
Submodular Functions
and

Machine Learning
MLSS Kyoto

Stefanie Jegelka
MIT

Set functions

2

cost of buying items
together, or

utility, or

probability, …

V =

() = F

F : 2V ! R

We will assume:
•  .
•  black box “oracle” to evaluate F
F (;) = 0

ground set

Discrete Labeling

3"

Int J Comput Vis (2009) 82: 302–324 303

Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et

sky

tree
house

grass

Int J Comput Vis (2009) 82: 302–324 303

Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et

Summarization

4"

F (S) = relevance + diversity or coverage

Informative Subsets

5"

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

•  where put sensors?
•  which experiments?
•  summarization

F (S) = “information”

Sparsity

Submodularity (almost) everywhere
Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

F (S) =“penalty

on support

pattern”

y =
Ax

+ noise

Formalization
•  Formalization:

Optimize a set function F(S) (under constraints)

•  generally very hard !
•  submodularity helps:

efficient optimization & inference with guarantees!
"

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

Roadmap
•  Submodular set functions

–  definition & basic properties
–  links to convexity
–  special polyhedra

•  Minimizing submodular functions
coherence, regularization, convexity

•  Maximizing submodular functions
diversity, repulsion, concavity

Sensing

9"

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

 = all possible locations
F(S) = information gained from locations in S
V

•  Given set function

•  Marginal gain:

F : 2V ! R

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1
X2

new"sensor"s"

F (s|A) = F (A [{s})� F (A)

Xs""!

Marginal gain

10

Diminishing marginal gains

11"

B

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1!
X2!

X3!

X4!
X5!

placement"B"="{1,…,5}"

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1
X2

placement"A"="{1,2}"

Xs""!

new"sensor"s"
A + s + s

Big"gain" small"gain"

F (A [s)� F (A) � F (B [s)� F (B)

A ✓ B

Submodularity

12

extra cost:
one drink

|{z}

extra cost:
free refill "

.| {z }

diminishing marginal costs

F (A [s)� F (A) � F (B [s)� F (B)

BA

A ✓ B

Submodular set functions

•  Diminishing gains: for all

•  Union-Intersection: for all

A B + e + e

A ✓ B

F (A [e)� F (A) � F (B [e)� F (B)

S, T ✓ V

F (S) + F (T) � F (S [T) + F (S \ T)

Supermodular set functions
•  Submodularity: diminishing marginal gains

•  Supermodularity: increasing marginal gains

F (A [e)� F (A) � F (B [e)� F (B)
B A

F (A [e)� F (A)  F (B [e)� F (B)

;

The big picture

submodular"
funcBons"

electrical"
networks"
(Narayanan'

1997)"

graph"
theory"

(Frank'1993)'

game"
theory"

(Shapley'1970)'

matroid"
theory"

(Whitney,"1935)"
stochasBc""
processes"
(Macchi'1975,''
Borodin'2003)"

informaBon"
theory"

machine""
learning"

G. Choquet J. Edmonds

L.S. Shapley
L. Lovász

Examples
•  each element e has a weight w(e)

F (S) =
X

e2S

w(e)

F (A [e)� F (A) = w(e)

A ⇢ B

F (B [e)� F (B) = w(e)=

linear / modular function
always submodular!

Examples

17"

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

sensing:
F(S) = information gained from locations S

Example: cover

F (S) =

�����
[

v2S

area(v)

�����

F (A [v)� F (A) F (B [v)� F (B)�

19"

More"complex"model"for"sensing"

Joint"probability"distribuBon""
P(X1,…,Xn,Y1,…,Yn)""="P(Y1,…,Yn)"P(X1,…,Xn"|"Y1,…,Yn)"

Ys:"temperature"
at"locaBon"s"

Xs:"sensor"value"
at"locaBon"s"

Xs = Ys + noise

Prior! Likelihood!

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

Y1 Y2 Y3

Y6

Y5
Y4

X1!

X4!

X3!

X6!
X5!

X2!

Sensor placement
UBlity"of"having"sensors"at"subset"A"of"all"locaBons"
"

20"

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1

X2

X3

A={1,2,3}: High value F(A)

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X4

X5
X1

A={1,4,5}: Low value F(A)

F (A) = H(Y) � H(Y | XA)

Uncertainty"
about"temperature"Y"
before!sensing"

Uncertainty"
about"temperature"Y"
a6er!sensing"

= I(Y;XA)

Information gain
X1, . . . Xn, Y1, . . . , Ym discrete random variables

Y1 Y2 Y3

Y6

Y5
Y4

X1"

X4"

X3"

X6!X5"

X2"

XA

if all conditionally

independent given

then F is submodular!
(Exercise: complete the proof)

Xi, Xj

Y

F (A) = I(Y ;XA) = H(XA)�H(XA|Y)
modular

Entropy

F (S) = H(XS) = joint entropy of variables indexed by S

discrete random variables X1, . . . , Xn

H(XA[e)�H(XA) = H(Xe|XA)

 H(Xe|XB)

= H(XB[e)�H(XB)

“information never hurts”

A ⇢ B

discrete entropy is submodular!

Submodularity and independence
discrete random variables X1, . . . , Xn

Xi, i 2 S statistically independent
H(XS) =

X

e2S

H(Xe)# H is modular/linear on S

Similarly: linear independence

V =

F(S) = rank()

vectors in S linearly independent
F is modular/linear on S:
 F(S) = |S|

Maximizing Influence

24"

F (S [s)� F (S) F (T [s)� F (T)�

(Kempe, Kleinberg & Tardos 2003)

F (S) = expected # infected nodes

Graph cuts

•  Cut for one edge: vu

F ({u, v}) + F (;)

vuvu vu vu

�

0 0

•  cut of one edge is submodular!
•  large graph: sum of edges

Useful property: sum of submodular functions is submodular

F (S) =
X

u2S,v/2S

wuv

F ({u}) + F ({v})

wuv
wuv

Types of submodular functions
•  monotone increasing and integer-valued

–  rank functions

•  monotone increasing
– coverage
– entropy
– spread

•  general (non-monotone)
– graph cuts

A ✓ B) F (A)  F (B)

Sets and boolean vectors
any set function

 with .
… is a function on
 binary vectors!

F : 2V ! R

|V | = n

a"

b"

d"

c"

A

27

1
1
0
0

=̂
a
b
c
d

x = 1A

subset selection = binary labeling!

F : {0, 1}n ! R

x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

z1 z2 z3 z4

z5 z6 z7 z8

z9 z10 z11 z12

Attractive potentials

28

/ exp(�E(x; z))

labels pixel
values

P (x | z)max

x2{0,1}n

min
x2{0,1}n

E(x; z),

label

pixel
x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

x1 x 2 x 3 x 4

x 5 x 6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

Attractive potentials

29

E(x; z) =
X

i
Ei(xi)+

X
ij
Eij(xi, xj)

Eij(1, 0) + Eij(0, 1) � Eij(0, 0) + Eij(1, 1)

spatial coherence:

S = {i} T = {j} S [TS \ T = ;

F (S) + F (T) � F (S [T) + F (S \ T)

/ exp(�E(x; z))

P (x | z)

 i j i j i j i j

Diversity priors

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

P (S | data) / P (S) P (data | S)

“spread out”

Determinantal point processes
S

S

K

•  normalized similarity matrix

•  sample Y:

K

P (S ✓ Y) = det(KS)

P (ei 2 Y) = Kii

P (ei, ej 2 Y) = KiiKjj �K2
ij

= P (ei 2 Y)P (ej 2 Y)�K2
ij

repulsion

F (S) = log det(KS) is submodular

Diversity priors

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

(Kulesza & Taskar 10)

Submodularity and machine learning

33"

bla blablala oh bla bl abl lba bla
gggg hgt dfg uyg sd djfkefbjal
odh wdbfeowhjkd fenjk jj

bla blablala oh bla dw
bl abl lba bla gggg hgt dfg uyg
sd djfkefbjal odh wdbfeowhjkd
fenjk jj

bla blablala oh bla bl abl lba bla
gggg hgt dfg uyg efefm o

sd djfkefbjal odh wdbfeowhjkd
fenjk jj ef

owskf wu

6

1st iteration 2nd iteration 3rd iteration 8th iteration

Fig. 4. Greedy MAP-inference in our model for pedestrian-detection example from Figure 1. For each iteration, we
give the Hough image M

t (top) and highlight in red the detection corresponding to its maximum (bottom). Note how
the Hough images M

t

(h) are changed between iterations, so that implicit “non-maximum suppression” driven by the
probability function is performed. As a result, multiple pedestrians are detected despite significant overlaps between
them.

including performing loopy belief-propagation [22] in
the bipartite graph defined by (9). The special form
of the pairwise terms permits a very compact message
representation (the same as used in the affinity prop-
agation [23]). We have also tried simulated annealing
optimization for the binary-labelled function (10).

Both loopy belief propagation (LBP) and simulated
annealing (SA) were not able to handle the very high
order potentials present in our model. To overcome this
problem, we adaptively reduced the size of our hypoth-
esis space. We did this by using standard Hough voting
to find (sample) a moderately large number (dozens to
hundreds) of peaks in the Hough image. We then restrict
the Hough space H to these peaks. As the majority of
voting element vote for a limited number hypotheses
each (p(x

i

|I
i

) = 0 for many assignments values of x

i

),
we were able to reduce the size of the Hough space
considerably without loss of many energy terms.

In our experiments LBP and SA gave reasonable
results with the adaptive sparsification heuristics dis-
cussed above. However, they were still quite computa-
tionally expensive. Also the inability of these inference
methods to handle large set of hypotheses is a significant
limitation which potentially can lead to loss of detections
and lower recall rate of object detection performance.
Submodularity and connection with uncapacitated fa-
cility location problem.

The maximization of (10) can be viewed as the well
studied in operation research community facility location
task, that considers the problem of optimal placement of
facilities (detected objects) in order to minimize trans-
portation costs (negative votes from voting element).
One of the well-known properties of the objective func-
tion of facility location problem (10) is it’s submodu-

larity (see e.g. [24]) Unlike the problem of minimizing
submodular functions, the problem of maximizing sub-
modular functions is NP-hard. But approximations have
been studied extensively for both the general task of
submodular function maximization and the particular
problem of facility location. The best approximation
factor known for facility location is 0.828 that is achieved
by polynomial-time algorithm based on the idea of
randomized rounding [25].

The greedy algorithm, that iteratively augments a cur-
rent solution with an element of maximum incremental
value, is proven to have an approximation factor 0.632
for the task of submodular functions maximization [26].
This simple method has been shown to be an efficient
heuristic for both maximizing submodular functions
over different constraint structures (e.g. [27]) and facility
location problem (e.g. [28]). Not surprisingly, in our
framework greedy algorithm showed approximately the
same accuracy as LBP and SA. Moreover in contrast
to LBP and SA, it turned out that the iterative greedy
inference doesn’t require reducing the hypothesis space.
This property potentially allows greedy algorithm to
achieve higher recall compared to LBP and SA.

Iterative sampling with dense set of hypotheses. The
greedy iterative algorithm starts with all y

h

set to 0 and
x

i

set to 0 (background). In step t the algorithm makes a
hypothesis h

t active (by setting y

h

t
= 1), simultaneously

switching some of x

i

to h

t (x
i

is switched to h

t only if
this increases the posterior). The hypothesis h

t is picked
so that the biggest increase of the posterior is obtained.

In each iteration, it identifies the optimal hypothesis
h

t to be made active by using Hough voting. In iteration

distributions over labels, sets
log-submodular/

supermodular probability
e.g. “attractive” graphical models,

determinantal point processes

(convex) regularization
submodularity: “discrete

convexity”
e.g. combinatorial sparse estimation

diffusion processes,
covering, rank,
connectivity,

entropy,
economies of scale,
summarization, …

submodular
phenomena

submodularity
in machine
learning!

 submodular on . The following are submodular:

•  Restriction:

Closedness properties

34

F 0(S) = F (S \W)

S V S
W V

F (S) V

 submodular on . The following are submodular:

•  Restriction:

•  Conditioning:

Closedness properties

35

F 0(S) = F (S [W)

F 0(S) = F (S \W)

S V S
W V

F (S) V

Closedness properties
 submodular on . The following are submodular:

•  Restriction:

•  Conditioning:

•  Reflection:

36

F 0(S) = F (S [W)

F 0(S) = F (S \W)

S V

F 0(S) = F (V \ S)

F (S) V

Submodularity …

discrete convexity ….

… or concavity?

37

Concave aspects
•  submodularity:

•  concavity:
A + s B + s

F (A [s)� F (A) � F (B [s)� F (B)
A ✓ B, s /2 B :

a  b, s > 0 :

|A|

F(A) “intuitively”

1

s

⇣
f(a+ s)� f(a)

⌘
� 1

s

⇣
f(b+ s)� f(b)

⌘

38

Submodularity and concavity
•  suppose and

g : N ! R F (A) = g(|A|)

g(|A|)

|A|

F (A) submodular if and only if … g is concave

39

Minimum of concave functions

Minimum of submodular functions
 submodular?

41"

F1(A)" F2(A)" F(A)"
{} 0" 0" 0"
{a}" 1" 0" 0"
{b}" 0" 1" 0"
{a,b}" 1" 1" 1"

min(F1,F2) not submodular in general!

F (A) = min{ F1(A), F2(A) }

A

B

A [B

A \B

0 0 01
F (A) + F (B) � F (A [B) + F (A \B) ?

A

B

A [B

A \B

Convex functions (Lovász, 1983)
•  “occur in many models in economy, engineering and

other sciences”, “often the only nontrivial property that
can be stated in general”

•  preserved under many operations and transformations:
larger effective range of results

•  sufficient structure for a “mathematically beautiful and
practically useful theory”

•  efficient minimization
“It is less apparent, but we claim and hope to prove to a
certain extent, that a similar role is played in discrete
optimization by submodular set-functions“ […]
they share the above four properties.

Convex aspects
•  convex extension
•  duality results
•  poly-time minimization

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

Maximum of submodular functions
•  submodular. What about

F1(A), F2(A)

|A|

F2(A)=g(|A|)

F1(A)=h(|A|)

44

max{F1(A), F2(A) }

F (A) = max{F1(A), F2(A) } ?

 not submodular in general! max{F1, F2 }

Roadmap

•  Submodular set functions
–  definition & basic properties
–  links to convexity
–  special polyhedra

•  Minimizing submodular functions
•  Maximizing submodular functions

convex …

 … and concave aspects!

Submodularity and convexity
any set function

 with .
… is a function on
 binary vectors!

F : 2V ! R

|V | = n

a"

b"

d"

c"

A

46

1
1
0
0

=̂
a
b
c
d

x = 1A

subset selection = binary labeling!

F : {0, 1}n ! R

Relaxation: idea

min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

x =
kX

i=1

↵i 1Si

A relaxation (extension)

F : {0, 1}n ! R
have want: extension

f : Rn
+ ! R

=

0

1.0

0

0

0

1.0

1.0

0

0

1.0

1.0

1.0

1.0

1.0

1.0(1.0 - 0.5) + (0.5 – 0.2) + (0.2)

0.5

1.0

0.2

0.2

0.5

S1 S3S2

x

f(x) =
kX

i=1

↵i F (Si)

•  truncation

•  cut function

0.5

1.0

0.2

0.2

0.5

1.0

1.0

0

0

1.0

0

1.0

0

0

0

Examples

f(x) =
kX

i=1

↵i F (Si) = 0.5 + 0.5

f(x) = 0.5 + 0.5 = max

i
xiF (S) = max{|S|, 1}

F (S) =

(
1 if S = {1}, {2}
0 if S = ;, {1, 2}

vu1 2
f(x) = 0.5 · 0 + (1� 0.5) · 1

= |x1 � x2|

1.0 - 0.5

“total variation”!

Alternative characterization

f(x) =
kX

i=1

↵i F (Si)

Theorem (Lovász, 1983)
 Lovász extension is convex F is submodular. ,

f(x) = max

y2BF

y

>
x

if F is submodular, this is equivalent to:

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

Theorem (Lovász, 1983)
 Lovász extension is convex F is submodular. ,

(If F is submodular, then f is the max of linear functions.

f(x) =
kX

i=1

↵i F (Si)

) Let . A,B ✓ V 1
1
0
0

0
1
1
0

1
2
1
0

+ =

1A 1B

1
1
1
0

0
1
0
0

+=

1A[B 1A\B

f(1A + 1B)  f(1A) + f(1B)

convexity and positive homogeneity implies:

Exercise: this implies that F is submodular

Alternative characterization

f(x) =
kX

i=1

↵i F (Si)

Theorem (Lovász, 1983)
 Lovász extension is convex F is submodular. ,

f(x) = max

y2BF

y

>
x

if F is submodular, this is equivalent to:

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

1

2

�1�2

sb

sa

1

2

�1�2

sb

sa

sa  F (a)

sb  F (b)

ya  F (a)

1

2

�1�2

sb

sa

sa  F (a)

1

2

�1�2

sb

sa

sa  F (a)

sb  F (b)

1

2

�1�2

sb

sa

sa  F (a)

sb  F (b)

sa + sb  F (V)

yb  F (b)

ya  F (a)

y1 + yb  F (V)

PF
1

2

�1�2

sb

sa

PF
1

2

�1�2

sb

sa

BF

yb

ya

PF = {y 2 Rn | y(A)  F (A) for all A ✓ V}

y(A) =
X

a2A

ya

Submodular polyhedra
submodular polyhedron:

Base polytope

BF = {y 2 PF | y(V) = F (V)}

A F (A)
; 0
a �1
b 2

{a, b} 0

Base polytopes
Base polytope BF = {y 2 PF | y(V) = F (V)}

PF
1

2

�1�2

sb

sa

BF

3s

s2

s1

P(F)

B(F)

2D (2 elements) 3D (3 elements)

Base polytope

PF
1

2

�1�2

sb

sa

BF

f(x) = max

y2BF

y

>
x

exponentially
many constraints!

Edmonds 1970: “magic”
compute argmax in O(n log n) "

basis for submodular minimization!

BF =
n

y 2 Rn |
X

a2S

ya  F (S)

y(V) = F (V)
o

for all S ✓ V

Optimization over base polytope
f(x) = max

y2BF

y

>
x

Edmonds’ greedy algorithm:
1.  sort

2.  chain of sets

3. assign values

x⇡(1) � x⇡(2) � . . . � x⇡(n)

y⇡(i) = F (Si)� F (Si�1)

BF =
n

y 2 Rn |
X

a2S

ya  F (S)

y(V) = F (V)
o

y1

y2

x = (2, 1)

S0 = ;,
S1 = {⇡(1) } . . .
Si = {⇡(1), . . . ,⇡(i) }

y1 = F (e1)� 0

y2 = F ({e1, e2})� F (e1)

y1  F (e1)

y1 + y2  F (e1, e2)

Base polytope

f(x) = max

y2BF

y

>
x

Edmonds’ greedy algorithm:
1.  sort

2.  chain of sets

3. assign values

x⇡(1) � x⇡(2) � . . . � x⇡(n)

y⇡(i) = F (Si)� F (Si�1)

S0 = ;, Si = {⇡(1), . . . ,⇡(i)}

0.5

1.0

0.2

0.2

0.5

x

Remarks:

•  chain of sets same
as before

f(x) =
kX

i=1

↵i F (Si)

Re-computing our examples

0.5

1.0

0.2

0.2

0.5

1.0

1.0

0

0

1.0

0

1.0

0

0

0

= 0.5 + 0.5
F (S) = max{|S|, 1}

sort: x2 � x1) S1 = {2}, S2 = {2, 1}

y2 = F (2) = 1

y1 = F (2, 1)� F (2) = 1� 1 = 0

= max

i
xi

F (Si)� F (Si�1) > 0in general: only for i=1!

) f(x) = max

i
xi

f(x) = y

>
x = 1 · x1 + 0 · x2

x

Re-computing our examples

0.5

1.0

0.2

0.2

0.5

1.0

1.0

0

0

1.0

0

1.0

0

0

0

= 0.5 + 0.5

F (S) =

(
1 if S = {1}, {2}
0 if S = ;, {1, 2}

vu1 2

sort: x2 � x1) S1 = {2}, S2 = {2, 1}

y2 = F (2) = 1

y1 = F (2, 1)� F (2) = 0� 1 = �1

f(x) = y

>
x = �0.5 + 1 = |x1 � x2|

x

Convex relaxation

1.  relaxation: convex optimization (non-smooth)

2.  relaxation is exact!
$ submodular minimization in polynomial time!
(Grötschel, Lovász, Schrijver 1981)

0.5

1.0

0.2

0.2

0.5

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

3s

s2

s1

P(F)

B(F)

min
S✓V

F (S) min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)==

Amazing base polytopes
•  linear optimization =

Edmonds’ greedy algorithm:
each vertex determined by a permutation!

Base polytopes almost everywhere:
•  cores of games (Shapley)
•  information theory: achievable rates

for lossless coding of correlated
sources (Slepian-Wolf, Cover, Fujishige)

•  matroids

f(x) = max

y2BF

y

>
x

3s

s2

s1

P(F)

B(F)

Base polytopes and spanning trees

ground set: all edges

indicator vectors of
all spanning trees

1T
T

0

1

0

1

1

1

1

2 3

4
5

6

B = convex hull of all tree indicator vectors

is a base polytope

What is the submodular function?

F (S) = size of largest tree within S
1

2 3

4
5

6
= max{|T | : T is a tree and T ✓ S}

greedy algorithm: y indicator vector of a tree
•  go through edges in order of their weight

•  if edge does not complete a cycle:

if it does:

Greedy algorithm for trees
5

4

3
2

1
F (S) = size of largest tree within S

vector x: weight for
 each edge

F (Si)� F (Si�1) = 1

F (Si)� F (Si�1) = 0

“pick i” yi = 1

yi = 0 “don’t pick i”

finds the maximum weight spanning tree (Kruskal’s algorithm)

max

y2B
y

>
x

x(1) = 6

e1 e2 e3 e4 e5 e6

General: Matroids
Matroid
•  ground set
•  family of independent sets

M = (V, I)
V

I

Matroids (semi-formally)

65

S is independent (= feasible) if …

 … |S| ≤ k

Uniform matroid

… S contains at most
one element from each
square

Partition matroid

 … S contains no cycles

 Graphic matroid

•  S independent $ T S also independent

•  Exchange property: S, U independent, |S| > |U|
$ some can be added to U: independent

•  All maximal independent sets have the same size

✓
matroid properties:

Matroids

66

S is independent (=feasible) if …

… |S| ≤ k

Uniform matroid

… S contains at most
one element from each

group

Partition matroid

 … S contains no
cycles

 Graphic matroid

•  S independent $ T S also independent

•  Exchange property: S, U independent, |S| > |U|
$ some can be added to U: independent

✓

e 2 S U [e

General: Matroids
Matroid
•  ground set
•  family of independent sets

•  rank function:

 always submodular and increasing

•  another special case: matrix rank

M = (V, I)
V

I

F (S) = max{ |T | : T ✓ S and T 2 I}

V =

F(S) = rank()

Convex relaxation

1.  relaxation: convex optimization (non-smooth)

2.  relaxation is exact!
$ submodular minimization in polynomial time!
(Grötschel, Lovász, Schrijver 1981)

0.5

1.0

0.2

0.2

0.5

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

3s

s2

s1

P(F)

B(F)

min
S✓V

F (S) min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)==

Minimizing the Lovász extension

•  subgradient method

•  combinatorial algorithms: dual

min
x2[0,1]n

f(x)

Subgradients

subgradient: g

x

2 argmax

y

y

>
x s.t. y 2 B

F

min
x2[0,1]n

f(x)Projected subgradient method

x0
= 0

for t = 0, . . . do
find gt 2 @f(xt

)

xt+1
= ⇧[0,1]n(xt

+ ↵
t

gt)
end for

subgradient @f(xt

) – greedy algorithm

projection ⇧[0,1]n(x) = min

y2[0,1]n kx � yk2
(truncation)

remark: f(xt

) does not decrease monotonically – keep track
of smallest encountered

21 / 33

Projected subgradient method

g

t = arg min
y2BF

y

>
x

t

greedy algorithm "

⇧[0,1]n(y) =

arg min
z2[0,1]n

ky � zk2

Convergence

•  D: diameter of [0,1]n
L: Lipschitz constant

•  for error need iterations

Convergence

Theorem
Let D =

p
n and L = max

g2BF kgk  3 max

S

|F (S)|.
With step size ↵

t

=

D

L

p
t

, the error decreases as

min

⌧t

f(x⌧

) � f(x⇤
)  4DLp

t

to reduce the gap to ✏, need O(

1
✏

2) steps

22 / 33

 ✏ O(1
✏2)

Submodular minimization
convex optimization
•  ellipsoid method

(Grötschel-Lovasz-Schrijver 81)

•  subgradient method

•  minimum-norm point /
Fujishige-Wolfe algorithm

•  …

combinatorial methods
•  first polynomial-time:

(Schrijver 00, Iwata-Fleischer-
Fujishige 01)

•  currently fastest:

 (Iwata 03)

 (Orlin 09)

O(n4T + n5
logM)

O(n6 + n5T)

Latest result: O(n2T log nM + n3
log

c nM)

O(n3T log

2 n+ n4
log

c n) (Lee-Sidford-Wong 15)

Convex duality
min
S✓V

F (S) = min
x2[0,1]n

f(x)

= max

y2BF

⇣ nX

i=1

min{yi, 0}
⌘

= min

x2[0,1]n
max

y2BF

y

>
x

= max

y2BF

min

x2[0,1]n
x

>
y

Optimality conditions: (S*, y*) optimal primal-dual pair if

1.  .

2.  .

3.  .

y⇤ 2 BF

{y⇤ < 0} ✓ S⇤ ✓ {y⇤  0}

y⇤(S⇤) = F (S⇤)

Combinatorial algorithms
•  solve

•  remove “negative mass”
•  challenges:

–  need to stay in polytope:
–  cannot test feasibility
$ network flow algorithms

= max

y2BF

⇣ nX

i=1

min{yi, 0}
⌘

+
--
+
0

+

X

i2S

yi  F (S)

Submodular minimization
convex optimization
•  ellipsoid method

(Grötschel-Lovasz-Schrijver 81)

•  subgradient method

•  minimum-norm point /
Fujishige-Wolfe algorithm

•  …

combinatorial methods
•  first polynomial-time:

(Schrijver 00, Iwata-Fleischer-
Fujishige 01)

•  currently fastest:

 (Iwata 03)

 (Orlin 09)

O(n4T + n5
logM)

O(n6 + n5T)

Latest result: O(n2T log nM + n3
log

c nM)

O(n3T log

2 n+ n4
log

c n) (Lee-Sidford-Wong 15)

Some fun "
1.  Complete the proof that

Lovasz extension convex $ set function is submodular
(slide 51)

2.  Submodular oder not? Let be increasing and
submodular, and define

for a constant .

G(S) = min{F (S), c }

F

c

slides and pointers to literature:
people.csail.mit.edu/stefje/mlss

Example: costs

78

breakfast??

cost:
time to shop
+ price of items

F() = cost() + cost(,)

submodular?

= t1 + 1 + t2 + 2

= #shops + #items Market 1 Market 2

Market 3

Example: costs

79

breakfast??

cost:
time to reach shop
+ price of items

t1
t2

t3

each item
1 $

Market 1 Market 2

Market 3

ground set V

Shared fixed costs

80

A

B

marginal cost: #new shops + #new items

•  shops: shared fixed cost
•  economies of scale

decreasing $ cost is submodular!

�(b | A) = 1 + t3

�(b | B) = 1

F

F

