
Submodular Functions – Part II

ML Summer School Cádiz
Stefanie Jegelka

MIT

more reading & papers: http://people.csail.mit.edu/stefje/mlss/literature.pdf

Set functions in machine learning

sky
tree

house
grass

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN)

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.

7

Setup

•  ground set V

•  (scoring) function

F : 2V ! R+

S ✓ V
We assume:
•  .
•  we can evaluate F
F (;) = 0

max F (S)

min
S✓V

F (S)

Diminishing marginal gains

4	

B

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1	
X2	

X3	

X4	
X5	

placement	 B	 =	 {1,…,5}	

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1
X2

placement	 A	 =	 {1,2}	

Adding	 s	 helps	 a	 lot!	 Xs	 	 	

new	 sensor	 s	
A + s + s

Big	 gain	 small	 gain	

F (A [s)� F (A) � F (B [s)� F (B)

A ✓ B

Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN)

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.

7

Maximizing submodular utility

5	

bla blablala oh bla bl abl lba
bla
gggg hgt dfg uyg sd djfkefbjal
odh wdbfeowhjkd fenjk jj

bla blablala oh bla dw
bl abl lba bla gggg hgt dfg
uyg
sd djfkefbjal odh
wdbfeowhjkd
fenjk jj

bla blablala oh bla bl abl lba
bla
gggg hgt dfg uyg efefm o

sd djfkefbjal odh
wdbfeowhjkd
fenjk jj ef

owskf wu

(Lin & Bilmes 2011, Tschiatschek et al 2014, Kim et al 2014, Gygli et al 2015…)

(Krause & Guestrin 2005)

maximize information / coverage

maximize coverage & diversity

(Kempe, Kleinberg, Tardos 2003, Mossel & Roch 2007)

maximize influence

max

|S|k
F (S)

...

find exemplars

(Song, Lee, Jegelka, Darrell 2014, Song, Girshick, Jegelka,
Mairal, Harchaoui, Darrell 2014, Kim et al 2011)

greedy algorithms

Questions
•  What if I have more complex constraints?
–  matroid constraints
–  budget constraints

•  Greedy takes O(nk) time. What if n, k are large?
–  stochastic
–  distributed
–  structured

•  What if my function is not monotone?

Distributed greedy algorithms

even more data …
 distributed greedy algorithm?

Distributed greedy algorithms

greedy is sequential.
pick in parallel??

pick k elements
on each machine.

combine and run
greedy again.

Is this useful?

Distributed greedy algorithms

pick in parallel
from m machines

Is this useful?

(Mirzasoleiman et al 2013)

Approximation factor:

O
⇣ 1

min{
p
k,m}

⌘

Distributed Greedy

2 4 6 8 10
0.8

0.85

0.9

0.95

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

Greedy/
Max

Greedy/
Merge

Random/
RandomRandom/

Greedy

α=2/m

GreeDI (α=1)α=4/m

(a) Tiny Images 10K
2 4 6 8 10

0.8

0.85

0.9

0.95

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDI (α=1) α=4/m

Greedy/
Merge

Greedy/
Max α=2/m

Random/
RandomRandom/

Greedy

(b) Tiny Images 10K
10 20 30 40 50 601.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2 x 104

k

D
is

tri
bu

te
d Random/

Greedy

α=4/m
α=2/m

Greedy/
Max

Greedy/
Merge

Random/
random

GreeDI (α=1)

(c) Tiny Images 80M (d)

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDI (α=1)

Greedy/
Max

Random/
Random

Random/
Greedy α=4/m

α=2/m
Greedy/

Merge

(e) Parkinsons Telemonitoring
20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

k

D
is
tri
bu
te
d/
C
en
tra
liz
ed

GreeDI (α=1)α=4/m

α=2/m Greedy/
Merge

Random/
Greedy Greedy/

Max

Random/
Random

(f) Parkinsons Telemonitoring
20 40 60 80 100 120

0

5

10

15

20

25

30

35

k

D
is

tri
bu

te
d

α=2/m
α=4/m

Random/
Greedy

Random/
randomGreedy/

Merge

Greedy/
Max

GreeDI (α=1)

(g) Yahoo! front page (h)

Figure 1: Performance of GREEDI compared to the other benchmarks. a) and b) show the mean and standard
deviation of the ratio of distributed vs. centralized solution for global and local objective functions with budget
k = 50 and varying the number m of partitions, for a set of 10,000 Tiny Images. c) shows the distributed
solution with m = 8000 and varying k for local objective functions on the whole dataset of 80,000,000 Tiny
Images. e) shows the ratio of distributed vs. centralized solution with m = 10 and varying k for Parkinsons
Telemonitoring. f) shows the same ratio with k = 50 and varying m on the same dataset, and g) shows the
distributed solution for m = 32 with varying budget k on Yahoo! Webscope data. d) shows a set of cluster
exemplars discovered by GREEDI, and each column in h) shows 8 images nearest to exemplars 9 and 16 in d).

from people with early-stage Parkinson’s disease. We normalized the vectors to zero mean and unit
norm. Fig. 1f compares the performance GREEDI to the benchmarks with fixed k = 50 and varying
number of partitions m. Similarly, Fig 1e shows the results for fixed m = 10 and varying k. We
find that GREEDI significantly outperforms the benchmarks.

Large scale experiments with Hadoop. Our second large scale experiment consists of 45,811,883
user visits from the Featured Tab of the Today Module on Yahoo! Front Page [26]. For each visit,
both the user and each of the candidate articles are associated with a feature vector of dimension 6.
Here, we used the normalized user features. Our experimental setup was a cluster of 5 quad-core ma-
chines running Hadoop with the number of reducers set to m = 32. Each reducer performed the lazy
greedy algorithm on its own set of 1,431,621 vectors (⇡34MB) in order to extract 128 elements with
the highest marginal gains w.r.t the local elements of the dataset in that particular partition. We then
merged the results and performed another round of lazy greedy selection on the merged results to ex-
tract the final active set of size 128. The maximum running time per reduce task was 2.5 hours. Fig.
1g shows the performance of GREEDI compared to the benchmarks. We note again that GREEDI
significantly outperforms the other distributed benchmarks and can scale well to very large datasets.

6 Conclusion
We have developed an efficient distributed protocol GREEDI, for maximizing a submodular function
subject to cardinality constraints. We have theoretically analyzed the performance of our method and
showed under certain natural conditions it performs very close to the centralized (albeit impractical
in massive data sets) greedy solution. We have also demonstrated the effectiveness of our approach
through extensive large scale experiments using Hadoop. We believe our results provide an impor-
tant step towards solving submodular optimization problems in very large scale, real applications.

Acknowledgments. This research was supported by SNF 200021-137971, DARPA MSEE
FA8650-11-1-7156, ERC StG 307036, a Microsoft Faculty Fellowship, an ETH Fellowship,
Scottish Informatics and Computer Science Alliance.

8

machines (# parts in partition)

(Mirzasoleiman et al 2013)

In practice,
performs often
quite well.

1.  special structure:
Improved guarantees
if F is Lipschitz or
a sum of many terms

2.  randomization

Distributed greedy algorithms

pick in parallel
from m machines

Pick the best of m+1 solutions

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

randomly distribute
across machines

•  each machine: approximation algorithm
•  level 2: approximation algorithm
è overall approximation factor:

↵�
��

E[F (bS)] � ↵�

↵+ �
F (S⇤)

Distributed greedy algorithms

pick in parallel
from m machines

Pick the best of m+1 solutions

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

randomly distribute
across machines

E[F (bS)] � ↵�

↵+ �
F (S⇤) With greedy algorithm on both levels:

 , overall factor:

1
2 (1�

1
e)

↵ = � = 1� 1
e

Questions
•  What if I have more complex constraints?
–  matroid constraints: later (Sri)
–  budget constraints

•  Greedy takes O(nk) time. What if n, k are large?
–  stochastic
–  distributed
–  structured

•  What if my function is not monotone?

Non-monotone functions

if S ✓ T then F (S) F (T)

3 5 1 F (S) � 0 for all S
still assume:

F (A) = 95

optimal solution
F (A) = 40
greedy solution:

Greedy can fail …

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4

coverage: 100
cost: -60
gain 40

coverage: 30
cost: - 1
gain 29

coverage: 30
cost: - 1
gain 29

coverage: 40
cost: - 3
gain 37

S1 = ; [argmax

a2V
F (a)S0 = ;

F (A) = 95optimal solution: F (A) = 40
greedy solution:

Greedy can fail …

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4

coverage: 100
cost: -60
gain 40

coverage: 30
cost: - 1
gain 29

coverage: 30
cost: - 1
gain 29

coverage: 40
cost: - 3
gain 37

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

•  gain of adding (to A):

•  gain of removing (from B):

P(add) = �+

�+ +��

coverage: 100
cost: -60

�+ = 40

�� = 60

= 40%

add with probability

�+ = [F (A [ai)� F (A)]+

�� = [F (B \ a)� F (B)]+

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 100
cost: -60

�+ = 40

�� = 60

add with probability

add to A or remove from B

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 30
cost: - 1

add with probability

add to A or remove from B

�+ = 29

�� = [�29]+ = 0

=
29

29

=
29

29

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 30
cost: - 1

add with probability

add to A or remove from B

�+ = 29

=
37

40

�� = 0

Double greedy

Theorem (Buchbinder, Feldman, Naor, Schwartz ‘12)

F submodular, solution of double greedy. Then

 optimal solution

Sg

max

S✓V
F (S)

E[F (Sg)] � 1
2F (S⇤)

Non-monotone maximization
•  alternatives to double greedy?

local search (Feige et al 2007)

•  constraints?
possible, but different algorithms

•  distributed algorithms? yes!
–  divide-and-conquer as before (de Ponte Barbosa et al 2015)
–  concurrency control / Hogwild (Pan et al 2014)

Submodular maximization: summary
•  many applications: diverse, informative subsets

•  NP-hard, but greedy or local search
•  distinguish monotone / non-monotone

•  several constraints possible
(monotone and non-monotone)

Roadmap
•  Submodular set functions
–  what is this? where does it occur? how recognize?

•  Maximizing submodular functions:
diversity, repulsion, concavity
greed is not too bad

•  Minimizing submodular functions:
coherence, regularization, convexity
the magic of “discrete analog of convex”

•  Other questions around submodularity & ML

Submodularity

25

extra cost:
one drink

F (S [s)� F (S)

S
|{z}

S ✓ T

extra cost:
free refill J

F (T [s)� F (T)

.| {z }
T

�

diminishing marginal costs – economies of scale

Original

Noisy

TV−filtered

Original

Noisy

TV−filtered

(Tibshirani 1996, Chen et al 1998,
Zhao et al 2009, Bach 2010,…)

S =

support(w)

loss(w) + F (S)

Minimize incoherence

26	

F (S) =
X

e cut

w(e)

minimum cut,
clustering

minS✓V F (S)

S

spa$al/temporal coherence
(Ising, Po@s, Porteous et al, …)

P (x = 1S) / exp(�F (S))

S

MAP inference
 max

x

P (x | I)

learning structured
sparse w

Minimize incoherence/
maximize coherence

Convex functions (Lovász, 1983)
•  “occur in many models in economy, engineering and

other sciences”, “often the only nontrivial property that
can be stated in general”

•  preserved under many operations and transformations:
larger effective range of results

•  sufficient structure for a “mathematically beautiful and
practically useful theory”

•  efficient minimization

“It is less apparent, but we claim and hope to prove to a
certain extent, that a similar role is played in discrete
optimization by submodular set-functions“ […]
they share the above four properties.

Submodular Minimization in 3 steps

1.  Relaxation: continuous (Lovasz) extension

2.  submodular polyhedra show: this is convex!

3.  minimization via convex optimization

Submodularity and convexity

any set function
 with .

… is a function on
 binary vectors

F : 2V ! R

|V | = n

a	

b	

d	

c	

A

29

1
1
0
0

=̂
a
b
c
d

x = 1A

optimizing set function = finding binary labeling!

F : {0, 1}n ! R

Relaxation: idea

min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

this should be
“easy” to minimize

Relaxations

•  assume for the moment vectors
•  recall multilinear extension: use expectation J

but: not easy to minimize.
We want a convex function!

F : {0, 1}n ! R
have want: extension

f : Rn
+ ! R

f(1S) = F (S)

x 2 [0, 1]n

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1
fM (x) = ES⇠p

x

[F (S)]

Lovász extension

•  sample a threshold
uniformly between 0 and 1

•  Pick

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

0.5

1.0

0.2

0.2

0.5

✓

S

✓ = { i | xi � ✓ }

✓ e.g. ✓ = 0.4
fL(x) = ES⇠✓ [F (S)]

f(x) =
kX

i=1

↵i F (Si)

x =
kX

i=1

↵i 1Si

Lovász extension

=

0

1.0

0

0

0

1.0

1.0

0

0

1.0

1.0

1.0

1.0

1.0

1.0(1.0 - 0.5) + (0.5 – 0.2) + (0.2)

0.5

1.0

0.2

0.2

0.5

S1 S3S2

x

f(x) =
kX

i=1

↵i F (Si)

0.5

1.0

0.2

0.2

0.5

✓

↵1 ↵2 ↵3

fL(x) = ES⇠✓ [F (S)]

Lovász extension is easy to compute!

1.  sort x:
2.  then

f(x) =
kX

i=1

↵i F (Si)

=

0

1.0

0

0

0

1.0

1.0

0

0

1.0

1.0

1.0

1.0

1.0

1.0(1.0 - 0.5) + (0.5 – 0.2) + (0.2)

0.5

1.0

0.2

0.2

0.5

S1 S3S2

x

↵1 ↵2 ↵3

x⇡(1) � x⇡(2) � . . . � x⇡(n)

↵i = x⇡(i) � x⇡(i�1), ↵n = x⇡(n)

Si = {⇡(1), . . .⇡(i)}

•  truncation

•  cut function

0.5

1.0

0.2

0.2

0.5

1.0

1.0

0

0

1.0

0

1.0

0

0

0

Examples

f(x) =
kX

i=1

↵i F (Si) = 0.5 + 0.5

f(x) = 0.5 + 0.5 = max

i
xi

F (S) =

(
1 if S = {1}, {2}
0 if S = ;, {1, 2}

vu1 2
f(x) = 0.5 · 0 + (1� 0.5) · 1

= |x1 � x2|

1.0 - 0.5

“total variation”!

↵1↵2

F (S) = min{|S|, 1}

Is this useful?
ü easy to compute

(sort)

•  convex?

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

Alternative characterization

f(x) =
kX

i=1

↵i F (Si)

Theorem (Lovász, 1983)
 Lovasz extension is convex F is submodular. ,

f(x) = max

y2BF

y

>
x

if F is submodular, this is equivalent to:

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

1

2

�1�2

sb

sa

1

2

�1�2

sb

sa

sa F (a)

sb F (b)

ya F (a)

1

2

�1�2

sb

sa

sa F (a)

1

2

�1�2

sb

sa

sa F (a)

sb F (b)

1

2

�1�2

sb

sa

sa F (a)

sb F (b)

sa + sb F (V)

yb F (b)

ya F (a)

y1 + yb F (V)

PF
1

2

�1�2

sb

sa

PF
1

2

�1�2

sb

sa

BF

yb

ya

PF = {y 2 Rn | y(A) F (A) for all A ✓ V}

y(A) =
X

a2A

ya

Submodular polyhedra

submodular polyhedron:

Base polytope

BF = {y 2 PF | y(V) = F (V)}

A F (A)
; 0
a �1
b 2

{a, b} 0

Base polytopes

PF
1

2

�1�2

sb

sa

BF

3s

s2

s1

P(F)

B(F)

2D (2 elements) 3D (3 elements)

Other interesting base polytopes

•  Probability Simplex

PF = {y 2 Rn | y(A) F (A) for all A ✓ V}
BF = {y 2 PF | y(V) = F (V)}

F (S) = min{|S|, 1}

image source:
Wikipedia

Other interesting base polytopes

•  Permutahedron

PF = {y 2 Rn | y(A) F (A) for all A ✓ V}
BF = {y 2 PF | y(V) = F (V)}

32 II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

A permutahedron

[(5) Permutahedra: Let E = {1,2, Consider a nondecreasing
concave function g : R —> R with g(0) = 0 and define a function p : 2E —> R
by

p(X)=g(\X\) (XQE).

Then (E, p) is a polymatroid whose rank function value p(X) depends only
on the size of X. In particular, when p is given by

where p(0) = 0, the base polyhedron B(/o) is called a 'permutahedron (or
permutohedron). Every permutation or linear ordering (CTI,(T2, ,o~n) of
integers 1, 2, , n can be identified with the vector (cri, 02, , an) in R B .
We can show that the set of such vectors for all permutations of 1, 2, , n
is exactly the set of all extreme points of the permutahedron (we can see
this fact through the discussions in Section 3.2). Note that for the per-
mutahedron the slope g(k) — g(k — 1) decreases by one for k = 1, 2, , n.
From a general nondecreasing concave function g with g(0) = 0 we have

1*1
p(X) = '£(n-i + l) (XQE),

%=\

F (S) =

|S|X

i=1

(n� i+ 1)

Computing the “Lovasz extension”

PF
1

2

�1�2

sb

sa

BF

PF = {y 2 Rn | y(A) F (A) for all A ✓ V}

Base polytope

BF = {y 2 PF | y(V) = F (V)}

f(x) = max

y2BF

y

>
x

exponentially
many constraints!

Edmonds 1970: “magic”
compute argmax in O(n log n) J

basis of (almost all) optimization!
-- separation oracle – subgradient --

Optimization over base polytope
f(x) = max

y2BF

y

>
x

Edmonds’ greedy algorithm:
1.  sort

2.  chain of sets

3. assign values

x⇡(1) � x⇡(2) � . . . � x⇡(n)

y⇡(i) = F (Si)� F (Si�1)

BF =
n

y 2 Rn |
X

a2S

ya F (S)

y(V) = F (V)
o

y1

y2

x = (2, 1)

S0 = ;,
S1 = {⇡(1) } . . .
Si = {⇡(1), . . . ,⇡(i) }

y1 = F (e1)� 0

y2 = F ({e1, e2})� F (e1)

y1 F (e1)

y1 + y2 F (e1, e2)

Base polytope

f(x) = max

y2BF

y

>
x

1.  sort

2.  chain of sets

3. assign values

x⇡(1) � x⇡(2) � . . . � x⇡(n)

y⇡(i) = F (Si)� F (Si�1)

S0 = ;, Si = {⇡(1), . . . ,⇡(i)}

0.5

1.0

0.2

0.2

0.5

x

Remarks:

•  chain of sets same
as before!

•  y is a subgradient

of f at x

X

i

↵iF (Si) =
X

i

(x⇡(i) � x⇡(i�1))F (Si) =
X

i

y⇡(i)x⇡(i)

Re-computing our examples

0.5

1.0

0.2

0.2

0.5

1.0

1.0

0

0

1.0

0

1.0

0

0

0

= 0.5 + 0.5
F (S) = max{|S|, 1}

sort: x2 � x1) S1 = {2}, S2 = {2, 1}

y2 = F (2) = 1

y1 = F (2, 1)� F (2) = 1� 1 = 0

= max

i
xi

F (Si)� F (Si�1) > 0in general: only for i=1!

) f(x) = max

i
xi

f(x) = y

>
x = 1 · x1 + 0 · x2

x

Re-computing our examples

0.5

1.0

0.2

0.2

0.5

1.0

1.0

0

0

1.0

0

1.0

0

0

0

= 0.5 + 0.5

F (S) =

(
1 if S = {1}, {2}
0 if S = ;, {1, 2}

vu1 2

sort: x2 � x1) S1 = {2}, S2 = {2, 1}

y2 = F (2) = 1

y1 = F (2, 1)� F (2) = 0� 1 = �1

f(x) = y

>
x = �0.5 + 1 = |x1 � x2|

x

Back to our plan

ü find a relaxation (extension): Lovasz extension
ü magic of special polyhedra
è Lovasz extension is convex

•  minimize Lovasz extension: up next
•  get a set from solution

•  convex

•  computable in O(n log n)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

•  concave in certain

directions, convex in
others

•  approximate by sampling

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Multilinear relaxation vs. Lovász ext.

f

M

(x) = E
S⇠x

[F (S)]
fL(x) = ES⇠✓ [F (S)]

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Multilinear relaxation vs. Lovász ext.

f

M

(x) = E
S⇠x

[F (S)]
fL(x) = ES⇠✓ [F (S)]

example: cut function

fM (x) = xu + xv � 2xuxv fL(x) = |xu � xv|

vu

Back to our plan

ü find a relaxation (extension): Lovasz extension
ü magic of special polyhedra
è Lovasz extension is convex

•  minimize Lovasz extension: up next
•  get a set from solution

Convex relaxation

1.  relaxation: convex optimization (non-smooth)

2.  relaxation is exact!
è submodular minimization in polynomial time!
(Grötschel, Lovász, Schrijver 1981)

0.5

1.0

0.2

0.2

0.5

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

3s

s2

s1

P(F)

B(F)

min
S✓V

F (S) min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)==

Minimizing the Lovasz extension

•  subgradient method

•  combinatorial algorithms: dual

min
x2[0,1]n

f(x)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

Subgradients

x

k+1 = x

k � ↵rf(xk)

recall: gradient descent subgradient at x: vector g such that

8x0 : f(x0) � f(x) + hx0 � x, gi

subgradient: g

x

2 argmax

y

y

>
x s.t. y 2 B

F

subgradient of Lovasz extension:

min
x2[0,1]n

f(x)Projected subgradient method

x0
= 0

for t = 0, . . . do
find gt 2 @f(xt

)

xt+1
= ⇧[0,1]n(xt

+ ↵
t

gt)
end for

subgradient @f(xt

) – greedy algorithm

projection ⇧[0,1]n(x) = min

y2[0,1]n kx � yk2
(truncation)

remark: f(xt

) does not decrease monotonically – keep track
of smallest encountered

21 / 33

Projected subgradient method

g

t = arg min
y2BF

y

>
x

t

Edmonds’ greedy algorithm J

⇧[0,1]n(y) =

arg min
z2[0,1]n

ky � zk2

Convergence

•  D: diameter of [0,1]n
L: Lipschitz constant

•  for an error need iterations

Convergence

Theorem
Let D =

p
n and L = max

g2BF kgk 3 max

S

|F (S)|.
With step size ↵

t

=

D

L

p
t

, the error decreases as

min

⌧t

f(x⌧

) � f(x⇤
) 4DLp

t

to reduce the gap to ✏, need O(

1
✏

2) steps

22 / 33

 ✏ O(1
✏2)

Submodular minimization
convex optimization
•  ellipsoid method

(Grötschel-Lovasz-Schrijver 81)

•  subgradient method

•  minimum-norm point /
Fujishige-Wolfe algorithm

•  …

combinatorial methods
•  first polynomial-time:

(Schrijver 00, Iwata-Fleischer-
Fujishige 01)

•  (Iwata 03),

 (Orlin 09)

O(n4T + n5
logM)

O(n6 + n5T)

Latest result: O(n2T log nM + n3
log

c nM)

O(n3T log

2 n+ n4
log

c n) (Lee-Sidford-Wong 15)

Convex duality

min
S✓V

F (S) = min
x2[0,1]n

f(x)

= max

y2BF

⇣ nX

i=1

min{yi, 0}
⌘

= min

x2[0,1]n
max

y2BF

y

>
x

= max

y2BF

min

x2[0,1]n
x

>
y

Optimality conditions: (S*, y*) optimal primal-dual pair if

1.  .

2.  .

3.  .

y⇤ 2 BF

{y⇤ < 0} ✓ S⇤ ✓ {y⇤ 0}

y⇤(S⇤) = F (S⇤)

Combinatorial algorithms
•  solve

•  remove “negative mass”
•  challenges:
–  need to stay in polytope
–  cannot test feasibility
è network flow algorithms

= max

y2BF

⇣ nX

i=1

min{yi, 0}
⌘

+
--
+
0

+

Submodular minimization
convex optimization
•  ellipsoid method

(Grötschel-Lovasz-Schrijver 81)

•  subgradient method

•  minimum-norm point /
Fujishige-Wolfe algorithm

•  …

combinatorial methods
•  first polynomial-time:

(Schrijver 00, Iwata-Fleischer-
Fujishige 01)

•  (Iwata 03),

 (Orlin 09)

O(n4T + n5
logM)

O(n6 + n5T)

Latest result: O(n2T log nM + n3
log

c nM)

O(n3T log

2 n+ n4
log

c n) (Lee-Sidford-Wong 15)

Proximal problem

•  Let be the largest minimizer of

•  can show: if , then
è chain

•  “encode” in vector :

proximal problem Lovász extension

min
x

f(x) + 1
2kxk

2min
x2[0,1]n

f(x)
why?
min
S✓V

F (S) + ↵|S|
solves

for all ↵

S↵ F (S) + ↵|S|

↵ < � S↵ ◆ S�

; ⇢ S↵1 ⇢ S↵2 ⇢ . . .V

u

{e | ue � ↵} = S↵

u = argmin
x

f(x) + 1
2kxk

2

0.5

1.0

0.2

0.2

0.5

3 equivalent problems
y

⇤ = �x

⇤

min
y2BF

1
2kyk

2 min
x

f(x) + 1
2kxk

2

projec$on proximal

min
S

F (S) + ↵|S|
parametric

x

⇤
e = sup{↵ | e 2 S

↵}
divide-‐and-‐conquer

S

↵ = {e | x⇤
e � ↵}

thresholding

(Topkis 1978, 1998; Granot-‐Veino@ 1985; Hochbaum 01; Nagano 2007; Fujishige & Isotani 11; …)

convex dual problem

PF
1

2

�1�2

sb

sa

BF

y⇤

proximal problem

Minimum-norm-point algorithm
dual: minimum norm problem

62

min
x

f(x) + 1
2kxk

2 y⇤ = arg min
y2BF

1
2kyk

2

(Fujishige ‘91, Fujishige & Isotani ’11)

y⇤ = arg

minimizes F !

S⇤ = arg min
S✓V

F (S)

S⇤ = {i | y⇤i 0}

ya

A F (A)
; 0
a �1
b 2

{a, b} 0

yby⇤ =
-1
 1

a	

b	

-1 a	

Solving the min-norm problem

•  costly: testing membership in
•  costly: projection onto
•  easy: linear optimization over : greedy algorithm! J

•  conditional gradient (Frank-Wolfe) algorithm (Frank & Wolfe 1956)
•  active set methods: Fujishige-Wolfe (Fujishige & Isotani 2011,

Chakrabarty-Jain-Kothari 2014,…)

min
y2BF

1
2kyk

2

BF

BF

BF

Frank-Wolfe algorithm
min h(y) s.t. y 2 P h convex, differentiable

P polyhedral

Conditional gradient algorithm
(Frank & Wolfe 1956)

min

y

h(y) s.t. y 2 P

h convex, di↵erentiable and P polyhedral

y0 2 P
for t = 0, 1, . . . to T do

st = argmin

s2P hrh(yt), si
yt+1

= (1 � �)yt + �st

end for

15 / 56

step size?
how many iterations?

Frank-Wolfe algorithm: step sizes
min h(y) s.t. y 2 P h convex, differentiable

P polyhedral

1. fixed step size:

2. line search:

3. re-optimization:

�t = 2
t+2

�t = arg min
�2[0,1]

h(yt + �(st � yt))

yt+1 = argminy2conv(s0,...,st) h(y)

Variants

for t = 0, 1, . . . to T do
st = argmin

s2Phrh(yt), si
yt+1

= (1 � �)yt + �st

end for

1. fixed step size

�t

=

2

t+2

2. Line Search

yt+1

= min

�2[0,1]
h((1��)yt+�st)

3. Re-optimization

yt+1

= argmin

y2conv{s0,...,st}
h(y)

17 / 56

How many iterations?

dual problem

max

y2BF

� 1
2kyk

2

Theorem (Jaggi 2013, Bach 2013)
1.  relaxation: After T iterations of Frank-Wolfe, have an iterate

 with

2.   discrete: after T iterations of Frank-Wolfe, can get a set with

We are solving We want

min
S✓V

F (S)
discrete primal

gap(y⌧) 16C
T+2

y⌧

gap(S)
p

2n gap(y⌧)

S

= O(
p

n/T)

cf subgradient method

How many iterations? (Details)

always: primal value ≥ dual value
at optimum: primal value = dual value
è bound the duality gap: primal – dual value

y

⇤ = �x

⇤

min
x

f(x) + 1
2kxk

2

dual problem primal problem

max

y2BF

� 1
2kyk

2

Theorem (Jaggi 2013)
After T iterations of the algorithm, there is an iterate with

gap(y⌧) 16C
T+2

y⌧

For h(y) = kyk2, C = diam(P)

2
Exercise: how many
iterations for a
gap ? ✏

Are we done yet? (Details)
want: min

S✓V
F (S) max

y2BF

� 1
2kyk

2

solve via conditional gradient
& friends
have convergence bound

How many iterations until F(St) – F(S*) ≤ ε ?

St
↵ = {e | �yte � ↵}

Theorem (Bach 2013)

If then there exists an such that the discrete
duality gap is bounded as

gap(y⌧) ✏0 ↵

F (S⌧
↵)� y⌧�(V)

p
2n✏0F (S⌧

↵)� F (S⇤)

Summary: formulations for min

min
x

f(x) + 1
2kxk

2

max

y2BF

� 1
2kyk

2

min
S✓V

F (S) = min
x2[0,1]n

f(x)

max

y2BF

nX

i=1

max{yi, 0}

subgradient descent subgradient descent

combinatorial Frank-Wolfe
or
Fujishige-Wolfe (faster)

•  usually fastest in practice: usually Fujishige-Wolfe
•  alternative algorithms for special cases:

symmetric functions, cuts, …

primal:
take
positive
coordinates

dual:
take
negative
coordinates

Connections

min
x

f(x) + 1
2kxk

2
max

y2BF

� 1
2kyk

2

subgradient descent conditional gradient

x

t+1 = x

t � ↵g

t

direction:

st = arg min
s2BF

hs, yti
subgradient:

g

t
= arg max

s2BF

hs, xti + x

t

yt+1 = (1� �)yt + �st

= (1� ↵)xt � ↵s

t

x

⇤ = �y

⇤now recall:

same if xt = -yt

Submodularity and convexity
•  convex Lovasz extension
–  easy to compute due to greedy algorithm (special

polyhedra!)

•  submodular minimization via convex optimization:
fast algorithms for many applications

•  duality results

•  structured sparsity (Bach 2010)
•  decomposition & parallel algorithms

(Jegelka et al 2013, Nishihara et al 2014, Ene & Nguyen 2015)

•  variational inference (Djolonga & Krause 2014)
•  …

Structured sparsity and submodularity

min
x

⇥y �Mx⇥2
Submodularity (almost) everywhere

Structured sparsity - I

Submodularity (almost) everywhere
Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem

Submodularity (almost) everywhere
Structured sparsity - II

raw data Structured sparse PCA

• Submodular convex optimization problem

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

y = Mx+ noise

Sparse reconstruction

73

min
x

⇥y �Mx⇥2 +�⌦(x)

⌦(x) = kxk0 = |S|

⌦(x) = kxk1

discrete regularization on support S of x

relax to convex envelope

sparsity pattern often not random…

subset
selection:
S = {1,3,4,7}

Assumption:
x is sparse

Structured sparsity

...

. . .

⇡ ⇤

M
x

y

. . .

Assumption:
support of x
has structure

express by set function!

Preference for trees

Set function:

if T is a tree and S not
|S| = |T|

F (S) =

�����
⇥

s�S

ancestors(s)

�����

F (T) < F (S)

use as regularizer?

F (S) = 6

F (T) = 4

Sparsity

76

min
x

⇥y �Mx⇥2

Optimization: submodular minimization (min-norm)

+�⌦(x)

⌦(x) = kxk0 = |S| ⌦(x) = F (S)

⌦(x) = f(|x|)⌦(x) = kxk1

(Bach2010)

•  x sparse •  x structured sparse

submodular function

è Lovász extension

discrete regularization on support S of x

relax to convex envelope

Norms from submodular functions
⌦(x) = f(|x|)

Proposition
For monotone increasing f, is a norm.
(Exercise: show this)

f(|x|)

Special cases: F (S) = |S|) f(|x|) = kxk1

F (S) = min{|S|, 1}) f(|x|) = kxk1

F (S) =
kX

j=1

min{|S \Gj |, 1}) f(|x|) =
kX

j=1

kxGjk1

Special case
•  minimize a sum of submodular functions

F (S) =
rX

i=1

Fi(S)

“easy”

min
S

Fi(S)

⇡ ⇤

M
x

y

. . .

•  combinatorial algorithms
(Kolmogorov 12, Fix-‐Joachims-‐Park-‐Zabih 13, Fix-‐Wang-‐Zabih 14)

•  convex relaxa$ons

Relaxation

•  convex Lovász extension:
tight relaxation

•  dual decomposition: parallel algorithms
(Komodakis-Paragios-Tziritas 11, Savchynskyy-Schmidt-Kappes-Schnörr 11, J-Bach-Sra 13)

F : 2V ! R ⌘ F : {0, 1}n ! R f : Rn
+ ! R

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

min
S✓V

X
i

F

i

(S) = min
x2[0,1]n

X
i

f

i

(x)min
S✓V

F (S) = min
x2[0,1]n

f(x)

min
x

X
r

i=1
f

i

(x) + 1
2kxk

2

Results: dual decomposition

iteration
20 40 60 80 100

lo
g 10

(d
ua

lit
y

ga
p)

-1

0

1

2

3

4

5

6 subgrad
BCD
DR
fista-smooth
dual-dec
primal-smoothed

convergence discrete problem relaxation I
relax II

(Jegelka, Bach, Sra 2013; Nishihara, Jegelka, Jordan 2014)

min
x

X
i

f

i

(x) + 1
2kxk

2 min
x2[0,1]n

X
i

f

i

(x)

smooth dual non-smooth dual

faster
parallel
algorithms J

What if … ?

minF (S) s.t. constraints on S

S is a cut S is a spanning tree

|S| = ke.g.
s

t
s

t

optimizing networks
(Khalil, Dilkina, Song KDD 2014)segmentation

(Jegelka, Bilmes CVPR 2011)

Constrained minimization

minF (S) s.t. constraints on S

S is a cut S is a spanning tree

|S| = ke.g.

in most cases very hard. è approximations

convex relaxation
(not exact!)

approximate F

(Goel et al. 09, Iwata & Nagano 09, Goemans et al. 09, Jegelka & Bilmes 11, Iyer et al. ICML 13, Kohli et al 13...)

s
t

s
t

A practical algorithm

83	

For i = 1,2,…
•  compute linear upper bound with
•  find tree/path/… with minimum .

bFi bFi(Ci) = F (Ci)
bFi(C)Ci+1

familiar J
e.g. min-cut

(Jegelka & Bilmes 2011; Iyer, Jegelka, Bilmes 2013)

idea: submodularity = discrete concavity

fast: only need to solve linear optimization problem!

“super-gradient”

Different approximation of F
•  recall: for

F (S) = f(x) = max

y2BF

y

>
x

x = 1S

b
F (S) = max

y2EF

y

>
x

=

sX

e2S

w(e)

PF
1

2

�1�2

sb

sa

BF

(Goemans et al 2009)

approximate polyhedron
by ellipsoid

Does it work?

85

approximate solution optimal solution

(Kohli, Osokin, Jegelka 2013) (Jegelka & Bilmes 2011)

minimum cut solution

•  often works well in practice
•  theory: approximation guarantees depending on curvature of F

 (Iyer et al 2013)
•  special cases: exact solution (Kohli et al 2013)

Submodular Optimization in a nutshell
 Maximization (NP-hard)
•  greedy algorithms:

exploit discrete concavity = diminishing returns
–  accommodate many constraint types
–  scalable algorithms being developed

Minimization (poly-time if unconstrained)
•  convex optimization

exploit ‘discrete’ convexity: polyhedra, convex extension
–  constraints are hard in the worst case. Use

majorize-minimize, relaxations or
approximations of F

Other recent & ongoing developments
•  Faster maximization (streaming, …)
•  Faster minimization
•  Online submodular optimization
•  Beyond binary: integer-submodular functions

•  Learning a submodular function

•  Profiting from submodularity in distributions
defined by submodular functions

Submodularity and machine learning

88	

bla blablala oh bla bl abl lba bla
gggg hgt dfg uyg sd djfkefbjal
odh wdbfeowhjkd fenjk jj

bla blablala oh bla dw
bl abl lba bla gggg hgt dfg uyg
sd djfkefbjal odh wdbfeowhjkd
fenjk jj

bla blablala oh bla bl abl lba bla
gggg hgt dfg uyg efefm o

sd djfkefbjal odh wdbfeowhjkd
fenjk jj ef

owskf wu

6

1st iteration 2nd iteration 3rd iteration 8th iteration

Fig. 4. Greedy MAP-inference in our model for pedestrian-detection example from Figure 1. For each iteration, we
give the Hough image M

t (top) and highlight in red the detection corresponding to its maximum (bottom). Note how
the Hough images M

t

(h) are changed between iterations, so that implicit “non-maximum suppression” driven by the
probability function is performed. As a result, multiple pedestrians are detected despite significant overlaps between
them.

including performing loopy belief-propagation [22] in
the bipartite graph defined by (9). The special form
of the pairwise terms permits a very compact message
representation (the same as used in the affinity prop-
agation [23]). We have also tried simulated annealing
optimization for the binary-labelled function (10).

Both loopy belief propagation (LBP) and simulated
annealing (SA) were not able to handle the very high
order potentials present in our model. To overcome this
problem, we adaptively reduced the size of our hypoth-
esis space. We did this by using standard Hough voting
to find (sample) a moderately large number (dozens to
hundreds) of peaks in the Hough image. We then restrict
the Hough space H to these peaks. As the majority of
voting element vote for a limited number hypotheses
each (p(x

i

|I
i

) = 0 for many assignments values of x

i

),
we were able to reduce the size of the Hough space
considerably without loss of many energy terms.

In our experiments LBP and SA gave reasonable
results with the adaptive sparsification heuristics dis-
cussed above. However, they were still quite computa-
tionally expensive. Also the inability of these inference
methods to handle large set of hypotheses is a significant
limitation which potentially can lead to loss of detections
and lower recall rate of object detection performance.
Submodularity and connection with uncapacitated fa-
cility location problem.

The maximization of (10) can be viewed as the well
studied in operation research community facility location
task, that considers the problem of optimal placement of
facilities (detected objects) in order to minimize trans-
portation costs (negative votes from voting element).
One of the well-known properties of the objective func-
tion of facility location problem (10) is it’s submodu-

larity (see e.g. [24]) Unlike the problem of minimizing
submodular functions, the problem of maximizing sub-
modular functions is NP-hard. But approximations have
been studied extensively for both the general task of
submodular function maximization and the particular
problem of facility location. The best approximation
factor known for facility location is 0.828 that is achieved
by polynomial-time algorithm based on the idea of
randomized rounding [25].

The greedy algorithm, that iteratively augments a cur-
rent solution with an element of maximum incremental
value, is proven to have an approximation factor 0.632
for the task of submodular functions maximization [26].
This simple method has been shown to be an efficient
heuristic for both maximizing submodular functions
over different constraint structures (e.g. [27]) and facility
location problem (e.g. [28]). Not surprisingly, in our
framework greedy algorithm showed approximately the
same accuracy as LBP and SA. Moreover in contrast
to LBP and SA, it turned out that the iterative greedy
inference doesn’t require reducing the hypothesis space.
This property potentially allows greedy algorithm to
achieve higher recall compared to LBP and SA.

Iterative sampling with dense set of hypotheses. The
greedy iterative algorithm starts with all y

h

set to 0 and
x

i

set to 0 (background). In step t the algorithm makes a
hypothesis h

t active (by setting y

h

t
= 1), simultaneously

switching some of x

i

to h

t (x
i

is switched to h

t only if
this increases the posterior). The hypothesis h

t is picked
so that the biggest increase of the posterior is obtained.

In each iteration, it identifies the optimal hypothesis
h

t to be made active by using Hough voting. In iteration

distributions over labels, sets
log-submodular/

supermodular probability
e.g. “attractive” graphical models,

determinantal point processes

(convex) regularization
submodularity: “discrete

convexity”
e.g. combinatorial sparse estimation

diffusion processes,
covering, rank,
connectivity,

entropy,
economies of scale,
summarization, …

submodular
phenomena

submodularity
& machine
learning!

More on constrained minimization
the following slides are extra material on constrained
minimization.

Recall: MAP and cuts

90

binary labeling:

E(x) = Cut(A)

pairwise random field:

What’s the problem?

minimum cut: prefer
short cut = short object boundary

aim reality

x = 1A

What’s wrong?

91

local coherence
= short cut

homogeneous cut
global dependencies!

not homogeneous homogeneous

cut weight
= energy

4849

11273

we get … ideally …

edges are independent

cost of a cut C ✓ E :

X

e2C

w(e)

Cooperative cuts

92

local coherence
= short cut

homogeneous cut
global dependencies!

ideally …

cut weight
= energy

cooperative graph cut

edges are not independent

cost of a cut C ✓ E :

submodular function

F (C)

submodular cost func$on:
use few types of edges

0 100 200 300 400
0

50

100

150

0 100 200 300 400
0

50

100

150

0 100 200 300 400
0

50

100

150

One type (13 edges)
Many types (6 edges)

sum of weights:
use few edges

co
st

|Cut|

Homogeneity via group sparsity

93 (Jegelka & Bilmes 2011)

F (Cut) =
X

type k

Fk(Cut)

submodular cost function:
use few types of edges

0 100 200 300 400
0

50

100

150

0 100 200 300 400
0

50

100

150

0 100 200 300 400
0

50

100

150

One type (13 edges)
Many types (6 edges)

sum of weights:
use few edges

co
st

|Cut|

Homogeneity via group sparsity

94 (Jegelka & Bilmes 2011)

F (Cut) =
X

type k

Fk(Cut)

Results

95

Random Walker
[Grady 06]

Curvature Reg.
[El-Zehiry & Grady 10]

Graph Cut
[Boykov & Jolly 01]

Cooperative
Cut

Quantitatively: up to 70% reduction in error!

Results

96

Graph cut Cooperative cut

Similarly: contour completion RF

(Silberman et al 2014)

A Contour Completion Model for Augmenting Surface Reconstructions 7

This behavior of the model does not prevent the boundary in the labeling from
including large number of edges as long as they belong to the same group (curve).
The exact nature of these groups are described below.

4.3 Defining Edge Groups

We consider two types of edge groups: straight lines and parabolas. While
previous work has demonstrated the ability of the hough transform [17] to detect
other shapes, such as circles and ellipses, such high parameter shapes require
substantially more memory and computation and we found lines and parabolas
su�ciently flexible to capture most of the cases we encountered.

To detect lines, we used a modified Hough transform to not only detect lines
in the image, but also the direction of the transition (the plane to free space
or vice-versa). We use an accumulator with 3 parameters: ⇢, the distance from
the origin to the line, ✓, the angle between the vector from the origin to the
line and the X axis, and a quaternary variable d, which indicates the direction
of the transition (both bottom-top and left-right directions) 3. Following the
accumulation of votes, we run non-maximal suppression and create an edge group
for each resulting line.

The standard Hough transform for parabolas requires 4 parameters. To avoid
the computational and memory demands of such a design, we introduce a novel
and simple heuristic detailed in the supplemental material.

Fig. 2. Contour Completion Random Field: (a) A top-down view of a partially occluded
plane (b) We detect lines and parabolas along the contour of the known pixels (stippled
black lines), and hallucinate parallel lines (in red) (c) We apply CCRF inference to
extend the plane.

4.4 Hierarchical Edge Groups

While using detected lines or curves may encourage the correct surface boundaries
to be inferred in many cases, in others, there is no evidence present in the image

3 We use 400 angular bins for ✓ and evenly spaced bins for ⇢ 1 unit apart. The minimum
number of votes allowed was set to 10.

geometric edge groups:
•  straight lines
•  parabolas

bF (S) F (S) ↵n
bF (S)

Theory and practice

98

worst-‐case Lower bound

trees, matchings

cuts

approxima$on

learning

p
n

n1/3

bounds from (Goel et al.‘09, Iwata & Nagano‘09, Jegelka & Bilmes‘11, Goemans et al‘09, Svitkina& Fleischer‘08,
Balcan & Harvey’12)

Good approxima$ons in prac$ce J …. BUT not in theory?

np
n

F (bS) ↵n F (S⇤)

theory says: no good approxima$ons possible (in general)

What makes some (prac$cal) problems easier than others?

CM CCM BS WC
0

1

2

3

4

5
Bipartite Matching

e
m

p
.
a
p
p
ro

x.
 f

a
ct

o
r

CM CCM BS WC
0

1

2

3

4

5
Spanning Tree

e
m

p
ir
ic

a
l a

p
p
ro

x.
 f
a
ct

o
r

Instance-dependent analysis

99

Theorem (IJB 2013).
Tightened upper & lower bounds for
constrained minimiza$on,
approxima$on, learning:

size of set

affects maximiza$on:
(Confora & Cornuéjols`84, Vondrák`08)

↵n

1 + (↵n � 1)(1�) 1

1�

(Iyer, Jegelka, Bilmes 2013)

0 0.2 0.4 0.6 0.8 1
0

a
p
p
ro

x
.
b
o
u
n
d

↵n

small large

worst case

optimal

cost = “devia$on from linearity”

