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Set functions 

2 

cost of buying items  
together, or 
 

utility, or 
 

probability, … 

V =

(                )  = F

F : 2V ! R

We will assume: 
•  . 
•  black box “oracle” to evaluate F 
F (;) = 0

ground set 



Diminishing marginal gains 
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Submodularity 

4 

extra cost:  
one drink 

|{z}

extra cost:  
free refill ! 

.| {z }

diminishing marginal costs 

F (A [ s)� F (A) � F (B [ s)� F (B)

BA

A ✓ B



Submodular set functions 

•  Diminishing gains:  for all 

•  Union-Intersection:  for all  
 

A B +    e +    e 

A ✓ B

F (A [ e)� F (A) � F (B [ e)� F (B)

S, T ✓ V

F (S) + F (T ) � F (S [ T ) + F (S \ T )



Roadmap 
•  Submodular set functions 
–  definition & basic properties 
–  links to convexity 
–  special polyhedra 

 

•  Minimizing submodular functions 
–  general and special cases 
–  constraints 

 

•  Maximizing submodular functions 



Convex relaxation 

1.  relaxation: convex optimization  (non-smooth) 

2.  relaxation is exact! 
" submodular minimization in polynomial time! 
(Grötschel, Lovász, Schrijver 1981) 
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Lovász extension 

f(x) =
kX

i=1

↵i F (Si)

Theorem (Lovász, 1983) 
 Lovász extension is convex          F is submodular. ,

f(x) = max

y2BF

y

>
x

if F is submodular, this is equivalent to: 
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Theorem (Lovász, 1983) 
 Lovasz extension is convex          F is submodular. ,

( done. 

f(x) =
kX

i=1

↵i F (Si)

) Let                    . A,B ✓ V

= F (A) + F (B)
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+ += =

1A 1B 1A[B 1A\B

f(1A + 1B)  f(1A) + f(1B)

= F (A [B) + F (A \B)

= f(1A[B + 1A\B)



Submodular minimization 
convex optimization 
•  ellipsoid method 

(Grötschel-Lovasz-Schrijver 81) 

•  subgradient method 

•  minimum-norm point / 
Fujishige-Wolfe algorithm 

•  … 

combinatorial methods 
•  first polynomial-time: 

(Schrijver 00, Iwata-Fleischer-
Fujishige 01) 

•  currently fastest: 
                                                     
           (Iwata 03) 

                                                  (Orlin 09) 

O(n4T + n5
logM)

O(n6 + n5T )

Latest result: O(n2T log nM + n3
log

c nM)

O(n3T log

2 n+ n4
log

c n) (Lee-Sidford-Wong 15) 



Recall: convex relaxation 

Lovász extension 

min
x2[0,1]n

f(x)

= max

y2BF

⇣ nX

i=1

min{yi, 0}
⌘

optimal discrete solution: 

+ 
+ 
0 
0 

S

⇤ = { i | x⇤
i > 0 }

= { i | y⇤i < 0 }



Proximal problem 

•  Let         be the largest minimizer of 

•  can show:   if             ,    then 
" chain 

•  “encode” in vector     : 

proximal problem Lovász extension 

min
x

f(x) + 1
2kxk

2min
x2[0,1]n

f(x)
why? 
min
S✓V

F (S) + ↵|S|
solves 

for all  ↵

S↵ F (S) + ↵|S|

↵ < � S↵ ◆ S�

; ⇢ S↵1 ⇢ S↵2 ⇢ . . .V

u

{e | ue � ↵} = S↵

u = argmin
x

f(x) + 1
2kxk

2
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3 equivalent problems 

min
x

f(x) + 1
2kxk

2

proximal

min
S

F (S) + ↵|S|
parametric

x

⇤
e = sup{↵ | e 2 S

↵}
divide/and/conquer

S

↵ = {e | x⇤
e � ↵}

thresholding

(Topkis(1978,(1998;((Granot4Veino7(1985;(Hochbaum(01;(Nagano(2007;(Fujishige(&(Isotani(11;(…)

y

⇤ = �x

⇤

min
y2BF

1
2kyk

2

projec7on

convex dual problem 

{e | y⇤e  �↵} =



PF
1

2

�1�2

sb

sa

BF

y⇤

proximal problem 

Minimum-norm-point algorithm 
dual: minimum norm problem 

14 

min
x

f(x) + 1
2kxk

2 y⇤ = arg min
y2BF

1
2kyk

2

Fujishige ‘91, Fujishige & Isotani ‘11  

y⇤ = arg

minimizes F ! 

S⇤ = arg min
S✓V

F (S)

S⇤ = {i | y⇤i  0}

ya

A F (A)
; 0
a �1
b 2

{a, b} 0

yby⇤ =
-1 
 1 

a"

b"

-1 a"



Overview 

min
x

f(x) + 1
2kxk

2

min
y2BF

1
2kyk

2

min
x2[0,1]n

f(x)

max

y2BF

nX

i=1

[yi]�

S⇤
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{e | x⇤
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primal primal 

dual dual 

{e | y⇤e < 0} {e | y⇤e  0}



Solving the min-norm problem 

•  costly: testing membership in 
•  costly: projection onto 
•  easy: linear optimization over        : greedy algorithm!  ! 

•  conditional gradient algorithm (Frank & Wolfe 1956) 
•  active set methods: Fujishige-Wolfe (Fujishige & Isotani 2011, 

Chakrabarty-Jain-Kothari 2014,…) 

min
y2BF

1
2kyk

2

BF

BF

BF



Empirically 

Simulations on standard benchmark
“DIMACS Genrmf-wide”, p = 430

• Submodular function minimization

– (Left) optimal value minus dual function values (st)−(V )
(in dashed, certified duality gap)

– (Right) Primal function values F (At) minus optimal value
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(Figure from Bach, 2012) 

convergence of relaxation convergence of S 

min-norm point 



Conditional gradient algorithm 
min h(y) s.t. y 2 P h   convex, differentiable 

P   polyhedral 

Conditional gradient algorithm
(Frank & Wolfe 1956)

min

y

h(y) s.t. y 2 P

h convex, di↵erentiable and P polyhedral

y0 2 P
for t = 0, 1, . . . to T do

st = argmin

s2P hrh(yt), si
yt+1

= (1 � �)yt + �st

end for

15 / 56

step size? 
how many iterations? 



Conditional gradient algorithm 
min h(y) s.t. y 2 P h   convex, differentiable 

P   polyhedral 

1. fixed step size: 
 
2. line search: 
 
3. re-optimization: 

�t = 2
t+2

�t = arg min
�2[0,1]

h(yt + �(st � yt))

yt+1 = argminy2conv(s0,...,st) h(y)

Variants

for t = 0, 1, . . . to T do
st = argmin

s2Phrh(yt), si
yt+1

= (1 � �)yt + �st

end for

1. fixed step size

�t

=

2

t+2

2. Line Search

yt+1

= min

�2[0,1]
h( (1��)yt+�st)

3. Re-optimization

yt+1

= argmin

y2conv{s0,...,st}
h(y)

17 / 56



How many iterations? 

always:            primal value ≥ dual value 
at optimum:    primal value = dual value 
" bound the duality gap:  primal – dual  value 

y

⇤ = �x

⇤

min
x

f(x) + 1
2kxk

2

dual8problem primal8problem

max

y2BF

� 1
2kyk

2

Theorem (Jaggi 2013) 
After T iterations of the algorithm, there is an iterate       with 
 
     

gap(y⌧ )  16C
T+2

y⌧

For h(y) = kyk2, C = diam(P)

2
Exercise:  how many 
iterations for a  
gap          ?  ✏



Are we done yet? 
want: min

S✓V
F (S) max

y2BF

� 1
2kyk

2

solve via conditional gradient 
& friends 
have convergence bound 

How many iterations until  F(St) – F(S*) ≤ ε ? 

St
↵ = {e | �yte � ↵}

Theorem (Bach 2013) 
 

If                            then there exists an       such that the discrete 
duality gap is bounded as 
 
 

gap(y⌧ )  ✏0 ↵

F (S⌧
↵)� y⌧�(V) 

p
2n✏0F (S⌧

↵)� F (S⇤) 



Submodularity and convexity 
•  convex Lovasz extension 
–  easy to compute: greedy algorithm (special polyhedra!) 

•  submodular minimization via convex optimization: 
duality results & fast algorithms for many applications 
 
 
 

•  structured sparsity (Bach 2010) 
•  decomposition & parallel algorithms (J-Bach-Sra 2013, Nishihara-J-Jordan 2014) 
•  variational inference (Djolonga & Krause 2014) 
•  … 

min
x

f(x) + 1
2kxk

2min
x2[0,1]n

f(x)

3s

s2

s1

P(F)

B(F)



Sparsity 

=
yi

x

>
i

observe               ,  want to estimate   (yi, a
>
i ) w

=
yi

x

>
i

mm

d

d

•  what if m << p?  underdetermined! 
•  in general, no recovery possible:  

" exploit additional structure, e.g.:  w has only k non-zeros 

=
yi

x

>
i

mm

d

d }= 0

S

y|{z}
m⇥1

= A|{z}
m⇥p

w|{z}
p⇥1

+ ✏|{z}
noise

•  also: interpretability 



Sparsity 

Submodularity (almost) everywhere
Structured sparsity - I

Submodularity (almost) everywhere
Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem

Submodularity (almost) everywhere
Structured sparsity - II

raw data Structured sparse PCA

• Submodular convex optimization problem

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background !1-norm Structured norm

y = Mx+ noise

y|{z}
m⇥1

= A|{z}
m⇥p

w|{z}
p⇥1

+ ✏|{z}
noise

ŵ = argmin
w

kAw � yk2 + �⌦(w)



Sparse reconstruction 

25 

discrete regularization on support S of w 

relax to convex envelope 

sparsity pattern often not random… 

subset 
selection: 
S = {1,3,4,7} 

Assumption: 
w is sparse 

ŵ = argmin
w

kAw � yk2 + �⌦(w)

⌦(w) = kwk0 = |S|

⌦(w) = kwk1



Structured sparsity 

...

. . .

⇡ ⇤

M
x

y

. . .

Assumption: 
support of w  
has structure 

express by set function! 



Preference for trees 

Set function:  
 
if T is a tree and S not 
|S| = |T| 

F (S) =

�����
⇥

s�S

ancestors(s)

�����

F (T ) < F (S)

use as regularizer? 

F (S) = 6

F (T ) = 4



Sparsity 

28 

Optimization: sequence of min-norm problems 
(submodular minimization) (Bach2010) 

•  w  sparse •  w structured sparse 

 
submodular function 

" Lovász extension 

discrete regularization on support S of w 

relax to convex envelope 

ŵ = argmin
w

kAw � yk2 + �⌦(w)

⌦(w) = kwk0 = |S|

⌦(w) = kwk1

⌦(w) = F (S)

⌦(w) = f(|w|)



Norms from submodular functions 
⌦(x) = f(|x|)

Proposition 
For monotone increasing f,              is a norm. 
(Exercise: show this) 

f(|x|)

Special cases: F (S) = |S| ) f(|x|) = kxk1

F (S) = min{|S|, 1} ) f(|x|) = kxk1

F (S) =
kX

j=1

min{|S \Gj |, 1} ) f(|x|) =
kX

j=1

kxGjk1



Special case 
•  minimize a sum of submodular functions 

F (S) =
rX

i=1

Fi(S)

“easy”

min
S

Fi(S)

⇡ ⇤

M
x

y

. . .

•  combinatorial8algorithms8
(Kolmogorov(12,(Fix4Joachims4Park4Zabih(13,(Fix4Wang4Zabih(14)

•  convex8relaxa7ons8
 
 
 



Relaxation 

 

•  convex Lovász extension: 
tight relaxation 

•  dual decomposition: parallel algorithms  
(Komodakis-Paragios-Tziritas 11, Savchynskyy-Schmidt-Kappes-Schnörr 11, J-Bach-Sra 13)   

F : 2V ! R ⌘ F : {0, 1}n ! R f : Rn
+ ! R
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x
a

x
b

f(x)

min
S✓V

X
i

F

i

(S) = min
x2[0,1]n

X
i

f

i

(x)min
S✓V

F (S) = min
x2[0,1]n

f(x)

min
x

X
r

i=1
f

i

(x) + 1
2kxk

2



Results: dual decomposition 

iteration
20 40 60 80 100

lo
g 10

(d
ua

lit
y 

ga
p)

-1

0

1

2

3

4

5

6 subgrad
BCD
DR
fista-smooth
dual-dec
primal-smoothed

convergence8discrete8problem relaxation I 
relax II 

(Jegelka, Bach, Sra 2013; Nishihara, Jegelka, Jordan 2014) 

min
x

X
i

f

i

(x) + 1
2kxk

2 min
x2[0,1]n

X
i

f

i

(x)

smooth dual non-smooth dual 

faster 
parallel 
algorithms ! 



Submodularity and convexity 
•  convex Lovasz extension 
–  easy to compute: greedy algorithm (special polyhedra!) 

•  submodular minimization via convex optimization: 
fast algorithms for many applications 

•  duality results 
 

•  structured sparsity (Bach 2010) 
•  decomposition & parallel algorithms 
•  variational inference (Djolonga & Krause 2014) 
•  … 



Roadmap 
•  Submodular set functions 
–  definition & basic properties 
–  links to convexity 
–  special polyhedra 

 

•  Minimizing submodular functions 
–  general and special cases 
–  constraints 

 

•  Maximizing submodular functions 



Graph cuts 

•  Cut for one edge: vu

F ({u, v}) + F (;)

vuvu vu vu

�

0 0 

•  Graph cuts: faster algorithms than general submodular! 

F (S) =
X

u2S,v/2S

wuv

F ({u}) + F ({v})

wuv 
wuv 

G = (V,E) edge weights wuv



x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

z1 z2 z3 z4

z5 z6 z7 z8

z9 z10 z11 z12

MAP inference 

36 

/ exp(�E(x; z))

labels pixel  
values 

P (x | z)max

x2{0,1}n

min
x2{0,1}n

E(x; z),

label 

pixel 
x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12



x1 x 2 x 3 x 4

x 5 x 6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

Attractive potentials 
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E(x; z) =
X

i
Ei(xi)+

X
ij
Eij(xi, xj)

spatial coherence: 

/ exp(�E(x; z))

P (x | z)

Eij(xi, xj) =

(
⌫ij > 0 if xi 6= xj

0 otherwise

= ⌫ij(xi � xj)
2

= Cut(1S)

vui j

xjxi1 0



 
 
 
s

vui j
⌫ij

1 0
 
 
 

↵i

t

�↵j

Quadratic functions and cuts 
= ⌫ij(xi � xj)

2 = Cut(1S)Eij(xi, xj)

what about the linear terms? 

Eij(xi, xj) + ↵ixi + ↵jxj

make it an (s,t)-cut!  
Source s always selected 

↵i > 0

↵j < 0

�↵jEj(xj)Ei(xi)



 
 
 

 
 
 
s

vui j
⌫ij

1 0
↵i

t

�↵j

Quadratic functions and cuts 
= ⌫ij(xi � xj)

2 = Cut(1S)Eij(xi, xj)

linear terms: 

Eij(xi, xj) + ↵ixi + ↵jxj �↵j

Is every such quadratic function  
a graph cut function? 

any linear terms are fine  ! 

quadratic terms?  What if                 ? ⌫ij < 0 negative edge weights! 

MAP inference = minimum cut ! 



Submodular functions and cuts 
•  Formally: 

E(x) =
X

i

↵ixi +
X

ij

⌫ij(xi � xj)
2

=
X

i

↵ixi +
X

ij

⌫ijx
2
i + ⌫ijx

2
j � 2⌫ijxixj

=
X

i

�ixi +
X

ij

�2⌫ijxixj

Every quadratic pseudo-boolean function with  
non-positive second-order coefficients is a graph cut function. 

Equivalent condition:   E(x) is submodular. 



Quadratic submodular functions 
E(x) = �ixi + �jxj + ⌫

0
ijxjxj

E(1, 0) + E(0, 1) � E(0, 0) + E(1, 1)

F (S) + F (T ) � F (S \ T ) + F (S [ T )

check submodularity: V = { i , j }

                            : S = {i}, T = {j}

�i + �j � 0 + �i + �j + ⌫0ij

E(x) submodular , ⌫

0
ij  0

i j i j 



submodular 

graph cut 

Submodular polynomials & cuts 

•  What if my function has degree > 2 ? 

•  If               for all         then E(x) is submodular and can be 
written as a graph cut 

•  In general: 

X

i

�ixi +
X

ij

⌫ijxixj +
X

ijk

⌫ijkxixjxk + . . .

⌫S  0 ⌫S

⌫S  0



submodularity 

Submodular functions generalize graph cuts! 

independence 

(matrix & combinatorial)  
rank functions 

entropy 

cut functions 



Submodular functions generalize graph cuts! 

•  symmetric submodular functions: 

•  special algorithm for minimizing 
symmetric submodular functions 
in O(n3) time  (Queyranne, 1998) 
generalization of a min-cut algorithm! 

•  semi-supervised learning (Guillory & Bilmes 2011, Hein et al 2013) 

F (S) = F (V \ S)



Roadmap 
•  Submodular set functions 
–  definition & basic properties 
–  links to convexity 
–  special polyhedra 

 

•  Minimizing submodular functions 
–  general and special cases 
–  constraints 

 

•  Maximizing submodular functions 



Constraints? 

•  In most cases, this is NP-hard and cannot even be 
approximated within a constant factor # 

•  What to do? approximation 

min F (S) s.t. |S| = k

min F (S) s.t. S 2 C

e.g. 

generally: 

F (bS)  ↵ F (S⇤)bS 2 C and 

approximate 
solution 



Recall: MAP and cuts 

47 

binary labeling: 

E(x) = Cut(A)

pairwise random field: 

What’s the problem? 

minimum cut: prefer 
short cut = short object boundary 

aim reality 

x = 1A



What’s wrong? 

48 

local coherence  
= short cut 

homogeneous cut 
global dependencies! 

not homogeneous homogeneous 

cut weight 
= energy 

4849 

11273 

we get … ideally … 



edges are independent 

cost of a cut C ✓ E :

X

e2C

w(e)

Cooperative cuts 

49 

local coherence  
= short cut 

homogeneous cut 
global dependencies! 

ideally … 

cut weight 
= energy 

cooperative graph cut 

edges are not independent 

cost of a cut C ✓ E :

submodular function

F (C)



submodular cost function: 
use few types of edges 
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One type   (13 edges) 
Many types  (  6 edges) 

sum of weights: 
use few edges 

co
st

 
|Cut| 

Homogeneity via group sparsity 

50 (Jegelka & Bilmes 2011) 

F (Cut) =
X

type k

Fk(Cut)
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Random Walker 
[Grady 06] 

Curvature Reg. 
[El-Zehiry & Grady 10] 

Graph Cut 
[Boykov & Jolly 01] 

Cooperative 
Cut 

Quantitatively:  up to 70% reduction in error! 



Results 
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Graph cut Cooperative cut 



Similarly: contour completion RF 

(Silberman et al 2014) 

A Contour Completion Model for Augmenting Surface Reconstructions 7

This behavior of the model does not prevent the boundary in the labeling from
including large number of edges as long as they belong to the same group (curve).
The exact nature of these groups are described below.

4.3 Defining Edge Groups

We consider two types of edge groups: straight lines and parabolas. While
previous work has demonstrated the ability of the hough transform [17] to detect
other shapes, such as circles and ellipses, such high parameter shapes require
substantially more memory and computation and we found lines and parabolas
su�ciently flexible to capture most of the cases we encountered.

To detect lines, we used a modified Hough transform to not only detect lines
in the image, but also the direction of the transition (the plane to free space
or vice-versa). We use an accumulator with 3 parameters: ⇢, the distance from
the origin to the line, ✓, the angle between the vector from the origin to the
line and the X axis, and a quaternary variable d, which indicates the direction
of the transition (both bottom-top and left-right directions) 3. Following the
accumulation of votes, we run non-maximal suppression and create an edge group
for each resulting line.

The standard Hough transform for parabolas requires 4 parameters. To avoid
the computational and memory demands of such a design, we introduce a novel
and simple heuristic detailed in the supplemental material.

Fig. 2. Contour Completion Random Field: (a) A top-down view of a partially occluded
plane (b) We detect lines and parabolas along the contour of the known pixels (stippled
black lines), and hallucinate parallel lines (in red) (c) We apply CCRF inference to
extend the plane.

4.4 Hierarchical Edge Groups

While using detected lines or curves may encourage the correct surface boundaries
to be inferred in many cases, in others, there is no evidence present in the image

3 We use 400 angular bins for ✓ and evenly spaced bins for ⇢ 1 unit apart. The minimum
number of votes allowed was set to 10.

geometric edge groups: 
•  straight lines 
•  parabolas 



Minimum cut? 

•  find a minimum cut   
with cost function: C ✓ E

Cost(C) =

X

e2C

w(e)

normally: 
Cost(C) = F (C)

now: 

minF (S) s.t. constraints on S



Constrained optimization 
2 strategies: 
 
•  convex relaxation using the Lovasz extension 

•  approximate the submodular function 

bS = argmin
S2C

bF (S)S⇤ = argmin
S2C

F (S)



Approximation of F 
•  recall:  for                and F increasing   x = 1S

b
F (S) = max

y2EF

y

>
x =

sX

e2S

w(e)

(Goemans et al 2009) 

approximate polyhedron 
by ellipsoid 

PF

EF

F (S) = f(x) = max

y2PF

y

>
x

•  Why is this easier than F ? 

 
bS = argmin

S2C
bF (S) = argmin

S2C

X

e2S

w(e)



How good is this? 

•  One can show that for all S: 

•  It follows that: 

b
F (S) = max

y2EF

y

>
x

F (S)  bF (S)  ↵F (S)

 ↵F (S⇤) bF (S⇤) bF (bS)F (bS)

↵ = O(

p
n log n)

bS = argmin
S2C

bF (S) = argmin
S2C

X

e2S

w(e)



A practical approximation 

58"

For i = 1,2,… 
•  compute linear upper bound         with   
•  find tree/path/…             with minimum            . 

bFi bFi(Ci) = F (Ci)
bFi(C)Ci+1

familiar ! 
e.g. min-cut 

(Jegelka & Bilmes 2011; Iyer, Jegelka, Bilmes  2013) 

idea:  submodularity = discrete concavity 

fast: only need to solve linear optimization problem! 

“super-gradient” 



Does it work? 

59 

approximate solution optimal solution 

(Kohli, Osokin, Jegelka 2013) (Jegelka & Bilmes 2011) 

minimum cut solution 

•  often works well in practice 
•  theory:  approximation guarantees depending on curvature of F 

                   (Iyer et al 2013) 
•  special cases: exact solution (Kohli et al 2013) 



Roadmap 
•  Submodular set functions 
–  definition & basic properties 
–  links to convexity 
–  special polyhedra 

•  Minimizing submodular functions 
–  general and special cases 
–  constraints 

•  Maximizing submodular functions 



Setup 

•  ground set V

•  (scoring) function 

F : 2V ! R+

S ✓ V
max F (S)



Informative Subsets 
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SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

•  where put sensors? 
•  which experiments? 
•  summarization 

F (S) = “information”



Maximizing Influence 

63"

F (S [ s)� F (S) F (T [ s)� F (T )�

Kempe, Kleinberg & Tardos 2003 

F (S) = expected # infected nodes



Summarization 
•  videos, text, pictures … 
•  would like: 

relevance, reliability, diversity 
Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN )

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S  S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.

7



Summarization 

•  Coverage / relevance •  Diversity 

R(S) =
X

a2V
max

b2S
sa,b

sa,b

F (S) = R(S) + D(S)

D(S) =
mX

j=1

q
|S \ Pj |

(Simon et al 2007, Lin & Bilmes 2011&2012, Tschiatschek et al 2014, Kim et al 2014, Gygli et al 2015, …)  

P1

P3

P2
S



Diversity 

•  Diversity 

D(S) =
mX

j=1

q
|S \ Pj |

P1

P3

P2

Another diversity function … 

D(S) = �
X

a,b2S

sa,b

increasing decreasing 



Summarization: results 

(Lin & Bilmes 2011) 

Many more functions are possible … 
" Learn a weighted combination:   via “structured prediction” 
" works even better! 

(Lin & Bilmes 2012, Tschiatschek et al 2014, Gygli et al 2015, Xu et al 2015,…)  



More maximization … 

...

Algorithm 1: CoSand Cosegmentation.
Input: (1) Intra-image matrix G

i

for all I
i

2 I. (2) Number of
segments K. (3) Evaluation set size |L|.

Output: Cluster centers S
i

and segmented images for I
i

2 I.

1: foreach I
i

2 I do S
i

 ; end
2: foreach I

i

2 I do L
i

 AggloClust(G
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, |L|) end
while |S
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foreach I
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2 I do
foreach l
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3: Solve u = L
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u where L
i

is the Laplacian of
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and u is an N
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⇥1 vector with the constraints
of u({S
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j

}) = 1 and u(g) = 0.
4: Obtain the gain �U
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(l
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)=|u|1 (l-1 norm of u).
end

end
5: Solve the energy maximization by belief propagation
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i2I �U

i

(l
i

)

` 1
|N (i)|

P
j2N (i) f(g(l

i

),g(l
j

))

´
.

{s1, · · · , sI} argmax

l1,··· ,lI E(l).
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end
end
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where if we let X
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, L
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is a K⇥K identity matrix.
8: A superpixel v

j

(2V
i

) is clustered c
j

= argmax

k

X(j, k).
end

Figure 3. An example of cosegmentation on MSRC cow images
(M=3, K=4). (a) Input images. (b) Likelihood of each segment
from white (high) to black (low). (c) Color-coded cosegmentation
outputs. (d) The 3rd and 4th segments from input images.

ranking and single-image segmentation, we compute the ex-
act solution for this step. However, we use belief propaga-
tion, which is an approximate maximization, for a large-
scale cosegmentation with full dependency. In most cases,
this relaxed solution is good enough to obtain a high-quality
segmentation result.

A more scalable setting: In practice, a large-scale im-
age set is likely to contain various noisy information as well.
If heterogeneous images are cosegmented, then the results
would be worsen than those of individual image segmen-
tation. Thus, one can first decompose I into disjoint sets
I = I1 [ · · ·[ IO so that each subset Io consists of similar
images. Then, Algorithm 1 can be applied to each Io sep-
arately. This decomposition can be done by the proposed

diversity ranking and clustering of Eq.(4) on the similarity
graph of I, which can be constructed by applying Gaussian
similarity to image descriptors (e.g. dense SIFT or GIST).

4. Experiments
We evaluate our approach with two different experi-

ments: (1) figure-ground segmentation with a pair of im-
ages (M=2 and K=2), and (2) scalability tests with a large
number of images (M⇠1000). The figure-ground tests are
performed to quantitatively compare our method with other
state-of-the-art cosegmentation techniques that are only ap-
plicable in this setting. The scalability tests evaluate how
well our algorithm works with real-world data.

Our Matlab toolbox including diversity ranking, single-
image segmentation, and cosegmentation, can be found at
http://www.cs.cmu.edu/⇠gunhee.

4.1. Evaluation on Figure-ground Cosegmentation

In the figure-ground tests, we use MSRC dataset [17],
which provides 30 pixel-wise labeled images per object.
Two recent cosegmentation methods, [6] and [7], are com-
pared using their implementation with the default parameter
setting8. We run [6], [7], and our method on randomly gen-
erated 100 pairs in each class.

Unlike the others, the method of [6] requires priori la-
bels of foreground (fg) and background (bg) RGB colors.
In order to obtain labels, we fist identify the fg and bg re-
gions of each image from the ground truth. Then, we apply
K-means to the RGB space of fg and bg pixels to compute
three cluster centers each, which are used as labels (i.e. total
6 fg and 6 bg RGB labels in each pair). These labels can be
regarded as strong supervision, but they were used because
the performance of [6] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground
segmentation, we add an additional step to generate the bi-
nary segmentation results. Our approach iteratively chooses
large and coherent regions across input images in a bottom-
up way. Thus, if the foreground object consists of several
distinct regions, it is likely to segment them into multiple
regions. For binary segmentation, we first safely coseg-
ment a pair of images with a large K (K=8 in our ex-
periments). Then, we apply Normalized cuts to the sim-
ilarity graph of eight pairs of cosegments to obtain two
balanced and discriminative partitions. We observed that
our approach showed excellent performance for detecting a
moderate number of cosegments but the final figure-ground
segmentation accuracy was dependent on this binarization.

Table 2 summarizes the segmentation accuracies on the
random test pairs of MSRC dataset. The accuracy is mea-
sured by the intersection-over-union metric that is a stan-
dard in PASCAL challenges (i.e. For each image, Ac =

8Codes are available at [6]: http://www.biostat.wisc.edu/⇠vsingh/, [7]:
http://www.di.ens.fr/⇠joulin/.
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ranking and single-image segmentation, we compute the ex-
act solution for this step. However, we use belief propaga-
tion, which is an approximate maximization, for a large-
scale cosegmentation with full dependency. In most cases,
this relaxed solution is good enough to obtain a high-quality
segmentation result.

A more scalable setting: In practice, a large-scale im-
age set is likely to contain various noisy information as well.
If heterogeneous images are cosegmented, then the results
would be worsen than those of individual image segmen-
tation. Thus, one can first decompose I into disjoint sets
I = I1 [ · · ·[ IO so that each subset Io consists of similar
images. Then, Algorithm 1 can be applied to each Io sep-
arately. This decomposition can be done by the proposed

diversity ranking and clustering of Eq.(4) on the similarity
graph of I, which can be constructed by applying Gaussian
similarity to image descriptors (e.g. dense SIFT or GIST).

4. Experiments
We evaluate our approach with two different experi-

ments: (1) figure-ground segmentation with a pair of im-
ages (M=2 and K=2), and (2) scalability tests with a large
number of images (M⇠1000). The figure-ground tests are
performed to quantitatively compare our method with other
state-of-the-art cosegmentation techniques that are only ap-
plicable in this setting. The scalability tests evaluate how
well our algorithm works with real-world data.

Our Matlab toolbox including diversity ranking, single-
image segmentation, and cosegmentation, can be found at
http://www.cs.cmu.edu/⇠gunhee.

4.1. Evaluation on Figure-ground Cosegmentation

In the figure-ground tests, we use MSRC dataset [17],
which provides 30 pixel-wise labeled images per object.
Two recent cosegmentation methods, [6] and [7], are com-
pared using their implementation with the default parameter
setting8. We run [6], [7], and our method on randomly gen-
erated 100 pairs in each class.

Unlike the others, the method of [6] requires priori la-
bels of foreground (fg) and background (bg) RGB colors.
In order to obtain labels, we fist identify the fg and bg re-
gions of each image from the ground truth. Then, we apply
K-means to the RGB space of fg and bg pixels to compute
three cluster centers each, which are used as labels (i.e. total
6 fg and 6 bg RGB labels in each pair). These labels can be
regarded as strong supervision, but they were used because
the performance of [6] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground
segmentation, we add an additional step to generate the bi-
nary segmentation results. Our approach iteratively chooses
large and coherent regions across input images in a bottom-
up way. Thus, if the foreground object consists of several
distinct regions, it is likely to segment them into multiple
regions. For binary segmentation, we first safely coseg-
ment a pair of images with a large K (K=8 in our ex-
periments). Then, we apply Normalized cuts to the sim-
ilarity graph of eight pairs of cosegments to obtain two
balanced and discriminative partitions. We observed that
our approach showed excellent performance for detecting a
moderate number of cosegments but the final figure-ground
segmentation accuracy was dependent on this binarization.

Table 2 summarizes the segmentation accuracies on the
random test pairs of MSRC dataset. The accuracy is mea-
sured by the intersection-over-union metric that is a stan-
dard in PASCAL challenges (i.e. For each image, Ac =

8Codes are available at [6]: http://www.biostat.wisc.edu/⇠vsingh/, [7]:
http://www.di.ens.fr/⇠joulin/.
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co-segmentation 
by maximizing 
anisotropic diffusion 
(Kim et al 2011) 

environmental monitoring 
(Krause, …) 

weakly supervised 
object detection 
(Song et al 2014) 

max F (S)

inferring networks 
(Gomez Rodriguez et al 2012) 

diverse 
recommendations 
(Yue & Guestrin) 



Monotonicity 

if S ✓ T then F (S)  F (T )

3 5 1 



Monotonicity – how check? 

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

gain:  +5 - 8 

if A ✓ B then F (A)  F (B)

Let B = A [ {a}. F (A [ {a})� F (A) � 0.F (A [ {a})� F (A)| {z }
marginal gain

� 0



Maximizing monotone functions 

•  NP-hard 
•  approximation: greedy algorithms 

max

|S|k
F (S)

if A ✓ B then F (A)  F (B)



Maximizing monotone functions 

max

S
F (S) s.t. |S|  k

•  greedy algorithm: 
 

 
 

    for i = 0, …, k-1 
 
 
 
 
 

S0 = ;

e⇤ = arg max

e2V\Si

F (Si [ {e})

Si+1 = Si [ {e⇤}

How “good” is          ? Sk



Pedestrian detection 
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On Detection of Multiple Object Instances
using Hough Transforms
Olga Barinova Victor Lempitsky Pushmeet Kohli

Abstract—Hough transform based methods for detecting multiple objects use non-maxima suppression or mode-seeking to locate
and distinguish peaks in Hough images. Such postprocessing requires tuning of many parameters and is often fragile, especially when
objects are located spatially close to each other. In this paper, we develop a new probabilistic framework for object detection which is
related to the Hough transform. It shares the simplicity and wide applicability of the Hough transform but at the same time, bypasses
the problem of multiple peak identification in Hough images, and permits detection of multiple objects without invoking non-maximum
suppression heuristics. Our experiments demonstrate that this method results in a significant improvement in detection accuracy both
for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.

Index Terms—Hough Transforms, Object Detection in Images, Line Detection, Scene Understanding.

F

1 HOUGH TRANSFORM IN OBJECT DETEC-
TION
The Hough transform [1] is one of the classical computer
vision techniques which dates 50 years back. It was
initially suggested as a method for line detection in edge
maps of images but was then extended to detect general
low-parametric objects such as circles [2]. In recent years,
Hough-based methods were successfully adapted to the
problem of part-based category-level object detection
where they have obtained state-of-the-art results for
some popular datasets [3]–[8].

Both the classical Hough transform and its more mod-
ern variants proceed by converting the input image into
a new representation called the Hough image which lives
in a domain called the Hough space (Figure 1). Each point
in the Hough space corresponds to a hypothesis about
the object of interest being present in the original image
at a particular location and configuration. The dimen-
sionality of the Hough image thus equals the number of
degrees of freedom for the configuration(+location) of
the object.

Any Hough transform based method essentially works
by splitting the input image into a set of voting elements.
Each such element votes for the hypotheses that might
have generated this element. For instance, a feature that
fires on faces might vote for the presence of a person’s
centroid (torso) in location just below it. Of course,
voting elements do not provide evidence for the exact lo-
calization and thus their votes are distributed over many

. Olga Barinova is with Lomonosov Moscow State University, Moscow,
Russia. Email: obarinova@graphics.cs.msu.ru.
Victor Lempitsky is with Yandex, Moscow, Russia.
Email:victorlempitsky@gmail.com.
Pushmeet Kohli is with Microsoft Research, Cambridge, UK.
Email:pkohli@microsoft.com

Line detection task classic Hough transform

Pedestrian detection task Hough forest [5] transform

Fig. 1. Variants of Hough transform render the detection
tasks (left) into the tasks of peaks identification in Hough
images (right). As can be seen, in the presence of multiple
close objects identifying the peaks in Hough images is
a highly non-trivial problem in itself. The probabilistic
framework developed in this paper addresses this prob-
lem without invoking non-maxima suppression or mode
seeking heuristics.

different hypothesis in the Hough space. Large values
of the vote are given to hypotheses that might have
generated the voting element with high probability. The
votes from different voting elements pixels are added
together into a Hough image. The objects of interest
are then detected as peaks in the Hough image, with
the height of the peak providing the confidence of the
detection.

Voting elements Hypotheses 
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related to the Hough transform. It shares the simplicity and wide applicability of the Hough transform but at the same time, bypasses
the problem of multiple peak identification in Hough images, and permits detection of multiple objects without invoking non-maximum
suppression heuristics. Our experiments demonstrate that this method results in a significant improvement in detection accuracy both
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maps of images but was then extended to detect general
low-parametric objects such as circles [2]. In recent years,
Hough-based methods were successfully adapted to the
problem of part-based category-level object detection
where they have obtained state-of-the-art results for
some popular datasets [3]–[8].

Both the classical Hough transform and its more mod-
ern variants proceed by converting the input image into
a new representation called the Hough image which lives
in a domain called the Hough space (Figure 1). Each point
in the Hough space corresponds to a hypothesis about
the object of interest being present in the original image
at a particular location and configuration. The dimen-
sionality of the Hough image thus equals the number of
degrees of freedom for the configuration(+location) of
the object.

Any Hough transform based method essentially works
by splitting the input image into a set of voting elements.
Each such element votes for the hypotheses that might
have generated this element. For instance, a feature that
fires on faces might vote for the presence of a person’s
centroid (torso) in location just below it. Of course,
voting elements do not provide evidence for the exact lo-
calization and thus their votes are distributed over many
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Line detection task classic Hough transform

Pedestrian detection task Hough forest [5] transform

Fig. 1. Variants of Hough transform render the detection
tasks (left) into the tasks of peaks identification in Hough
images (right). As can be seen, in the presence of multiple
close objects identifying the peaks in Hough images is
a highly non-trivial problem in itself. The probabilistic
framework developed in this paper addresses this prob-
lem without invoking non-maxima suppression or mode
seeking heuristics.

different hypothesis in the Hough space. Large values
of the vote are given to hypotheses that might have
generated the voting element with high probability. The
votes from different voting elements pixels are added
together into a Hough image. The objects of interest
are then detected as peaks in the Hough image, with
the height of the peak providing the confidence of the
detection.
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Illustrations courtesy of Pushmeet Kohli (Barinova et al.’10) 
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Illustrations courtesy of Pushmeet Kohli 

Joint MAP inference: 
 
 
 
 

F (S) =
X

i

max

j2S
wi,j

Weight element i wrt hyp. j 



Inference 

Using the Hough forest trained in [Gall&Lempitsky CVPR09] 

Datasets from [Andriluka et al. CVPR 2008] 
(with strongly occluded pedestrians added) 

Illustrations courtesy of Pushmeet Kohli 



How good is greedy? in practice… 
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How good is greedy? … in theory 

max

S
F (S) s.t. |S|  k

Theorem (Nemhauser, Fisher, Wolsey `78) 
 

F monotone submodular,         solution of greedy. Then 
 
 
 
 

Sk

F (Sk) �
⇣
1� 1

e

⌘
F (S⇤)

in general, no poly-time algorithm can do better than that! 

optimal solution 



Questions 
•  What if I have more complex constraints? 
–  budget constraints 
–  matroid constraints 

•  Greedy takes O(nk) time. What if n, k are large? 
 
•  What if my function is not monotone? 



Roadmap 
•  Submodular set functions 
–  definition & basic properties 
–  links to convexity 
–  special polyhedra 

•  Minimizing submodular functions 
–  general and special cases 
–  constraints 

•  Maximizing submodular functions 


