(S) = F (S [W )

F 0(S) = F (S \W )

S V S 
W V 

F (S) V



Closedness properties 

          submodular on    . The following are submodular: 

•  Restriction:        

•  Conditioning: 

•  Reflection: 

35 

F 0(S) = F (S [W )

F 0(S) = F (S \W )

S V 

F 0(S) = F (V \ S)

F (S) V



Submodularity … 

discrete convexity …. 

… or concavity? 

36 



Convex functions (Lovász, 1983) 
•  “occur in many models in economy, engineering and 

other sciences”, “often the only nontrivial property that 
can be stated in general” 

•  preserved under many operations and transformations: 
larger effective range of results 

•  sufficient structure for a “mathematically beautiful and 
practically useful theory” 

•  efficient minimization 
  

“It is less apparent, but we claim and hope to prove to a 
certain extent, that a similar role is played in discrete 
optimization by submodular set-functions“ […]  
they share the above four properties. 



Convex aspects 
 

•  convex extension 
– duality 
– efficient minimization 

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

But this is only  
half of the story… 
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Concave aspects 
•  submodularity: 

 

•  concavity: 
A +    s B +    s 

F (A [ s)� F (A) � F (B [ s)� F (B)
A ✓ B, s /2 B :

a  b, s > 0 :

|A| 

F(A) “intuitively” 

1

s

⇣
f(a+ s)� f(a)

⌘
� 1

s

⇣
f(b+ s)� f(b)

⌘

39 



Submodularity and concavity 

•  suppose                                and 
          

g : N ! R F (A) = g(|A|)

g(|A|)

|A|

F (A) submodular      if and only if … g is concave 

40 



Max / min 
•  Maximum of convex functions is convex 



Maximum of submodular functions 
•                              submodular.      What about  

 
           

F1(A), F2(A)

|A| 

F2(A) 
F1(A) 

42 

max{F1(A), F2(A) }

F (A) = max{F1(A), F2(A) } ? 

                         not submodular in general! max{F1, F2 }

Fi(A) = gi(|A|)



Max / min 
•  Minimum of concave functions is concave 



Minimum of submodular functions 
 What about                                                    ? 
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F1(A)	
   F2(A)	
   F(A)	
  
{} 0	
   0	
   0	
  
{a}	
   1	
   0	
   0	
  
{b}	
   0	
   1	
   0	
  
{a,b}	
   1	
   1	
   1	
  

min(F1,F2) not submodular in general! 

F (A) = min{ F1(A), F2(A) }

A

B

A [B

A \B

0 0 01
F (A) + F (B) � F (A [B) + F (A \B) ?

A

B

A [B

A \B



Submodular optimization 

•  Maximizing submodular functions: 
diversity, repulsion, concavity 
greed is not too bad 
 

•  Minimizing submodular functions: 
coherence, regularization, convexity 
magic with polytopes, and “discrete analog of convex” 
 

convex … 
 
                          … and concave aspects! 



Submodular Maximization 

•  ground set V

•  (scoring) function 

F : 2V ! R+

S ✓ V
max F (S)



Informative Subsets 
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•  where put sensors? 
•  which experiments? 
•  summarization 

F (S) = “information”



Maximizing Influence 

48	
  Kempe, Kleinberg & Tardos 2003 

F (S) = expected # infected nodes



Summarization 
•  videos, text, pictures … 
•  would like: 

relevance, reliability, diversity 
Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN )

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S  S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
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Figure 3. An example of cosegmentation on MSRC cow images
(M=3, K=4). (a) Input images. (b) Likelihood of each segment
from white (high) to black (low). (c) Color-coded cosegmentation
outputs. (d) The 3rd and 4th segments from input images.

ranking and single-image segmentation, we compute the ex-
act solution for this step. However, we use belief propaga-
tion, which is an approximate maximization, for a large-
scale cosegmentation with full dependency. In most cases,
this relaxed solution is good enough to obtain a high-quality
segmentation result.

A more scalable setting: In practice, a large-scale im-
age set is likely to contain various noisy information as well.
If heterogeneous images are cosegmented, then the results
would be worsen than those of individual image segmen-
tation. Thus, one can first decompose I into disjoint sets
I = I1 [ · · ·[ IO so that each subset Io consists of similar
images. Then, Algorithm 1 can be applied to each Io sep-
arately. This decomposition can be done by the proposed

diversity ranking and clustering of Eq.(4) on the similarity
graph of I, which can be constructed by applying Gaussian
similarity to image descriptors (e.g. dense SIFT or GIST).

4. Experiments
We evaluate our approach with two different experi-

ments: (1) figure-ground segmentation with a pair of im-
ages (M=2 and K=2), and (2) scalability tests with a large
number of images (M⇠1000). The figure-ground tests are
performed to quantitatively compare our method with other
state-of-the-art cosegmentation techniques that are only ap-
plicable in this setting. The scalability tests evaluate how
well our algorithm works with real-world data.

Our Matlab toolbox including diversity ranking, single-
image segmentation, and cosegmentation, can be found at
http://www.cs.cmu.edu/⇠gunhee.

4.1. Evaluation on Figure-ground Cosegmentation

In the figure-ground tests, we use MSRC dataset [17],
which provides 30 pixel-wise labeled images per object.
Two recent cosegmentation methods, [6] and [7], are com-
pared using their implementation with the default parameter
setting8. We run [6], [7], and our method on randomly gen-
erated 100 pairs in each class.

Unlike the others, the method of [6] requires priori la-
bels of foreground (fg) and background (bg) RGB colors.
In order to obtain labels, we fist identify the fg and bg re-
gions of each image from the ground truth. Then, we apply
K-means to the RGB space of fg and bg pixels to compute
three cluster centers each, which are used as labels (i.e. total
6 fg and 6 bg RGB labels in each pair). These labels can be
regarded as strong supervision, but they were used because
the performance of [6] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground
segmentation, we add an additional step to generate the bi-
nary segmentation results. Our approach iteratively chooses
large and coherent regions across input images in a bottom-
up way. Thus, if the foreground object consists of several
distinct regions, it is likely to segment them into multiple
regions. For binary segmentation, we first safely coseg-
ment a pair of images with a large K (K=8 in our ex-
periments). Then, we apply Normalized cuts to the sim-
ilarity graph of eight pairs of cosegments to obtain two
balanced and discriminative partitions. We observed that
our approach showed excellent performance for detecting a
moderate number of cosegments but the final figure-ground
segmentation accuracy was dependent on this binarization.

Table 2 summarizes the segmentation accuracies on the
random test pairs of MSRC dataset. The accuracy is mea-
sured by the intersection-over-union metric that is a stan-
dard in PASCAL challenges (i.e. For each image, Ac =

8Codes are available at [6]: http://www.biostat.wisc.edu/⇠vsingh/, [7]:
http://www.di.ens.fr/⇠joulin/.
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On Detection of Multiple Object Instances
using Hough Transforms
Olga Barinova Victor Lempitsky Pushmeet Kohli

Abstract—Hough transform based methods for detecting multiple objects use non-maxima suppression or mode-seeking to locate
and distinguish peaks in Hough images. Such postprocessing requires tuning of many parameters and is often fragile, especially when
objects are located spatially close to each other. In this paper, we develop a new probabilistic framework for object detection which is
related to the Hough transform. It shares the simplicity and wide applicability of the Hough transform but at the same time, bypasses
the problem of multiple peak identification in Hough images, and permits detection of multiple objects without invoking non-maximum
suppression heuristics. Our experiments demonstrate that this method results in a significant improvement in detection accuracy both
for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.

Index Terms—Hough Transforms, Object Detection in Images, Line Detection, Scene Understanding.

F

1 HOUGH TRANSFORM IN OBJECT DETEC-
TION
The Hough transform [1] is one of the classical computer
vision techniques which dates 50 years back. It was
initially suggested as a method for line detection in edge
maps of images but was then extended to detect general
low-parametric objects such as circles [2]. In recent years,
Hough-based methods were successfully adapted to the
problem of part-based category-level object detection
where they have obtained state-of-the-art results for
some popular datasets [3]–[8].

Both the classical Hough transform and its more mod-
ern variants proceed by converting the input image into
a new representation called the Hough image which lives
in a domain called the Hough space (Figure 1). Each point
in the Hough space corresponds to a hypothesis about
the object of interest being present in the original image
at a particular location and configuration. The dimen-
sionality of the Hough image thus equals the number of
degrees of freedom for the configuration(+location) of
the object.

Any Hough transform based method essentially works
by splitting the input image into a set of voting elements.
Each such element votes for the hypotheses that might
have generated this element. For instance, a feature that
fires on faces might vote for the presence of a person’s
centroid (torso) in location just below it. Of course,
voting elements do not provide evidence for the exact lo-
calization and thus their votes are distributed over many

. Olga Barinova is with Lomonosov Moscow State University, Moscow,
Russia. Email: obarinova@graphics.cs.msu.ru.
Victor Lempitsky is with Yandex, Moscow, Russia.
Email:victorlempitsky@gmail.com.
Pushmeet Kohli is with Microsoft Research, Cambridge, UK.
Email:pkohli@microsoft.com

Line detection task classic Hough transform

Pedestrian detection task Hough forest [5] transform

Fig. 1. Variants of Hough transform render the detection
tasks (left) into the tasks of peaks identification in Hough
images (right). As can be seen, in the presence of multiple
close objects identifying the peaks in Hough images is
a highly non-trivial problem in itself. The probabilistic
framework developed in this paper addresses this prob-
lem without invoking non-maxima suppression or mode
seeking heuristics.

different hypothesis in the Hough space. Large values
of the vote are given to hypotheses that might have
generated the voting element with high probability. The
votes from different voting elements pixels are added
together into a Hough image. The objects of interest
are then detected as peaks in the Hough image, with
the height of the peak providing the confidence of the
detection.

Voting elements Hypotheses 
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Fig. 1. Variants of Hough transform render the detection
tasks (left) into the tasks of peaks identification in Hough
images (right). As can be seen, in the presence of multiple
close objects identifying the peaks in Hough images is
a highly non-trivial problem in itself. The probabilistic
framework developed in this paper addresses this prob-
lem without invoking non-maxima suppression or mode
seeking heuristics.

different hypothesis in the Hough space. Large values
of the vote are given to hypotheses that might have
generated the voting element with high probability. The
votes from different voting elements pixels are added
together into a Hough image. The objects of interest
are then detected as peaks in the Hough image, with
the height of the peak providing the confidence of the
detection.

y1=1 

yi = 1: object i  
           present 
yi = 0: object i  
           not present  

xj = index of hypothesis  
explaining xj 

y2=1 

y3=0 

x1=1 

x2=1 

x3=1 

x4=2 

x5=2 

x6=0 

x7=2 

x8=2 

Illustrations courtesy of Pushmeet Kohli 

Joint MAP inference: 
 
 
 
 

Weight of element     wrt hyp.  

F (S) =
X

j

max

i2S
wij

xj yi



Inference 

Using the Hough forest trained in [Gall&Lempitsky CVPR09] 

Datasets from [Andriluka et al. CVPR 2008] 
(with strongly occluded pedestrians added) 

Illustrations courtesy of Pushmeet Kohli 



How good is greedy? in practice… 
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How good is greedy? … in theory 

max

S
F (S) s.t. |S|  k

Theorem (Nemhauser, Fisher, Wolsey `78) 
 

F monotone submodular,         solution of greedy. Then 
 
 
 
 

Sk

F (Sk) �
⇣
1� 1

e

⌘
F (S⇤)

in general, no poly-time algorithm can do better than that! 

optimal solution 



Questions 
•  What if I have more complex constraints? 

–  budget constraints 
–  matroid constraints 

•  Greedy takes O(nk) time. What if n, k are large? 
 
•  What if my function is not monotone? 



More complex constraints:   budget 
 
 

1.  run greedy: 
2.  run a modified greedy: 

3.  pick better of        ,              
    
è approximation factor: 

max F (S) s.t.

X

e2S

c(e)  B

e⇤ = argmax

F (Si [ {e})� F (Si)

c(e)

Sgr

S
mod

Sgr S
mod

1

2

⇣
1� 1

e

⌘

(Leskovec et al 2007) 

even better but less fast: 
partial enumeration 
(Sviridenko, 2004) or 
filtering (Badanidiyuru & 
Vondrák 2014) 



Other constraints: Camera network 
•  Ground set:   
•  Sensing quality model: 

•  Configuration (subset) is feasible if no camera is 
pointed in two directions at once 

•  Constraints: 1a

1b
3b

3a

V = {1a, 1b, . . . , 5a, 5b}

P1 = {1a, 1b}, . . . , P5 = {5a, 5b}

|S \ Pi|  1

require: 



Generalization of Greedy algorithm 

1a

3b

Theorem (Nemhauser, Wolsey, Fisher 78) 
For monotone submodular functions: 
 
 

F (Sgreedy) � 1
2F (S⇤)

•  Does this always work? 

S = ;
While 9e : S [ e feasible

e⇤  argmax{F (S [ e) | S [ e feasible}
S  S [ e⇤

No. But works for matroid constraints. 



Matroids: examples 

67 

set S is independent ( = feasible) if … 
 
 
 
 

… |S| ≤ k    
 
 

Uniform matroid 

 
 
 
… S contains at most 

one element from 
each group 

 

Partition matroid 

 
 
 
     … S contains no 

cycles 
 
 

     Graphic matroid 

•  S independent   è   T     S also independent 
 

 

✓



Matroids 

68 

set S is independent ( = feasible) if … 
 
 
 
 

… |S| ≤ k    
 
 

Uniform matroid 

 
 
 
… S contains at most 

one element from 
each group 

 

Partition matroid 

 
 
 
     … S contains no 

cycles 
 
 

     Graphic matroid 

•  S independent   è   T     S also independent 
 

•  Exchange property:  S, U independent, |S| > |U| 
è some             can be added to U:             independent 

•  All maximal independent sets have the same size 

✓

e 2 S U [ e



Generalization of Greedy algorithm 

1a

3b

Theorem (Nemhauser, Wolsey, Fisher 78) 
For monotone submodular functions: 
 
 

F (Sgreedy) � 1
2F (S⇤)

•  Works for matroid constraints 
•  Is this the best possible? 

S = ;
While 9e : S [ e feasible

e⇤  argmax{F (S [ e) | S [ e feasible}
S  S [ e⇤

Can do a bit better with relaxation: (1-1/e) 



Relax: Discrete to continuous 

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

max

S2I
F (S) max

x2conv(I)
f

M

(x)

Algorithm: 
1.  approximately maximize fM  

(like Frank-Wolfe algorithm – next lecture) 
2.  round to discrete set   (pipage rounding) 

(Calinescu-Chekuri-Pal-Vondrak 2011) 



Multilinear extension 
•  sample item e with probability  xe

= E
S⇠x

[F (S)]fM (x)

0.5

1.0

0.2

0.2

0.5

x

p(1) =

p(2) =

p(3) =

fM (x) =
X

S✓V
F (S)

Y

e2S

xe

Y

e/2S

(1� xe)



Questions 
•  What if I have more complex constraints? 

–  budget constraints 
–  matroid constraints 

•  Greedy takes O(nk) time. What if n, k are large? 
–  faster sequential algorithms 
–  filtering 
–  parallel / distributed 

 
•  What if my function is not monotone? 



Making greedy faster: stochastic 

for i=1…k: 
 

•  randomly pick set T of 
size 
 

•  find best a element in T 
and add  

max

S
F (S) s.t. |S|  k

n

k
log

1

✏

Si  Si�1 [ {ai}

ai = argmax

a2T
F (a|Si�1)

(Mirzasoleiman et al 2014) 

S
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Figure 1: Performance comparisons. a), d) and g) show the performance of
all the algorithms for different values of k on a set of 10,000 Tiny Images,
Parkinsons Telemonitoring, and a set of 50,000 Tiny Images respectively. b), e)
and h) show the cost of all the algorithms for different values of k on the same
datasets. c), f), i) show the utility obtained versus cost for a fixed k = 200.

Lemma 2. Given a current solution A, the expected gain of Rand-Greedy

in one step is at least 1−ε
k

∑

a∈A∗\A ∆(a|A).

Proof. Let us estimate the probability that R∩ (A∗ \A) "= ∅. The set R consists
of s = n

k
log 1

ε
random samples from V \A (w.l.o.g. with repetition), and hence

Pr[R ∩ (A∗ \A) = ∅] =

(

1−
|A∗ \A|

|V \A|

)s

≤ e−s
|A∗\A|
|V \A|

≤ e−
s
n |A∗\A|.

Therefore, by using the concavity of 1 − e−
s
nx as a function of x and the fact

that x = |A∗ \A| ∈ [0, k], we have

9
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Distributed greedy algorithms 

even more data … 
         distributed greedy algorithm? 



Distributed greedy algorithms 

greedy is sequential. 
pick in parallel?? 

pick k elements  
on each machine. 

combine and run 
greedy again. 

Is this useful? 



Distributed greedy algorithms 

pick in parallel 
from m machines 

Is this useful? 

(Mirzasoleiman et al 2013) 

Approximation factor: 
 
 
 
 

O
⇣ 1

min{
p
k,m}

⌘
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Figure 1: Performance of GREEDI compared to the other benchmarks. a) and b) show the mean and standard
deviation of the ratio of distributed vs. centralized solution for global and local objective functions with budget
k = 50 and varying the number m of partitions, for a set of 10,000 Tiny Images. c) shows the distributed
solution with m = 8000 and varying k for local objective functions on the whole dataset of 80,000,000 Tiny
Images. e) shows the ratio of distributed vs. centralized solution with m = 10 and varying k for Parkinsons
Telemonitoring. f) shows the same ratio with k = 50 and varying m on the same dataset, and g) shows the
distributed solution for m = 32 with varying budget k on Yahoo! Webscope data. d) shows a set of cluster
exemplars discovered by GREEDI, and each column in h) shows 8 images nearest to exemplars 9 and 16 in d).

from people with early-stage Parkinson’s disease. We normalized the vectors to zero mean and unit
norm. Fig. 1f compares the performance GREEDI to the benchmarks with fixed k = 50 and varying
number of partitions m. Similarly, Fig 1e shows the results for fixed m = 10 and varying k. We
find that GREEDI significantly outperforms the benchmarks.

Large scale experiments with Hadoop. Our second large scale experiment consists of 45,811,883
user visits from the Featured Tab of the Today Module on Yahoo! Front Page [26]. For each visit,
both the user and each of the candidate articles are associated with a feature vector of dimension 6.
Here, we used the normalized user features. Our experimental setup was a cluster of 5 quad-core ma-
chines running Hadoop with the number of reducers set to m = 32. Each reducer performed the lazy
greedy algorithm on its own set of 1,431,621 vectors (⇡34MB) in order to extract 128 elements with
the highest marginal gains w.r.t the local elements of the dataset in that particular partition. We then
merged the results and performed another round of lazy greedy selection on the merged results to ex-
tract the final active set of size 128. The maximum running time per reduce task was 2.5 hours. Fig.
1g shows the performance of GREEDI compared to the benchmarks. We note again that GREEDI
significantly outperforms the other distributed benchmarks and can scale well to very large datasets.

6 Conclusion
We have developed an efficient distributed protocol GREEDI, for maximizing a submodular function
subject to cardinality constraints. We have theoretically analyzed the performance of our method and
showed under certain natural conditions it performs very close to the centralized (albeit impractical
in massive data sets) greedy solution. We have also demonstrated the effectiveness of our approach
through extensive large scale experiments using Hadoop. We believe our results provide an impor-
tant step towards solving submodular optimization problems in very large scale, real applications.

Acknowledgments. This research was supported by SNF 200021-137971, DARPA MSEE
FA8650-11-1-7156, ERC StG 307036, a Microsoft Faculty Fellowship, an ETH Fellowship,
Scottish Informatics and Computer Science Alliance.
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# machines (# parts in partition) 

(Mirzasoleiman et al 2013) 

In practice, 
performs often 
quite well. 

1.  special structure: 
Improved guarantees 
if F is Lipschitz or 
a sum of many terms 

2.   randomization 



Distributed greedy algorithms 

pick in parallel 
from m machines 

Pick the best of m+1 solutions 

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015) 

randomly distribute 
across machines 

•  each machine:       approximation algorithm 
•  level 2:       approximation algorithm 
è  overall approximation factor: 

↵�
��

E[F (bS)] � ↵�

↵+ �
F (S⇤)



Distributed greedy algorithms 

pick in parallel 
from m machines 

Pick the best of m+1 solutions 

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015) 

randomly distribute 
across machines 

E[F (bS)] � ↵�

↵+ �
F (S⇤) With greedy algorithm on both levels: 

                              , overall factor: 
  
 
 
 

1
2 (1�

1
e )

↵ = � = 1� 1
e



Questions 
•  What if I have more complex constraints? 

–  matroid constraints 
–  budget constraints 

•  Greedy takes O(nk) time. What if n, k are large? 
–  stochastic 
–  parallel / distributed 
–  filtering, structured, … 

 

•  What if my function is not monotone? 



Non-monotone functions 

if S ✓ T then F (S)  F (T )

3 5 1 F (S) � 0 for all S
still assume: 



F (A) = 95

optimal solution 
F (A) = 40
greedy solution: 

Greedy can fail … 

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4 

coverage: 100 
cost:          -60 
gain            40 

coverage:   30 
cost:          -  1 
gain            29 

coverage:   30 
cost:          -  1 
gain            29 

coverage:   40 
cost:          -  3 
gain            37 

S1 = ; [ argmax

a2V
F (a)S0 = ;



F (A) = 95optimal solution: F (A) = 40
greedy solution: 

Greedy can fail … 

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4 

coverage: 100 
cost:          -60 
gain            40 

coverage:   30 
cost:          -  1 
gain            29 

coverage:   30 
cost:          -  1 
gain            29 

coverage:   40 
cost:          -  3 
gain            37 



Double (bidirectional) greedy 

V

A

B

A = ;, B = VStart: 

for  i=1, …, n //add or remove? 

•  gain of adding (to A): 

•  gain of removing (from B): 

P(add) = �+

�+ +��

coverage: 100 
cost:          -60 

�+ = 40

�� = 60

= 40% 

add with probability 

�+ = [F (A [ ai)� F (A) ]+

�� = [F (B \ a)� F (B) ]+



Double (bidirectional) greedy 

V

A

B

A = ;, B = VStart: 

for  i=1, …, n //add or remove? 

P(add) = �+

�+ +��

coverage: 100 
cost:          -60 

�+ = 40

�� = 60

add with probability 

add to A  or  remove from B 



Double (bidirectional) greedy 

V

A

B

A = ;, B = VStart: 

for  i=1, …, n //add or remove? 

P(add) = �+

�+ +��

coverage:   30 
cost:          -  1 

add with probability 

add to A  or  remove from B 

�+ = 29

�� = [�29]+ = 0

=
29

29



=
29

29

Double (bidirectional) greedy 

V

A

B

A = ;, B = VStart: 

for  i=1, …, n //add or remove? 

P(add) = �+

�+ +��

coverage:   30 
cost:          -  1 

add with probability 

add to A  or  remove from B 

�+ = 29

=
37

40

�� = 0



Double greedy 

Theorem (Buchbinder, Feldman, Naor, Schwartz ‘12) 
 

F  submodular,         solution of double greedy. Then 
 
 
 
 optimal solution 

Sg

max

S✓V
F (S)

E[F (Sg)] � 1
2F (S⇤)



Non-monotone maximization 
•  alternatives to double greedy?  

local search (Feige et al 2007) 

•  constraints?  
possible, but different algorithms 

•  distributed algorithms? yes! 
–  divide-and-conquer as before (de Ponte Barbosa et al 2015) 
–  concurrency control / Hogwild (Pan et al 2014) 



Submodular maximization: summary 
•  many applications: diverse, informative subsets 

•  NP-hard, but greedy or local search 
•  distinguish monotone / non-monotone 

•  several constraints possible  
(monotone and non-monotone) 



Submodularity and machine learning 

92	
  

bla blablala oh bla bl abl lba bla  
gggg  hgt dfg uyg sd djfkefbjal 
odh wdbfeowhjkd  fenjk jj 
 
bla blablala oh bla dw  
bl abl lba bla gggg  hgt dfg uyg 
sd djfkefbjal odh wdbfeowhjkd  
fenjk jj 
 
bla blablala oh bla bl abl lba bla  
gggg  hgt dfg uyg efefm  o 
 
 
sd djfkefbjal odh wdbfeowhjkd  
fenjk jj ef  
 
owskf wu 

6

1st iteration 2nd iteration 3rd iteration 8th iteration

Fig. 4. Greedy MAP-inference in our model for pedestrian-detection example from Figure 1. For each iteration, we
give the Hough image M

t (top) and highlight in red the detection corresponding to its maximum (bottom). Note how
the Hough images M

t

(h) are changed between iterations, so that implicit “non-maximum suppression” driven by the
probability function is performed. As a result, multiple pedestrians are detected despite significant overlaps between
them.

including performing loopy belief-propagation [22] in
the bipartite graph defined by (9). The special form
of the pairwise terms permits a very compact message
representation (the same as used in the affinity prop-
agation [23]). We have also tried simulated annealing
optimization for the binary-labelled function (10).

Both loopy belief propagation (LBP) and simulated
annealing (SA) were not able to handle the very high
order potentials present in our model. To overcome this
problem, we adaptively reduced the size of our hypoth-
esis space. We did this by using standard Hough voting
to find (sample) a moderately large number (dozens to
hundreds) of peaks in the Hough image. We then restrict
the Hough space H to these peaks. As the majority of
voting element vote for a limited number hypotheses
each (p(x

i

|I
i

) = 0 for many assignments values of x

i

),
we were able to reduce the size of the Hough space
considerably without loss of many energy terms.

In our experiments LBP and SA gave reasonable
results with the adaptive sparsification heuristics dis-
cussed above. However, they were still quite computa-
tionally expensive. Also the inability of these inference
methods to handle large set of hypotheses is a significant
limitation which potentially can lead to loss of detections
and lower recall rate of object detection performance.
Submodularity and connection with uncapacitated fa-
cility location problem.

The maximization of (10) can be viewed as the well
studied in operation research community facility location
task, that considers the problem of optimal placement of
facilities (detected objects) in order to minimize trans-
portation costs (negative votes from voting element).
One of the well-known properties of the objective func-
tion of facility location problem (10) is it’s submodu-

larity (see e.g. [24]) Unlike the problem of minimizing
submodular functions, the problem of maximizing sub-
modular functions is NP-hard. But approximations have
been studied extensively for both the general task of
submodular function maximization and the particular
problem of facility location. The best approximation
factor known for facility location is 0.828 that is achieved
by polynomial-time algorithm based on the idea of
randomized rounding [25].

The greedy algorithm, that iteratively augments a cur-
rent solution with an element of maximum incremental
value, is proven to have an approximation factor 0.632
for the task of submodular functions maximization [26].
This simple method has been shown to be an efficient
heuristic for both maximizing submodular functions
over different constraint structures (e.g. [27]) and facility
location problem (e.g. [28]). Not surprisingly, in our
framework greedy algorithm showed approximately the
same accuracy as LBP and SA. Moreover in contrast
to LBP and SA, it turned out that the iterative greedy
inference doesn’t require reducing the hypothesis space.
This property potentially allows greedy algorithm to
achieve higher recall compared to LBP and SA.

Iterative sampling with dense set of hypotheses. The
greedy iterative algorithm starts with all y

h

set to 0 and
x

i

set to 0 (background). In step t the algorithm makes a
hypothesis h

t active (by setting y

h

t
= 1), simultaneously

switching some of x

i

to h

t (x
i

is switched to h

t only if
this increases the posterior). The hypothesis h

t is picked
so that the biggest increase of the posterior is obtained.

In each iteration, it identifies the optimal hypothesis
h

t to be made active by using Hough voting. In iteration
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