

Submodular Functions – Part II

ML Summer School Cádiz Stefanie Jegelka MIT

more reading & papers: <u>http://people.csail.mit.edu/stefje/mlss/literature.pdf</u>

Set functions in machine learning

ෆී

Phir

Setup

- ground set ${\cal V}$
 - (scoring) function $F: 2^{\mathcal{V}} \to \mathbb{R}_+$

Pfii

 $\max F(S)$ $\min_{S \subseteq \mathcal{V}} F(S)$

- We assume:
- $F(\emptyset) = 0$
- we can evaluate F

Diminishing marginal gains

Plif

Maximizing submodular utility

(Lin & Bilmes 2011, Tschiatschek et al 2014, Kim et al 2014, Gygli et al 2015...)

(Song, Lee, Jegelka, Darrell 2014, Song, Girshick, Jegelka, Mairal, Harchaoui, Darrell 2014, Kim et al 2011) ⁵

Ulii i

Questions

- What if I have more complex constraints?
 - matroid constraints
 - budget constraints
- Greedy takes O(nk) time. What if n, k are large?
 - stochastic
 - distributed
 - structured
- What if my function is not monotone?

even more data ... distributed greedy algorithm?

li li în

Distributed greedy algorithms

greedy is sequential. pick in parallel??

Phir

pick *k* elements on each machine.

combine and run greedy again.

Distributed greedy algorithms

pick in parallel from *m* machines

Phir

Is this useful?

Distributed Greedy

In practice, performs often quite well.

- special structure: Improved guarantees if F is Lipschitz or a sum of many terms
- 2. randomization

Pfii

Distributed greedy algorithms

- each machine: α -approximation algorithm
- level 2: β approximation algorithm
- → overall approximation factor: $\mathbb{E}[F(\widehat{S})] \geq \frac{\alpha\beta}{\alpha+\beta}F(S^*)$

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

Distributed greedy algorithms

Ulii i

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

Questions

- What if I have more complex constraints?
 - matroid constraints: later (Sri)
 - budget constraints
- Greedy takes *O*(*nk*) time. What if n, k are large?
 - stochastic
 - distributed
 - structured
- What if my function is not monotone?

Non-monotone functions

li li î

Greedy can fail ...

Greedy can fail ...

$$F(A) = \left| \bigcup_{a \in A} \operatorname{area}(a) \right| - \sum_{a \in A} c(a)$$

Phir.

for *i*=1, ..., *n* //add or remove?

- gain of adding (to A): $\Delta_+ = [F(A \cup a_i) F(A)]_+$
- gain of removing (from B): $\Delta_{-} = [F(B \setminus a) - F(B)]_{+}$

add with probability

$$\mathbb{P}(\text{add}) = \frac{\Delta_+}{\Delta_+ + \Delta_-} = 40\%$$

luir.

Start: $A = \emptyset, \ B = \mathcal{V}$

for *i*=1, ..., *n* //add or remove?

add with probability

$$\mathbb{P}(\text{add}) = \frac{\Delta_+}{\Delta_+ + \Delta_-}$$

Phir

add to A or remove from B

Phir

Phir

Double greedy

li li î

$$\max_{S \subseteq \mathcal{V}} F(S)$$

Theorem (Buchbinder, Feldman, Naor, Schwartz '12)

F submodular, S_g solution of double greedy. Then

$$\mathbb{E}[F(S_g)] \geq \frac{1}{2}F(S^*)$$
 optimal solution

Non-monotone maximization

- alternatives to double greedy? local search (Feige et al 2007)
- constraints? possible, but different algorithms
- distributed algorithms? yes!
 - divide-and-conquer as before (de Ponte Barbosa et al 2015)
 - concurrency control / Hogwild (Pan et al 2014)

Submodular maximization: summary

- many applications: diverse, informative subsets
- NP-hard, but greedy or local search
- distinguish monotone / non-monotone
- several constraints possible (monotone and non-monotone)

Roadmap

- Submodular set functions

 what is this? where does it occur? how recognize?
- Maximizing submodular functions: diversity, repulsion, concavity greed is not too bad
- Minimizing submodular functions: coherence, regularization, convexity the magic of "discrete analog of convex"
- Other questions around submodularity & ML

Submodularity

diminishing marginal costs – economies of scale

1467

Minimize incoherence

Phir

Convex functions (Lovász, 1983)

- "occur in many models in economy, engineering and other sciences", "often the only nontrivial property that can be stated in general"
- preserved under many operations and transformations: larger effective range of results
- sufficient structure for a "mathematically beautiful and practically useful theory"
- efficient minimization

"It is less apparent, but we claim and hope to prove to a certain extent, that a similar role is played in discrete optimization by *submodular set-functions*" [...] they share the above four properties.

Submodular Minimization in 3 steps

- 1. Relaxation: continuous (Lovasz) extension
- 2. submodular polyhedra show: this is convex!
- 3. minimization via convex optimization

Submodularity and convexity

any set function with |V| = n.

 $F: 2^V \to \mathbb{R}$

... is a function on binary vectors

$$F: \{0,1\}^n \to \mathbb{R}$$

optimizing set function = finding binary labeling!

l liit

Relaxation: idea

0.2

0

0.5

x_b

this should be "easy" to minimize

0.5

xa

Phir

Relaxations

- assume for the moment vectors $x \in [0,1]^n$
- recall multilinear extension: use expectation [©]

 $f_M(x) = \mathbb{E}_{S \sim p_x}[F(S)]$

but: not easy to minimize. We want a convex function!

Lovász extension

- sample a threshold θ uniformly between 0 and 1
- Pick

$$S^{\theta} = \{ i \mid x_i \ge \theta \}$$

Plif

$$f_L(x) = \mathbb{E}_{S \sim \theta} \left[F(S) \right]$$

$$f(x) = \sum_{i=1}^{k} \alpha_i F(S_i)$$

Lovász extension

i=1

0.5

0.2

0.2

 $x = \sum \alpha_i \mathbf{1}_{S_i} \qquad f(x) = \sum \alpha_i F(S_i)$ i=1

Pfii

Lovász extension is easy to compute!

1. sort x: $x_{\pi(1)} \ge x_{\pi(2)} \ge \dots \ge x_{\pi(n)}$ 2. then $\alpha_i = x_{\pi(i)} - x_{\pi(i-1)}, \ \alpha_n = x_{\pi(n)}$

 $S_i = \{\pi(1), \dots, \pi(i)\}$

$$f(x) = \sum_{i=1}^{k} \alpha_i F(S_i)$$

Phir

Examples

$$f(x) = \sum_{i=1}^{k} \alpha_i F(S_i)$$

• truncation

$$\begin{array}{c} \alpha_2 & \alpha_1 \\ 1.0 &= & 0.5 \\ 1.0 & 1.0 \\ 1.0 & 1.$$

$$F(S) = \min\{|S|, 1\} \qquad f(x) = 0.5 + 0.5 = \max_{i} x_{i}$$

• cut function $1 - 2 \qquad f(x) = 0.5 \cdot 0 + (1 - 0.5) \cdot 1$ $F(S) = \begin{cases} 1 & \text{if } S = \{1\}, \{2\} \\ 0 & \text{if } S = \emptyset, \{1, 2\} \end{cases} \qquad = |x_1 - x_2|$ "total variation"!

Is this useful?

✓ easy to compute (sort) Phir

• convex?
Alternative characterization

$$f(x) = \sum_{i=1}^{k} \alpha_i F(S_i)$$

if *F* is submodular, this is equivalent to:

$$f(x) = \max_{y \in \mathcal{B}_F} y^\top x$$

Submodular polyhedra

Шiт

Base polytopes

Phir

Other interesting base polytopes

$$\mathcal{P}_F = \{ y \in \mathbb{R}^n \mid y(A) \le F(A) \text{ for all } A \subseteq \mathcal{V} \}$$
$$\mathcal{B}_F = \{ y \in \mathcal{P}_F \mid y(\mathcal{V}) = F(\mathcal{V}) \}$$

• Probability Simplex

 $F(S) = \min\{|S|, 1\}$

Phir

Other interesting base polytopes

Phir

 $\mathcal{P}_F = \{ y \in \mathbb{R}^n \mid y(A) \le F(A) \text{ for all } A \subseteq \mathcal{V} \}$ $\mathcal{B}_F = \{ y \in \mathcal{P}_F \mid y(\mathcal{V}) = F(\mathcal{V}) \}$

Computing the "Lovasz extension"

$$\mathcal{P}_F = \{ y \in \mathbb{R}^n \mid y(A) \le F(A) \text{ for all } A \subseteq \mathcal{V} \}$$

Base polytope

 $\mathcal{B}_F = \{ y \in \mathcal{P}_F \mid y(\mathcal{V}) = F(\mathcal{V}) \}$

l liit

$$f(x) = \max_{y \in \mathcal{B}_F} \ y^\top x$$

Edmonds 1970: "magic" compute argmax in *O*(*n log n*) ③

basis of (almost all) optimization! -- separation oracle -- subgradient --

Optimization over base polytope

$$\mathcal{B}_{F} = \left\{ y \in \mathbb{R}^{n} \mid \sum_{a \in S} y_{a} \leq F(S) \\ y(\mathcal{V}) = F(\mathcal{V}) \right\}$$
Edmonds' greedy algorithm:
1. sort

$$y_{2} \land y_{2} = F(\{e_{1}, e_{2}\}) - F(e_{1})$$

$$y_{1} = F(e_{1}) - 0$$

$$f(x) = \max_{y \in \mathcal{B}_{F}} y^{\top}x$$
Edmonds' greedy algorithm:
1. sort

$$x_{\pi(1)} \geq x_{\pi(2)} \geq \dots \geq x_{\pi(n)}$$
2. chain of sets

$$S_{0} = \emptyset,$$

$$S_{1} = \{\pi(1)\} \dots$$

$$S_{i} = \{\pi(1), \dots, \pi(i)\}$$

Base polytope

$$f(x) = \max_{y \in \mathcal{B}_F} y^\top x$$

l liii

Remarks:

- chain of sets same as before!
- y is a subgradient of f at x

1. sort

$$x_{\pi(1)} \ge x_{\pi(2)} \ge \ldots \ge x_{\pi(n)}$$

2. chain of sets $S_0 = \emptyset, S_i = \{\pi(1), \dots, \pi(i)\}$

3. assign values

$$y_{\pi(i)} = F(S_i) - F(S_{i-1})$$

 $\sum_{i} \alpha_{i} F(S_{i}) = \sum_{i} (x_{\pi(i)} - x_{\pi(i-1)}) F(S_{i}) = \sum_{i} y_{\pi(i)} x_{\pi(i)}$

Re-computing our examples

$$\begin{array}{rcrr} x \\ \hline 0.5 \\ 1.0 \end{array} = & 0.5 & \boxed{\begin{array}{c} 1.0 \\ 1.0 \end{array}} + & 0.5 & \boxed{\begin{array}{c} 0 \\ 1.0 \end{array}} \end{array}$$

 $F(S) = \max\{|S|, 1\}$

sort: $x_2 \ge x_1 \implies S_1 = \{2\}, S_2 = \{2, 1\}$

$$y_2 = F(2) = 1$$

 $y_1 = F(2, 1) - F(2) = 1 - 1 = 0$

$$f(x) = y^{\top} x = 1 \cdot x_1 + 0 \cdot x_2 = \max_i x_i$$

in general: $F(S_i) - F(S_{i-1}) > 0$ only for i=1!

$$\Rightarrow f(x) = \max_i x_i$$

l li î

Re-computing our examples

Phir

$$\begin{array}{cccc} & & & x \\ \hline 1 & & & \\ \hline 2 & & & \\ \hline 1 & & \\ 1 & & \\ \hline 1 & & \\ 1$$

 $f(x) = y^{\top} x = -0.5 + 1 = |x_1 - x_2|$

Back to our plan

- \checkmark find a relaxation (extension): Lovasz extension
- \checkmark magic of special polyhedra
 - → Lovasz extension is convex
- minimize Lovasz extension: up next
- get a set from solution

Multilinear relaxation vs. Lovász ext.

 $f_{L}(x) = \mathbb{E}_{S \sim \theta} [F(S)]$

li li î

- concave in certain directions, convex in others
- approximate by sampling

- convex
- computable in O(n log n)

Multilinear relaxation vs. Lovász ext.

Back to our plan

- \checkmark find a relaxation (extension): Lovasz extension
- ✓ magic of special polyhedra
 - ➔ Lovasz extension is convex
- minimize Lovasz extension: up next
- get a set from solution

Convex relaxation

l liit

$$\min_{S \subseteq \mathcal{V}} F(S) = \min_{x \in \{0,1\}^n} F(x) \longrightarrow \min_{x \in [0,1]^n} f(x)$$

1. relaxation: convex optimization (non-smooth)

2. relaxation is exact!

→ submodular minimization in polynomial time! (Grötschel, Lovász, Schrijver 1981)

Minimizing the Lovasz extension

$$\min_{x \in [0,1]^n} f(x)$$

Шïт

- subgradient method
- combinatorial algorithms: dual

Subgradients

recall: gradient descent

 $x^{k+1} = x^k - \alpha \nabla f(x^k)$

Ulii i

subgradient at x: vector g such that

$$\forall x': f(x') \ge f(x) + \langle x' - x, g \rangle$$

subgradient of Lovasz extension:

$$g_x \in \arg \max_y y^\top x \quad \text{s.t. } y \in \mathcal{B}_F$$

Projected subgradient method

Шiř

Convergence

Theorem

Let $D = \sqrt{n}$ and $L = \max_{g \in \mathcal{B}_F} ||g|| \le 3 \max_S |F(S)|$. With step size $\alpha_t = \frac{D}{L\sqrt{t}}$, the error decreases as

$$\min_{\tau \le t} f(x^{\tau}) - f(x^*) \le \frac{4DL}{\sqrt{t}}$$

- D: diameter of [0,1]ⁿ
 - L: Lipschitz constant
- for an error $\leq \epsilon$ need $O(\frac{1}{\epsilon^2})$ iterations

Submodular minimization

convex optimization

- ellipsoid method (Grötschel-Lovasz-Schrijver 81)
- subgradient method
- minimum-norm point / Fujishige-Wolfe algorithm

combinatorial methods

 first polynomial-time: (Schrijver 00, Iwata-Fleischer-Fujishige 01)

•
$$O(n^4T+n^5\log M)$$
 (Iwata 03),

$$O(n^6 + n^5 T) \qquad \qquad \text{(Orlin 09)}$$

Latest result: $O(n^2 T \log nM + n^3 \log^c nM)$ $O(n^3 T \log^2 n + n^4 \log^c n)$ (Lee-S

(Lee-Sidford-Wong 15)

Convex duality

Шiř

.

.

$$\min_{S \subseteq \mathcal{V}} F(S) = \min_{x \in [0,1]^n} f(x)$$

$$= \min_{x \in [0,1]^n} \max_{y \in \mathcal{B}_F} y^\top x$$

$$= \max_{y \in \mathcal{B}_F} \min_{x \in [0,1]^n} x^\top y \qquad = \max_{y \in \mathcal{B}_F} \left(\sum_{i=1}^n \min\{y_i, 0\} \right)$$

Optimality conditions: (S^*, y^*) optimal primal-dual pair if

1. $y^* \in \mathcal{B}_F$ 2. $\{y^* < 0\} \subseteq S^* \subseteq \{y^* \le 0\}$ 3. $y^*(S^*) = F(S^*)$

Combinatorial algorithms

- remove "negative mass"
- challenges:
 - need to stay in polytope
 - cannot test feasibility
 - ➔ network flow algorithms

H i i

Submodular minimization

convex optimization

- ellipsoid method (Grötschel-Lovasz-Schrijver 81)
- subgradient method
- minimum-norm point / Fujishige-Wolfe algorithm

combinatorial methods

 first polynomial-time: (Schrijver 00, Iwata-Fleischer-Fujishige 01)

•
$$O(n^4T+n^5\log M)$$
 (Iwata 03),

$$O(n^6 + n^5 T) \qquad \qquad \text{(Orlin 09)}$$

Latest result: $O(n^2 T \log nM + n^3 \log^c nM)$ $O(n^3 T \log^2 n + n^4 \log^c n)$ (Lee-S

(Lee-Sidford-Wong 15)

Proximal problem

 $\min_{x \in [0, \mathbf{\hat{x}}]^n} f(x) + \frac{1}{2} \|x\|^2$

why? solves $\min_{S \subseteq \mathcal{V}} F(S) + \alpha |S| \quad \text{for all } \alpha$

- Let S^{α} be the largest minimizer of $\left.F(S)+\alpha|S|\right.$
- can show: if $\alpha < \beta$, then $S^{\alpha} \supseteq S^{\beta}$ \rightarrow chain $\emptyset \subset S^{\alpha_1} \subset S^{\alpha_2} \subset \dots \mathcal{V}$
- "encode" in vector u :

$$\{e \mid u_e \ge \alpha\} = S^{\alpha}$$

$$u = \arg\min_{x} f(x) + \frac{1}{2} ||x||^2$$

Шiī

3 equivalent problems

divide-and-conquer

Шïт

(Topkis 1978, 1998; Granot-Veinott 1985; Hochbaum 01; Nagano 2007; Fujishige & Isotani 11; ...)

Minimum-norm-point algorithm

(Fujishige '91, Fujishige & Isotani '11)

Ulii i

Solving the min-norm problem

- $\min_{y \in \mathcal{B}_F} \ \frac{1}{2} \|y\|^2$
- costly: testing membership in \mathcal{B}_F
- costly: projection onto \mathcal{B}_F
- easy: linear optimization over \mathcal{B}_F : greedy algorithm! \odot

- conditional gradient (Frank-Wolfe) algorithm (Frank & Wolfe 1956)
- active set methods: Fujishige-Wolfe (Fujishige & Isotani 2011, Chakrabarty-Jain-Kothari 2014,...)

Frank-Wolfe algorithm

min h(y) s.t. $y \in \mathcal{P}$

h convex, differentiable*P* polyhedral

H li T

 $\begin{array}{l} y^0 \in \mathcal{P} \\ \text{for } t=0,1,\dots \text{ to } T \text{ do} \\ s^t = \mathop{\mathrm{argmin}}_{s \in \mathcal{P}} \langle \nabla h(y^t), s \rangle \\ y^{t+1} = (1-\gamma)y^t + \gamma s^t \\ \text{end for} \end{array}$

step size? how many iterations?

Frank-Wolfe algorithm: step sizes

$$\min h(y) \quad \text{s.t. } y \in \mathcal{P}$$

h convex, differentiable

l li î

P polyhedral

for
$$t = 0, 1, ...$$
 to T do
 $s^t = \operatorname{argmin}_{s \in \mathcal{P}} \langle \nabla h(y^t), s \rangle$
 $y^{t+1} = (1 - \gamma)y^t + \gamma s^t$
end for

1. fixed step size:

$$\gamma^t = \frac{2}{t+2}$$

2. line search:

$$\gamma^t = \arg\min_{\gamma \in [0,1]} h(y^t + \gamma(s^t - y^t))$$

3. re-optimization:

$$y^{t+1} = \operatorname{argmin}_{y \in \operatorname{conv}(s^0, \dots, s^t)} h(y)$$

How many iterations?

Theorem (Jaggi 2013, Bach 2013)

1. relaxation: After *T* iterations of Frank-Wolfe, have an iterate y^{τ} with $gap(y^{\tau}) \leq \frac{16C}{T+2}$

2. discrete: after T iterations of Frank-Wolfe, can get a set S with

$$gap(S) \le \sqrt{2n gap(y^{\tau})} = O(\sqrt{n/T})$$

01;;;

How many iterations? (Details)

Illii

$$y^* = -x^*$$

dual problem
 $\max_{y \in \mathcal{B}_F} -\frac{1}{2} \|y\|^2$ primal problem
 $\min_x f(x) + \frac{1}{2} \|x\|^2$

always: primal value ≥ dual value
at optimum: primal value = dual value
→ bound the duality gap: primal - dual value

Theorem (Jaggi 2013)
After T iterations of the algorithm, there is an iterate y^{τ} with
 $gap(y^{\tau}) \leq \frac{16C}{T+2}$ For $h(y) = ||y||^2$, $C = diam(\mathcal{P})^2$ Exercise: how many
iterations for a
gap $< \epsilon$?

Are we done yet? (Details)

want: $\min_{S \subset \mathcal{V}} F(S)$ ----->

$$S^t_\alpha = \{e \mid -y^t_e \geq \alpha\} \blacktriangleleft$$

 $\max_{y \in \mathcal{B}_F} -\frac{1}{2} \|y\|^2$

solve via conditional gradient & friends have convergence bound

How many iterations until $F(S^t) - F(S^*) \le \epsilon$?

Theorem (Bach 2013)

If $gap(y^{\tau}) \leq \epsilon'$ then there exists an α such that the discrete duality gap is bounded as

$$F(S_{\alpha}^{\tau}) - F(S^{*}) \le F(S_{\alpha}^{\tau}) - y_{-}^{\tau}(\mathcal{V}) \le \sqrt{2n\epsilon'}$$

Summary: formulations for min

l lin

- usually fastest in practice: usually Fujishige-Wolfe
- alternative algorithms for special cases: symmetric functions, cuts, ...

Connections

$$\min_{x} \ f(x) + \frac{1}{2} \|x\|^2$$

subgradient descent

$$\max_{y \in \mathcal{B}_F} -\frac{1}{2} \|y\|^2$$

14166

conditional gradient

subgradient: $g^{t} = \underset{s \in \mathcal{B}_{F}}{\operatorname{arg max}} \langle s, x^{t} \rangle + x^{t}$ $x^{t+1} = x^{t} - \alpha g^{t}$ $= (1 - \alpha)x^{t} - \alpha s^{t}$ direction: $s^{t} = \underset{s \in \mathcal{B}_{F}}{\operatorname{arg min}} \langle s, y^{t} \rangle$ $y^{t+1} = (1 - \gamma)y^{t} + \gamma s^{t}$

now recall: $x^* = -y^*$

Submodularity and convexity

- convex Lovasz extension
 - easy to compute due to greedy algorithm (special polyhedra!)
- submodular minimization via convex optimization: fast algorithms for many applications
- duality results
- structured sparsity (Bach 2010)
- decomposition & parallel algorithms (Jegelka et al 2013, Nishihara et al 2014, Ene & Nguyen 2015)
- variational inference (Djolonga & Krause 2014)

Structured sparsity and submodularity

$$y = Mx + \text{noise}$$

Phir

Sparse reconstruction

$$\min_{x} \|y - Mx\|^2 + \lambda \Omega(x)$$

discrete regularization on support S of x

$$\Omega(x) = \|x\|_0 = |S|$$

relax to convex envelope

$$\Omega(x) = \|x\|_1$$

Assumption:
x is sparse
subset
selection:
$$S = \{1,3,4,7\}$$

sparsity pattern often not random...

l liit

Structured sparsity

Assumption: support of x has structure

Plif

x

express by set function!

Preference for trees

Set function: F(T) < F(S)if T is a tree and S not |S| = |T| li li î

$$F(S) = \left| \bigcup_{s \in S} \operatorname{ancestors}(s) \right|$$

use as regularizer?

Sparsity

$$\begin{split} \min_{x} & \|y - Mx\|^2 + \lambda \Omega(x) \\ \text{x sparse} & \bullet x \text{ structured sparse} \\ \text{discrete regularization on support S of } x \\ \text{submodular function} \\ \Omega(x) = \|x\|_0 &= |S| \\ \text{relax to convex envelope} \\ \Omega(x) = \|x\|_1 & \bullet \sum_{x \in X} \sum_{x \in X$$

•

Optimization: submodular minimization (min-norm)

Plif

Norms from submodular functions

$$\Omega(x) = f(|x|)$$

Proposition For monotone increasing *f*, f(|x|) is a norm. *(Exercise: show this)*

Special cases:
$$F(S) = |S| \Rightarrow f(|x|) = ||x||_1$$

 $F(S) = \min\{|S|, 1\} \Rightarrow f(|x|) = ||x||_\infty$
 $F(S) = \sum_{j=1}^k \min\{|S \cap G_j|, 1\} \Rightarrow f(|x|) = \sum_{j=1}^k ||x_{G_j}||_\infty$

Special case

l liit

• minimize a sum of submodular functions

$$F(S) = \sum_{i=1}^{r} F_i(S) \qquad \min_{\substack{S \\ \text{"easy"}}} F_i(S)$$

- combinatorial algorithms (Kolmogorov 12, Fix-Joachims-Park-Zabih 13, Fix-Wang-Zabih 14)
- convex relaxations

Relaxation

$$F: 2^{\mathcal{V}} \to \mathbb{R} \equiv F: \{0, 1\}^n \to \mathbb{R} \qquad f: \mathbb{R}^n_+ \to \mathbb{R}$$

$$\min_{S \subseteq \mathcal{V}S \subseteq \mathcal{V}_i} \mathbb{F}_i(S) = \min_{\substack{x \in [0,1]^n \\ \downarrow}} \underbrace{\sum_{i=1}^r f_i(x) + \frac{1}{2} \|x\|^2}_{x \in [0,1]^n}$$

Plif

dual decomposition: parallel algorithms

(Komodakis-Paragios-Tziritas 11, Savchynskyy-Schmidt-Kappes-Schnörr 11, J-Bach-Sra 13)

Results: dual decomposition

li li î

(Jegelka, Bach, Sra 2013; Nishihara, Jegelka, Jordan 2014)

What if ... ?

segmentation (Jegelka, Bilmes CVPR 2011)

Plif

Constrained minimization

l liii

(Goel et al. 09, Iwata & Nagano 09, Goemans et al. 09, Jegelka & Bilmes 11, Iyer et al. ICML 13, Kohli et al 13...)

A practical algorithm

idea: submodularity = discrete concavity

fast: only need to solve linear optimization problem!

(Jegelka & Bilmes 2011; lyer, Jegelka, Bilmes 2013)

Different approximation of *F*

 $\sum_{e\in S} w(e)$

• recall: for
$$x = 1_S$$

$$F(S) = f(x) = \max_{y \in \mathcal{B}_F} y^\top x$$

approximate polyhedron by ellipsoid

Plif

$$\widehat{F}(S) = \max_{y \in \mathcal{E}_F} y^\top x$$

 s_b

Does it work?

- often works well in practice
- theory: approximation guarantees depending on curvature of F

(lyer et al 2013)

• special cases: exact solution (Kohli et al 2013)

Шiт

Submodular Optimization in a nutshell

Maximization (NP-hard)

- greedy algorithms:
 exploit discrete concavity = diminishing returns
 - accommodate many constraint types
 - scalable algorithms being developed

Minimization (poly-time if unconstrained)

 convex optimization exploit 'discrete' convexity: polyhedra, convex extension

 constraints are hard in the worst case. Use majorize-minimize, relaxations or approximations of F

Other recent & ongoing developments

- Faster maximization (streaming, ...)
- Faster minimization
- Online submodular optimization
- Beyond binary: integer-submodular functions
- Learning a submodular function
- Profiting from submodularity in distributions defined by submodular functions

Submodularity and machine learning

distributions over labels, sets log-submodular/ supermodular probability e.g. "attractive" graphical models, determinantal point processes

> submodularity & machine learning!

(convex) regularization submodularity: "discrete convexity" e.g. combinatorial sparse estimation diffusion processes, covering, rank, connectivity, entropy, economies of scale, summarization, ... submodular phenomena

More on constrained minimization

Шiī

the following slides are extra material on constrained minimization.

Recall: MAP and cuts

binary labeling: $x = 1_A$ pairwise random field: $E(x) = \operatorname{Cut}(A)$ What's the problem?

minimum cut: prefer
short cut = short object boundary

Шiт

What's wrong?

we get ...

local coherence = short cut

ideally ...

Plif

homogeneous cut global dependencies!

not homogeneous

Cooperative cuts

local coherence homogeneous cut = short cut global dependencies! cooperative graph cut cost of a cut $C \subseteq \mathcal{E}$: cost of a cut $C \subseteq \mathcal{E}$: submodular function F(C)euges are independent edges are not independent cut weight = energy

1467

Homogeneity via group sparsity

sum of weights: use <mark>few</mark> edges

submodular cost function: use few types of edges

One type (13 edges) Many types (6 edges)

$$F(\operatorname{Cut}) = \sum_{\operatorname{type} k} F_k(\operatorname{Cut})$$

(Jegelka & Bilmes 2011)

Шïт

Homogeneity via group sparsity

sum of weights: use few edges

submodular cost function: use few types of edges

One type (13 edges) Many types (6 edges)

$$F(\operatorname{Cut}) = \sum_{\operatorname{type} k} F_k(\operatorname{Cut})$$

l li î

(Jegelka & Bilmes 2011) 94

Results

Quantitatively: up to 70% reduction in error!

Phir

Results

Cooperative cut

 $\mathbb{P}[\mathbf{i}]$

Similarly: contour completion RF

(a)

(c)

Plif

geometric edge groups:

- straight lines
- parabolas

Theory and practice

Шïт

Good approximations in practice \bigcirc BUT not in theory?

What makes some (practical) problems easier than others?

Instance-dependent analysis

(Iyer, Jegelka, Bilmes 2013)

Шii