

Submodular Functions and Machine Learning

MLSS Kyoto Stefanie Jegelka MIT

Resources

- submodularity.org
- people.csail.mit.edu/stefje/mlss/literature.pdf
 references for the lectures, pointers to surveys, papers, books
- discml.cc talks on submodularity in machine learning

Setup

- ground set ${\cal V}$
- (scoring) function $F: 2^{\mathcal{V}} \to \mathbb{R}_+$

Phir

max F(S)

Submodularity

diminishing marginal costs

Roadmap

- Submodular set functions
 - links to convexity
 - special polyhedra
- Minimizing submodular functions
 - general and special cases
 - constraints
- Maximizing submodular functions
 - monotone & non-monotone
 - repulsive point processes

Maximizing Influence

F(S) =expected # infected nodes

 $F(S \cup s) - F(S) \ge F(T \cup s) - F(T)$

Kempe, Kleinberg & Tardos 2003

Informative Subsets

- where put sensors?
- which experiments?
- summarization

F(S) = "information"

Mir

Summarization

- videos, text, pictures ...
- would like: relevance, reliability, diversity

Monotonicity

llii.

if $S \subseteq T$ then $F(S) \leq F(T)$

Maximizing monotone functions

if $A \subseteq B$ then $F(A) \leq F(B)$

- NP-hard
- approximation: greedy algorithms

Maximizing monotone functions

$$\max_{S} F(S) \text{ s.t. } |S| \le k$$

• greedy algorithm:

 $S_{0} = \emptyset$ for i = 0, ..., k-1 $e^{*} = \arg \max_{e \in \mathcal{V} \setminus S_{i}} F(S_{i} \cup \{e\})$ $S_{i+1} = S_{i} \cup \{e^{*}\}$

How good is greedy? ... in theory

$$\max_{S} F(S) \text{ s.t. } |S| \le k$$

Theorem (Nemhauser, Fisher, Wolsey `78) F monotone submodular, S_k solution of greedy. Then $F(S_k) \geq \left(1 - \frac{1}{e}\right) F(S^*)$ optimal solution

in general, no poly-time algorithm can do better than that!

Questions

- What if I have more complex constraints?
 - budget constraints
 - matroid constraints
- Greedy takes O(nk) time. What if n, k are large?
- What if my function is not monotone?

More complex constraints: budget

$$\max F(S) \text{ s.t. } \sum_{e \in S} c(e) \le B$$

- 1. run greedy: $S_{\rm gr}$
- 2. run a modified greedy: S_{mod}

$$e^* = \arg \max \frac{F(S_i \cup \{e\}) - F(S_i)}{c(e)}$$

3. pick better of $S_{\rm gr}$, $S_{\rm mod}$

→ approximation factor:
$$\frac{1}{2}\left(1-\frac{1}{e}\right)$$

even better but less fast: partial enumeration (Sviridenko, 2004) or filtering (Badanidiyuru & Vondrák 2014)

(Leskovec et al 2007)

Example: Camera network

- Ground set: $V = \{1_a, 1_b, \dots, 5_a, 5_b\}$
- Sensing quality model: $F: 2^V \to \mathbb{R}$
- Configuration (subset) is feasible if no camera is pointed in two directions
 at once

(partition) matroid constraint!

Matroids (semi-formally)

S is independent (= feasible) if ...

• S independent \rightarrow T \subseteq S also independent

Matroids

S is independent (=feasible) if ...

- S independent \rightarrow $T \subseteq$ S also independent
- Exchange property: S, U independent, |S| > |U|
 → some e ∈ S can be added to U: U ∪ e independent

Example: Camera network

- Ground set: $V = \{1_a, 1_b, \dots, 5_a, 5_b\}$
- Sensing quality model: $F: 2^V \to \mathbb{R}$
- Configuration (subset) is feasible if no camera is pointed in two directions at once

(partition) matroid constraint:

$$P_1 = \{1_a, 1_b\}, \dots, P_5 = \{5_a, 5_b\}$$

require:

$$|S \cap P_i| \le 1$$

Greedy algorithm for matroids

$$S = \emptyset$$

While $\exists e : S \cup e \text{ independent}$

$$S \leftarrow S \cup \underset{e:S \cup e \text{ indep.}}{\operatorname{argmax}} F(S \cup e)$$

Theorem (Nemhauser, Wolsey, Fisher 78) For monotone submodular functions: $F(S_{\text{greedy}}) \geq \frac{1}{2}F(S^*)$

better approximation (1-1/e): relaxation

Submodular welfare

• assign set S_i to person i to maximize

$$\sum_{i=1}^{k} F_i(S_i)$$

- $\mathcal{V} =$ all possible assignments
- partition matroid: assign each item only once

Relaxation?

- concave analog of Lovasz extension: not in polynomial time

 S
- multi-linear extension: probability distribution from x sample element e with probability x_e

$$f_{M}(x) = \sum_{S \subseteq \mathcal{V}} F(S) \prod_{e \in S} x_{e} \prod_{e \notin S} (1 - x_{e})$$

$$= \mathbb{E}_{S \sim x} [F(S)] \qquad p(1) = 0.5 \qquad \mathbf{x}$$

$$p(2) = 1.0 \qquad \mathbf{0}$$

$$p(3) = 0.5 \qquad \mathbf{0}$$

$$p(3) = 0.5 \qquad \mathbf{0}$$

$$p(3) = 0.5 \qquad \mathbf{0}$$

Multilinear extension

- 1. concave in positive directions: $f_M(x + \lambda d)$ concave function of λ if $d \succeq 0$.
- 2. convex in swap directions: $f_M(x+\lambda d)$ convex function of λ if $d = 1_i - 1_i$

Optimization: continuous greedy move in directions $v = \arg \max_{v \in P} v^{\top} \nabla f_M(x^t)$

Relaxation: algorithm

- 1. approximately maximize f_M (Frank-Wolfe like algorithm)
- 2. round (pipage rounding)

Lovász extension as expectation

- sample a threshold θ uniformly between 0 and 1
- Pick

$$S^{\theta} = \{ i \mid x_i \ge \theta \}$$

Mir

$$f_L(x) = \mathbb{E}_{S \sim \theta} [F(S)]$$
$$= \alpha_i F(S_i)$$

Multilinear relaxation vs. Lovász ext.

- concave in positive directions, convex in others
- approximate by sampling

- convex
- computable in O(n log n)

Multilinear relaxation vs. Lovász ext.

Questions

- What if I have more complex constraints?
 - budget constraints
 - matroid constraints
- Greedy takes O(nk) time. What if n, k are large?
 - faster sequential algorithms
 - filtering
 - parallel / distributed
- What if my function is not monotone?

Making greedy faster: stochastic

$$\max_{S} F(S) \text{ s.t. } |S| \le k$$

for i=1...k:

- randomly pick set *T* of size $\frac{n}{k} \log \frac{1}{\epsilon}$
- find best a element in T and add

$$a_{i} = \arg \max_{a \in T} F(a|S_{i-1})$$
$$S_{i} \leftarrow S_{i-1} \cup \{a_{i}\}$$

(Mirzasoleiman et al 2014)

Performance

even more data ... distributed greedy algorithm?

Distributed greedy algorithms

greedy is sequential. pick in parallel??

Mir

pick *k* elements on each machine.

combine and run greedy again.

Distributed greedy algorithms

pick in parallel from *m* machines

Is this useful?

(Mirzasoleiman et al 2013)

Distributed Greedy

In practice, performs often quite well.

- special structure: Improved guarantees if F is Lipschitz or a sum of many terms
- 2. randomization

Distributed greedy algorithms

- each machine: α -approximation algorithm
- level 2: β approximation algorithm
- → overall approximation factor: $\mathbb{E}[F(\widehat{S})] \geq \frac{\alpha\beta}{\alpha+\beta}F(S^*)$

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

Distributed greedy algorithms

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

Questions

- What if I have more complex constraints?
 - matroid constraints
 - budget constraints
- Greedy takes O(nk) time. What if n, k are large?
 - stochastic
 - distributed
- What if my function is not monotone?
Non-monotone functions

Picking at random

- Let F be a non-monotone nonnegative submodular function. Pick set S uniformly at random from ${\mathcal V}$

Pr(include i) = 1/2 for all i

• Then

 $\mathbb{E}[F(S)] \ge \frac{1}{4}F(S^*)$

• If F is symmetric:

 $\mathbb{E}[F(S)] \geq \frac{1}{2}F(S^*)$

Picking at random

• Can we do this for constrained (monotone) maximization?

 $\max_{|S| \le k} F(S)$

- Example: $F(S) = |S \cap R| + \epsilon \cdot \min\{|S \cap B|, 1\} \qquad |R| = k$ $F(S^*) = F(R) = k$
- Pick k elements at random: will hit very few red ones

$$\mathbb{E}[F(S)] < \Big(\frac{k+\epsilon}{n}\Big)F(S^*)$$

Non-monotone maximization

$$\max_{S \subseteq \mathcal{V}} F(S)$$

Can we do better than completely random?

$$\mathbb{E}[F(S)] \ge \frac{1}{4}F(S^*)$$

Greedy can fail ...

Greedy can fail ...

$$F(A) = \left| \bigcup_{a \in A} \operatorname{area}(a) \right| - \sum_{a \in A} c(a)$$

luir.

Start: $A = \emptyset, B = \mathcal{V}$

for *i*=1, ..., *n* //add or remove?

- gain of adding (to A): $\Delta_+ = [F(A \cup a_i) F(A)]_+$
- gain of removing (from B): $\Delta_{-} = [F(B \setminus a) - F(B)]_{+}$

add with probability

$$\mathbb{P}(\text{add}) = \frac{\Delta_+}{\Delta_+ + \Delta_-} = 40\%$$

Start:
$$A = \emptyset, B = \mathcal{V}$$

for *i*=1, ..., *n* //add or remove?

add with probability

$$\mathbb{P}(\text{add}) = \frac{\Delta_+}{\Delta_+ + \Delta_-}$$

add to A or remove from B

Double greedy

$$\max_{S \subseteq \mathcal{V}} F(S)$$

Theorem (Buchbinder, Feldman, Naor, Schwartz '12)

F submodular, S_g solution of double greedy. Then

$$\mathbb{E}[F(S_g)] \ge \frac{1}{2}F(S^*)$$

optimal solution

Non-monotone maximization

- alternatives to double greedy? local search (Feige et al 2007)
- constraints? possible, but different algorithms
- distributed algorithms? yes!
 - divide-and-conquer as before (de Ponte Barbosa et al 2015)
 - concurrency control / Hogwild (Pan et al 2014)

Submodular maximization: summary

- many applications: diverse, informative subsets
- NP-hard, but greedy or local search
- distinguish monotone / non-monotone
- several constraints possible with constant approximation factors (monotone and non-monotone)

Adaptive/sequential settings

Sequential diagnosis:

- learning a policy: model updated after observation
- submodularity does not apply directly
- suitable generalization: adaptive submodularity greedy results generalize ⁽ⁱ⁾

Roadmap

- Submodular set functions
 - links to convexity
 - special polyhedra
- Minimizing submodular functions
 - general and special cases
 - constraints
- Maximizing submodular functions
 - monotone & non-monotone
 - repulsive point processes

Diversity and distributions

Point process: distribution over sets Phir

P(S)

Diversity priors

luir.

$P(S \mid \text{data}) \propto P(S) P(\text{data} \mid S)$

"spread out"

Point processes – examples

• independent coin flips

$$P(Y = S) = \prod_{i \in S} p_i \prod_{j \notin S} (1 - p_j)$$

• if $S \cap T = \emptyset$ then $Y \cap S$ and $Y \cap T$ are independent

Point processes – examples

$$P(x|z) \propto P(z|x) P(x) \qquad x \in \{0,1\}^n$$

$$|abels pixel \\ values | x = \left\{ -\left(\sum_i \beta_i x_i + \sum_{ij} \nu_{ij} x_i x_j\right) \right\}$$

our examples: spatial coherence, "attractive" --- positive correlations

Repulsion?

in a graphical model:

- computationally hard
- dependencies between all elements → fully connected

Determinantal point processes

- normalized similarity matrix K
- sample *Y*:

 $P(S \subseteq Y) = \det(K_S)$

$$P(e_i \in Y) = K_{ii}$$

$$P(e_i, e_j \in Y) = K_{ii}K_{jj} - K_{ij}^2$$

$$= P(e_i \in Y)P(e_j \in Y) - K_{ij}^2$$
repulsion

 $F(S) = \log \det(K_S)$ is submodular

DPP sample

 $s_{ij} = \exp(-\frac{1}{2\sigma^2} ||x_i - x_j||^2)$

similarities:

$$\sigma^2 = 35$$

Phir

DPP sample – larger bandwidth

 $s_{ij} = \exp(-\frac{1}{2\sigma^2} ||x_i - x_j||^2)$

 $\sigma^2 = 135$

Plii

DPPs

- definitions
- computing marginals
- sampling
- computing the mode (MAP)

Determinantal Point Processes

- Macchi 1975: "fermion processes"
- Borodin & Olshanski 2000: "determinantal PP"

2 Definitions:

- marginal kernel K:
 - positive semidefinite
 - eigenvalues in [0,1]: $0 \leq K \leq 1$
- L-ensemble: (Borodin & Rains, 2005)
 - positive semidefinite L
 - normalization constant:

$$\sum_{S \subseteq \mathcal{V}} \det(L_S) = \det(L + I_n)$$

$$P(S \subseteq Y) = \det(K_S)$$

$$P(Y=T) \propto \det(L_T)$$

2 Definitions

Marginal kernel

- $P(S \subseteq Y) = \det(K_S)$
- $0 \leq K \leq 1$ •
- *K* from L:

$$K = L(L+I)^{-1}$$

$$K = \sum_{k=1}^{n} \frac{\lambda_k}{1 + \lambda_k} v_k v_k^{\top}$$

L-ensemble

$$P(Y=T) \propto \det(L_T)$$

l li î î

•
$$0 \leq L$$

• *L* from *K*:

$$L = K(I - K)^{-1}$$

$$L = \sum_{k=1}^{n} \lambda_k v_k v_k^{\top}$$

Geometric view

- data points x_1, \ldots, x_n : feature vectors in \mathbb{R}^d
- L-ensemble: $L_{ij} = x_i^\top x_j$
- Then $P_L(S) \propto \det(L_S) = \operatorname{Vol}^2(\{x_i\}_{i \in S})$

What happens if dimension d < number of points n?

"Everything" is simple ③

• normalization

$$\sum_{S \subseteq \mathcal{V}} \det(L_S) = \det(L + I_n)$$

• marginal probabilities: from marginal kernel

$$K = L(L+I)^{-1}$$

• conditioning:

.

$$P(Y = A \cup B \mid A \subseteq Y) = \frac{\det(L_{A \cup B})}{\det(L + I_{\mathcal{V} \setminus A})}$$

also a DPP (Borodin & Rains, 2005)

1

How many points in the sample?

- L has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$
- cardinality |Y| of sample: Poisson Binomial flip n coins, $p_k(head) = \frac{\lambda_k}{\lambda_k+1}$ - how many heads?

$$\mathbb{E}[|Y|] = \sum_{k=1}^{n} \frac{\lambda_k}{\lambda_k + 1} = \operatorname{trace}(K)$$

Can we sample efficiently?

Sampling: main idea

• Every DPP is a mixture of "elementary" DPPs

$$P_L(Y) = \sum_T \pi_T P^T(Y) \qquad = \frac{1}{Z} \sum_{T \subseteq \{1,\dots,n\}} \prod_{k \in T} \lambda_k P^T(Y)$$

- 1. Sample a component P^T with probability π_T
- 2. Sample Y from P^T
- *L* has n eigenvectors
- $T \subseteq \{1, \ldots, n\}$ indexes a set of eigenvectors

•
$$\pi_T = \prod_{k \in T} \frac{\lambda_k}{\det(L+I)}$$

Sampling Y

n

k=1

- compute eigendecomposition $L = \sum \lambda_k v_k v_k^{ op}$
- 1. sample eigenvectors: $V = \emptyset$ add v_k to V with probability $\frac{\lambda_k}{\lambda_k + 1}$
- 2. sample |V| points:

→ recall: Bernoulli process,

$$\mathbb{E}[|Y|] = \sum_{k=1}^{n} \frac{\lambda_k}{\lambda_k + 1}$$

(Hough et al 2006)

Elementary DPP $P^A(Y)$

- "elementary" DPP: all eigenvalues of K are 0 or 1.
- pick a set A of eigenvectors v_k of our L

$$K^A = \sum_{k \in A} v_k v_k^\top$$

- eigenvalues: $\underbrace{1, 1, \dots, 1}_{|A| \text{ times}}, \underbrace{0, 0, \dots, 0}_{n-|A|}$
- sample from this DPP: |Y| = |A| a.s.

- Why?

$$\mathbb{E}[|Y|] = |A| \qquad \text{for } |Y| > |A|:$$
$$P_K(Y) = \det(K_Y^A) = 0$$

Sampling Y

- compute eigendecomposition $L = \sum \lambda_k v_k v_k^{ op}$
- 1. sample eigenvectors: $V = \emptyset$ add v_k to V with probability $\frac{\lambda_k}{\lambda_k+1}$
- 2. sample |V| points: $Y = \emptyset$

n

(Hough et al 2006)

Sampling

from: (Kulesza & Taskar, FTML)

Phir

Finding the mode

$$P(Y=T) \propto \det(L_T)$$

• submodular maximization problem!

The simplest DPP

$$K = \begin{bmatrix} p_1 & 0 & 0 & 0 \\ 0 & p_2 & 0 & 0 \\ 0 & 0 & p_3 & 0 \\ 0 & 0 & 0 & p_4 \end{bmatrix}$$

$$P(Y = S) = \prod_{i \in S} p_i \prod_{j \notin S} (1 - p_j)$$
Example: random spanning trees

 sample a spanning tree uniformly at random

• probability of a set of edges $S \subseteq \mathcal{E}$ occurring together?

 $\Pr(S \subseteq T)$

 negative correlation: This is a DPP!

 $\Pr(S \subseteq T) \leq \prod_{e \in S} \Pr(e \in T)$

feature vector for edge e = (u, v)

$$b_e = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \leftarrow \mathbf{v} \qquad x_e = \mathcal{L}^{\dagger/2} b_e$$

Application: pose estimation

Phir

Application: pose estimation

$$L_{ij} = x_i^{\top} x_j = q_i \phi_i^{\top} \phi_j q_j \qquad Q_{ij} = \phi_i^{\top} \phi_j$$

quality score normalized feature vector
$$\det(L_S) = \left(\prod_{i \in S} q_i^2\right) \det(Q_S)$$

- quality model: part detectors for likelihood of body part at location / orientation
- similarity model: location
- data: 73 still frames from TV shows, each 3+ people

(Kulesza&Taskar 2010)

Pose estimation

Phir

(Kulesza & Taskar 10)

Summary

- Submodular set functions
 - links to convexity
 - special polyhedra
- Minimizing submodular functions
 - general and special cases: polynomial-time
 - constraints: NP-hard, approximations
- Maximizing submodular functions
 - monotone & non-monotone: NP-hard, constant-factor approximations
 - determinantal point processes

Submodularity and machine learning

distributions over labels, sets log-submodular/ supermodular probability e.g. "attractive" graphical models, determinantal point processes

> submodularity & machine learning!

(convex) regularization submodularity: "discrete convexity" e.g. combinatorial sparse estimation diffusion processes, covering, rank, connectivity, entropy, economies of scale, summarization, ... submodular phenomena