Submodular Functions and

Machine Learning

MLSS Kyoto

Stefanie Jegelka

MIT

Resources

- submodularity.org
- people.csail.mit.edu/stefje/mlss/literature.pdf references for the lectures, pointers to surveys, papers, books
- discml.cc talks on submodularity in machine learning
Submodular
Functions
and
Optimization
Second Edition

Submodular functions and convexity
L. Lovász

Eötvös Loránd University, Department of Analysis I, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Submodular Function Maximization
Andreas Krause (ETH Zurich)
Daniel Golovin (Google)
Submodular Function Minimization
on Chapter 7 of the Handbook on Discr Math. Program., Ser. B (2008) 112:45-64
DOI 10.1007/s10107-006-0084-2
FULL LENGTH PAPER

Submodular function minimization

Satoru Iwata

Setup

- ground set \mathcal{V}
- (scoring) function

$$
F: 2^{\mathcal{V}} \rightarrow \mathbb{R}_{+}
$$

$$
\max F(S)
$$

Submodularity

$A \subseteq B$

$F(A \cup s)-F(A)$
extra cost:
one drink

$\geq \quad F(B \cup s)-F(B)$
extra cost:
free refill :)
diminishing marginal costs

Roadmap

- Submodular set functions
- links to convexity
- special polyhedra
- Minimizing submodular functions
- general and special cases
- constraints
- Maximizing submodular functions
- monotone \& non-monotone
- repulsive point processes

Maximizing Influence

$F(S)=$ expected $\#$ infected nodes

$$
F(S \cup s)-F(S) \quad \geq \quad F(T \cup s)-F(T)
$$

Informative Subsets

- where put sensors?
- which experiments?
- summarization
$F(S)=$ "information"

Summarization

- videos, text, pictures ...
- would like:
relevance, reliability, diversity

Monotonicity

$$
\text { if } S \subseteq T \quad \text { then } \quad F(S) \leq F(T)
$$

Maximizing monotone functions

$$
\text { if } A \subseteq B \quad \text { then } \quad F(A) \leq F(B)
$$

$$
\max _{|S| \leq k} F(S)
$$

- NP-hard
- approximation: greedy algorithms

Maximizing monotone functions

$$
\max _{S} F(S) \text { s.t. }|S| \leq k
$$

- greedy algorithm:

$$
\begin{aligned}
& S_{0}=\emptyset \\
& \text { for } i=0, \ldots, k-1 \\
& \qquad e^{*}=\arg \max _{e \in \mathcal{V} \backslash S_{i}} F\left(S_{i} \cup\{e\}\right) \\
& \quad S_{i+1}=S_{i} \cup\left\{e^{*}\right\}
\end{aligned}
$$

How good is greedy? ... in theory

$$
\max _{S} F(S) \text { s.t. }|S| \leq k
$$

Theorem (Nemhauser, Fisher, Wolsey `78)
F monotone submodular, S_{k} solution of greedy. Then

$$
F\left(S_{k}\right) \geq\left(1-\frac{1}{e}\right) F\left(S^{*}\right)
$$

in general, no poly-time algorithm can do better than that!

Questions

- What if I have more complex constraints?
- budget constraints
- matroid constraints
- Greedy takes $O(n k)$ time. What if n, k are large?
- What if my function is not monotone?

More complex constraints: budget

$$
\max F(S) \text { s.t. } \sum_{e \in S} c(e) \leq B
$$

1. run greedy: S_{gr}
2. run a modified greedy: $S_{\text {mod }}$

$$
e^{*}=\arg \max \frac{F\left(S_{i} \cup\{e\}\right)-F\left(S_{i}\right)}{c(e)}
$$

3. pick better of $S_{\mathrm{gr}}, S_{\text {mod }}$
\rightarrow approximation factor: $\frac{1}{2}\left(1-\frac{1}{e}\right)$ even better but less fast: partial enumeration (Sviridenko, 2004) or filtering (Badanidiyuru \& Vondrák 2014)

Example: Camera network

- Ground set:

$$
V=\left\{1_{a}, 1_{b}, \ldots, 5_{a}, 5_{b}\right\}
$$

- Sensing quality model: $F: 2^{V} \rightarrow \mathbb{R}$
- Configuration (subset) is feasible if no camera is pointed in two directions at once
(partition) matroid constraint!

MatMoldS (semi-formally)

S is independent (= feasible) if ...

Uniform matroid

... S contains at most one element from each square

Partition matroid

... S contains no cycles

Graphic matroid

matroid properties:

- S independent $\rightarrow T \subseteq$ S also independent

Matroids

S is independent (=feasible) if ...

... S contains no cycles

Graphic matroid

- S independent $\rightarrow T \subseteq S$ also independent
- Exchange property: S, U independent, $|S|>|U|$
\rightarrow some $e \in S$ can be added to $U: U \cup e$ independent

Example: Camera network

- Ground set:

$$
V=\left\{1_{a}, 1_{b}, \ldots, 5_{a}, 5_{b}\right\}
$$

- Sensing quality model: $F: 2^{V} \rightarrow \mathbb{R}$
- Configuration (subset) is feasible if no camera is pointed in two directions at once
(partition) matroid constraint:

$$
P_{1}=\left\{1_{a}, 1_{b}\right\}, \ldots, P_{5}=\left\{5_{a}, 5_{b}\right\}
$$

require:

$$
\left|S \cap P_{i}\right| \leq 1
$$

Greedy algorithm for matroids

$$
S=\emptyset
$$

While $\exists e: S \cup e$ independent

$$
S \leftarrow S \cup \underset{e: S \cup e \text { indep. }}{\operatorname{argmax}} F(S \cup e)
$$

Theorem (Nemhauser, Wolsey, Fisher 78) For monotone submodular functions:

$$
F\left(S_{\text {greedy }}\right) \geq \frac{1}{2} F\left(S^{*}\right)
$$

better approximation (1-1/e): relaxation

Submodular welfare

- assign set S_{i} to person i to maximize

$$
\sum_{i=1}^{k} F_{i}\left(S_{i}\right)
$$

- $\mathcal{V}=$ all possible assignments
- partition matroid: assign each item only once

Relaxation?

- concave analog of Lovasz extension: not in polynomial time :
- multi-linear extension: probability distribution from x sample element e with probability x_{e}

$$
\begin{aligned}
& f_{M}(x)=\sum_{S \subseteq \mathcal{V}} F(S) \prod_{e \in S} x_{e} \prod_{e \notin S}\left(1-x_{e}\right) \\
& =\mathbb{E}_{S \sim x}[F(S)]
\end{aligned}
$$

Multilinear extension

$$
f_{M}(x)=\sum_{S \subseteq \mathcal{V}} F(S) \prod_{e \in S} x_{e} \prod_{e \notin S}\left(1-x_{e}\right)
$$

1. concave in positive directions: $f_{M}(x+\lambda d)$ concave function of λ if $d \succeq 0$.
2. convex in swap directions: $f_{M}(x+\lambda d)$ convex function of λ if $d=1_{i}-1_{j}$
\rightarrow Optimization: continuous greedy move in directions

$$
v=\arg \max _{v \in P} v^{\top} \nabla f_{M}\left(x^{t}\right)
$$

Relaxation: algorithm

1. approximately maximize f_{M} (Frank-Wolfe like algorithm)
2. round (pipage rounding)

Lovász extension as expectation

- sample a threshold θ uniformly between 0 and 1
- Pick

$$
\begin{aligned}
S^{\theta}= & \left\{i \mid x_{i} \geq \theta\right\} \\
f_{L}(x) & =\mathbb{E}_{S \sim \theta}[F(S)] \\
& =\alpha_{i} F\left(S_{i}\right)
\end{aligned}
$$

Multilinear relaxation vs. Lovász ext.

$$
f_{M}(x)=\mathbb{E}_{S \sim x}[F(S)]
$$

$$
f_{L}(x)=\mathbb{E}_{S \sim \theta}[F(S)]
$$

- concave in positive directions, convex in others
- convex
- computable in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Multilinear relaxation vs. Lovász ext.

$$
f_{M}(x)=\mathbb{E}_{S \sim x}[F(S)]
$$

$$
f_{L}(x)=\mathbb{E}_{S \sim \theta}[F(S)]
$$

example: cut function

$$
f_{M}(x)=x_{u}+x_{v}-2 x_{u} x_{v}
$$

$$
f_{L}(x)=\left|x_{u}-x_{v}\right|
$$

Questions

- What if I have more complex constraints?
- budget constraints
- matroid constraints
- Greedy takes $O(n k)$ time. What if n, k are large?
- faster sequential algorithms
- filtering
- parallel / distributed
- What if my function is not monotone?

Making greedy faster: stochastic

approximation factor:

$$
F\left(S_{k}\right) \geq\left(1-\frac{1}{e}-\epsilon\right) F\left(S^{*}\right)
$$

$$
\max _{S} F(S) \text { s.t. }|S| \leq k
$$

for $i=1 \ldots k$:

- randomly pick set T of size $\frac{n}{k} \log \frac{1}{\epsilon}$
- find best a element in T and add

$$
\begin{aligned}
& a_{i}=\arg \max _{a \in T} F\left(a \mid S_{i-1}\right) \\
& S_{i} \leftarrow S_{i-1} \cup\left\{a_{i}\right\}
\end{aligned}
$$

Performance

faster

even more data distributed greedy algorithm?

Distributed greedy algorithms

Is this useful?

Distributed greedy algorithms

pick in parallel from m machines

Is this useful?

Approximation factor:
$O\left(\frac{1}{\min \{\sqrt{k}, m\}}\right)$

Distributed Greedy

Distributed greedy algorithms

- each machine: α-approximation algorithm
- level 2: β-approximation algorithm
\rightarrow overall approximation factor: $\mathbb{E}[F(\widehat{S})] \geq \frac{\alpha \beta}{\alpha+\beta} F\left(S^{*}\right)$

Distributed greedy algorithms

randomly distribute across machines
pick in parallel
from m machines

Pick the best of $m+1$ solutions

$$
\mathbb{E}[F(\widehat{S})] \geq \frac{\alpha \beta}{\alpha+\beta} F\left(S^{*}\right)
$$

With greedy algorithm on both levels: $\alpha=\beta=1-\frac{1}{e}$, overall factor:

$$
\frac{1}{2}\left(1-\frac{1}{e}\right)
$$

Questions

- What if I have more complex constraints?
- matroid constraints
- budget constraints
- Greedy takes $O(n k)$ time. What if n, k are large?
- stochastic
- distributed
- What if my function is not monotone?

Non-monotone functions

$$
\text { if } S \subseteq T \text { unen } \Gamma(S) \leq \Gamma(T)
$$

still assume:
$F(S) \geq 0 \quad$ for all S
3
5
1

Picking at random

- Let F be a non-monotone nonnegative submodular function. Pick set S uniformly at random from \mathcal{V}

$$
\operatorname{Pr}(\text { include } \mathrm{i})=1 / 2 \text { for all } \mathrm{i}
$$

- Then

$$
\mathbb{E}[F(S)] \geq \frac{1}{4} F\left(S^{*}\right)
$$

- If F is symmetric:

$$
\mathbb{E}[F(S)] \geq \frac{1}{2} F\left(S^{*}\right)
$$

Picking at random

- Can we do this for constrained (monotone) maximization?

$$
\max _{|S| \leq k} F(S)
$$

- Example:

$$
\begin{aligned}
& F(S)=|S \cap R|+\epsilon \cdot \min \{|S \cap B|, 1\} \\
& F\left(S^{*}\right)=F(R)=k
\end{aligned}
$$

$$
|R|=k
$$

- Pick k elements at random: will hit very few red ones

$$
\mathbb{E}[F(S)]<\left(\frac{k+\epsilon}{n}\right) F\left(S^{*}\right)
$$

Non-monotone maximization

$$
\max _{S \subseteq \mathcal{V}} F(S)
$$

Can we do better than completely random?

$$
\mathbb{E}[F(S)] \geq \frac{1}{4} F\left(S^{*}\right)
$$

Greedy can fail ...

$$
F(A)=\left|\left.\right|_{\substack{0 \\ a \in A \\ F \\ F \\ A \\ A \\ \text { al solution } \\ \text { area } \\ \hline}}\right|-\sum_{a \in A} c(a)
$$

$$
S_{0}=\emptyset \quad S_{1}=\emptyset \cup \arg \max _{a \in \mathcal{V}} F(a)
$$

Greedy can fail ...

$$
F(A)=\left|\bigcup_{a \in A} \operatorname{area}(a)\right|-\sum_{a \in A} c(a)
$$

greedy solution:

$$
F(A)=40
$$

optimal solution: $F(A)=95$

coverage: 100 cost: -60 gain 40
sensor 2

coverage: 30
cost:

- 1 gain

29

coverage: 30
cost: - 1
gain
29
sensor 4

Double (bidirectional) greedy

$$
\text { Start: } \quad A=\emptyset, B=\mathcal{V}
$$

for $i=1, \ldots, n$
//add or remove?

- gain of adding (to A$)$:

$$
\Delta_{+}=\left[F\left(A \cup a_{i}\right)-F(A)\right]_{+}
$$

- gain of removing (from B):

$$
\Delta_{-}=[F(B \backslash a)-F(B)]_{+}
$$

add with probability

$$
\mathbb{P}(\text { add })=\frac{\Delta_{+}}{\Delta_{+}+\Delta_{-}}=40 \%
$$

Double (bidirectional) greedy

$$
\text { Start: } \quad A=\emptyset, B=\mathcal{V}
$$

for $i=1, \ldots, n$
//add or remove?
add with probability

$$
\mathbb{P}(\text { add })=\frac{\Delta_{+}}{\Delta_{+}+\Delta_{-}}
$$

add to A or remove from B
coverage: 100
cost: -60

Double (bidirectional) greedy

Double (bidirectional) greedy

Start: $\quad A=\emptyset, B=\mathcal{V}$
for $i=1, \ldots, n$
//add or remove?
add with probability

$$
\mathbb{P}(\text { add })=\frac{\Delta_{+}}{\Delta_{+}+\Delta_{-}}=\frac{39}{2(2)}
$$

add to A or remove from B

coverage:	30
cost:	-1

Double greedy

$$
\max _{S \subseteq \mathcal{V}} F(S)
$$

Theorem (Buchbinder, Feldman, Naor, Schwartz '12)
F submodular, S_{g} solution of double greedy. Then

$$
\mathbb{E}\left[F\left(S_{g}\right)\right] \geq \frac{1}{2} F\left(S^{*}\right)
$$

Non-monotone maximization

- alternatives to double greedy? local search (Feige et al 2007)
- constraints? possible, but different algorithms
- distributed algorithms? yes!
- divide-and-conquer as before (de Ponte Barbosa et al 2015)
- concurrency control / Hogwild (Pan et al 2014)

Submodular maximization: summary

- many applications: diverse, informative subsets
- NP-hard, but greedy or local search
- distinguish monotone / non-monotone
- several constraints possible with constant approximation factors
(monotone and non-monotone)

Adaptive/sequential settings

Sequential diagnosis:

- learning a policy: model updated after observation
- submodularity does not apply directly
- suitable generalization: adaptive submodularity greedy results generalize :)

Roadmap

- Submodular set functions
- links to convexity
- special polyhedra
- Minimizing submodular functions
- general and special cases
- constraints
- Maximizing submodular functions
- monotone \& non-monotone
- repulsive point processes

Diversity and distributions

Point process:
distribution over sets

$$
P(S)
$$

Diversity priors

$$
P(S \mid \text { data }) \propto P(S) P(\text { data } \mid S)
$$

"spread out"

Point processes - examples

- independent coin flips

$$
P(Y=S)=\prod_{i \in S} p_{i} \prod_{j \notin S}\left(1-p_{j}\right)
$$

- if $S \cap T=\emptyset$
then $Y \cap S$ and $Y \cap T$ are independent

Point processes - examples

our examples: spatial coherence, "attractive" --- positive correlations

Repulsion?

in a graphical model:

- computationally hard
- dependencies between all elements \rightarrow fully connected

Determinantal point processes

- normalized similarity matrix K
- sample Y :

$$
P(S \subseteq Y)=\operatorname{det}\left(K_{S}\right)
$$

$$
\begin{aligned}
P\left(e_{i} \in Y\right) & =K_{i i} \\
P\left(e_{i}, e_{j} \in Y\right) & =K_{i i} K_{j j}-K_{i j}^{2} \quad \text { repulsion }
\end{aligned}
$$

$F(S)=\log \operatorname{det}\left(K_{S}\right)$ is submodular

DPP sample

similarities:

$$
s_{i j}=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{i}-x_{j}\right\|^{2}\right)
$$

$$
\sigma^{2}=35
$$

DPP sample - larger bandwidth

$$
s_{i j}=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{i}-x_{j}\right\|^{2}\right)
$$

$$
\sigma^{2}=135
$$

DPPs

- definitions
- computing marginals
- sampling
- computing the mode (MAP)

Determinantal Point Processes

- Macchi 1975: "fermion processes"
- Borodin \& Olshanski 2000: "determinantal PP"

2 Definitions:

- marginal kernel K:

$$
P(S \subseteq Y)=\operatorname{det}\left(K_{S}\right)
$$

- positive semidefinite
- eigenvalues in [0,1]: $0 \preceq K \preceq 1$
- L-ensemble: (Borodin \& Rains, 2005)

$$
P(Y=T) \propto \operatorname{det}\left(L_{T}\right)
$$

- positive semidefinite L
- normalization constant:

$$
\sum_{S \subseteq \mathcal{V}} \operatorname{det}\left(L_{S}\right)=\operatorname{det}\left(L+I_{n}\right)
$$

2 Definitions

Marginal kernel

$$
P(S \subseteq Y)=\operatorname{det}\left(K_{S}\right)
$$

- $0 \preceq K \preceq 1$
- K from L :

$$
K=L(L+I)^{-1}
$$

$$
K=\sum_{k=1}^{n} \frac{\lambda_{k}}{1+\lambda_{k}} v_{k} v_{k}^{\top}
$$

L-ensemble

$$
P(Y=T) \propto \operatorname{det}\left(L_{T}\right)
$$

- $0 \preceq L$
- L from K :

$$
L=K(I-K)^{-1}
$$

$$
L=\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{\top}
$$

Geometric view

- data points x_{1}, \ldots, x_{n} : feature vectors in \mathbb{R}^{d}
- L-ensemble: $L_{i j}=x_{i}^{\top} x_{j}$
- Then $\quad P_{L}(S) \propto \operatorname{det}\left(L_{S}\right)=\operatorname{Vol}^{2}\left(\left\{x_{i}\right\}_{i \in S}\right)$

What happens if dimension $d<$ number of points n ?

"Everything" is simple ©

- normalization

$$
\sum_{S \subseteq \mathcal{V}} \operatorname{det}\left(L_{S}\right)=\operatorname{det}\left(L+I_{n}\right)
$$

- marginal probabilities: from marginal kernel

$$
K=L(L+I)^{-1}
$$

- conditioning:

$$
P(Y=A \cup B \mid A \subseteq Y)=\frac{\operatorname{det}\left(L_{A \cup B}\right)}{\operatorname{det}\left(L+I_{\mathcal{V} \backslash A}\right)}
$$

also a DPP (Borodin \& Rains, 2005)

How many points in the sample?

- L has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$
- cardinality $|Y|$ of sample: Poisson Binomial flip n coins, $\quad p_{k}($ head $)=\frac{\lambda_{k}}{\lambda_{k}+1} \quad$-- how many heads?

$$
\mathbb{E}[|Y|]=\sum_{k=1}^{n} \frac{\lambda_{k}}{\lambda_{k}+1}=\operatorname{trace}(K)
$$

Can we sample efficiently?

Sampling: main idea

- Every DPP is a mixture of "elementary" DPPs

$$
P_{L}(Y)=\sum_{T} \pi_{T} P^{T}(Y)=\frac{1}{Z} \sum_{T \subseteq\{1, \ldots, n\}} \prod_{k \in T} \lambda_{k} P^{T}(Y)
$$

1. Sample a component P^{T} with probability π_{T}
2. Sample Y from P^{T}

- L has n eigenvectors
- $T \subseteq\{1, \ldots, n\}$ indexes a set of eigenvectors
- $\pi_{T}=\prod_{k \in T} \frac{\lambda_{k}}{\operatorname{det}(L+I)}$

Sampling Y

- compute eigendecomposition $L=\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{\top}$

1. sample eigenvectors:
$V=\emptyset$
add v_{k} to V with probability $\frac{\lambda_{k}}{\lambda_{k}+1}$
2. sample |V| points:

\rightarrow recall: Bernoulli process,

$$
\mathbb{E}[|Y|]=\sum_{k=1}^{n} \frac{\lambda_{k}}{\lambda_{k}+1}
$$

Elementary DPP $P^{A}(Y)$

- "elementary" DPP: all eigenvalues of K are 0 or 1 .
- pick a set A of eigenvectors v_{k} of our L

$$
K^{A}=\sum_{k \in A} v_{k} v_{k}^{\top}
$$

- eigenvalues: $\underbrace{1,1, \ldots, 1}_{|A| \text { times }}, \underbrace{0,0, \ldots, 0}_{n-|A|}$
- sample from this DPP: $|Y|=|A|$ a.s.
- Why?

$$
\begin{array}{ll}
\mathbb{E}[|Y|]=|A| \quad & \text { for }|Y|>|A|: \\
& P_{K}(Y)=\operatorname{det}\left(K_{Y}^{A}\right)=0
\end{array}
$$

Sampling Y

- compute eigendecomposition $L=\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{\top}$

1. sample eigenvectors: $V=\emptyset$ add v_{k} to V with probability $\frac{\lambda_{k}}{\lambda_{k}+1}$

2. sample |V| points: $Y=\emptyset$

Sampling

Finding the mode

$$
P(Y=T) \propto \operatorname{det}\left(L_{T}\right)
$$

- find $T=\arg \max _{T \subseteq \mathcal{V}} P(T)$

$$
=\arg \max _{T \subseteq \mathcal{V}} \log \operatorname{det}\left(L_{T}\right) \leftarrow \text { submodular }
$$

- submodular maximization problem!

The simplest DPP

$$
K=\left[\begin{array}{cccc}
p_{1} & 0 & 0 & 0 \\
0 & p_{2} & 0 & 0 \\
0 & 0 & p_{3} & 0 \\
0 & 0 & 0 & p_{4}
\end{array}\right]
$$

$$
P(Y=S)=\prod_{i \in S} p_{i} \prod_{j \notin S}\left(1-p_{j}\right)
$$

Example: random spanning trees

- sample a spanning tree uniformly at random
- probability of a set of edges $S \subseteq \mathcal{E}$ occurring together?

$$
\operatorname{Pr}(S \subseteq T)
$$

- negative correlation: This is a DPP!

$$
\operatorname{Pr}(S \subseteq T) \leq \prod_{e \in S} \operatorname{Pr}(e \in T)
$$

feature vector for edge $e=(u, v)$
$b_{e}=\left[\begin{array}{r}0 \\ 1 \\ 0 \\ -1 \\ 0\end{array}\right] \leftarrow \mathrm{u} \quad x_{e}=\mathcal{L}^{\dagger / 2} b_{e}$

Application: pose estimation

Application: pose estimation

$$
L_{i j}=x_{i}^{\top} x_{j}=q_{i} \phi_{i}^{\top} \phi_{j} q_{j} \quad Q_{i j}=\phi_{i}^{\top} \phi_{j}
$$

$$
\operatorname{det}\left(L_{S}\right)=\left(\prod_{i \in S} q_{i}^{2}\right) \operatorname{det}\left(Q_{S}\right)
$$

- quality model: part detectors for likelihood of body part at location / orientation
- similarity model: location
- data: 73 still frames from TV shows, each 3+ people

Pose estimation

(Kulesza \& Taskar 10)

Summary

- Submodular set functions
- links to convexity
- special polyhedra
- Minimizing submodular functions
- general and special cases: polynomial-time
- constraints: NP-hard, approximations
- Maximizing submodular functions
- monotone \& non-monotone: NP-hard, constant-factor approximations
- determinantal point processes

Submodularity and machine learning

distributions over labels, sets
log-submodular/ supermodular probability e.g. "attractive" graphical models, determinantal point processes
(convex) regularization submodularity: "discrete convexity"
e.g. combinatorial sparse estimation

