
Submodular Functions 
and 

Machine Learning 
MLSS Kyoto 

Stefanie Jegelka 
MIT 



Resources 
•  submodularity.org 
•  people.csail.mit.edu/stefje/mlss/literature.pdf 

references for the lectures, pointers to surveys, papers, books 
•  discml.cc  talks on submodularity in machine learning  



Setup 

•  ground set V

•  (scoring) function 

F : 2V ! R+

S ✓ V
max F (S)



Submodularity 
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extra cost:  
one drink 

|{z}

extra cost:  
free refill ! 

.| {z }

diminishing marginal costs 

F (A [ s)� F (A) � F (B [ s)� F (B)

BA

A ✓ B



Roadmap 
•  Submodular set functions 
–  links to convexity 
–  special polyhedra 

 

•  Minimizing submodular functions 
–  general and special cases 
–  constraints 

 

•  Maximizing submodular functions 
–  monotone & non-monotone 
–  repulsive point processes 



Maximizing Influence 

6"

F (S [ s)� F (S) F (T [ s)� F (T )�

Kempe, Kleinberg & Tardos 2003 

F (S) = expected # infected nodes



Informative Subsets 
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•  where put sensors? 
•  which experiments? 
•  summarization 

F (S) = “information”



Summarization 
•  videos, text, pictures … 
•  would like: 

relevance, reliability, diversity 
Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN )

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S  S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.
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Monotonicity 

if S ✓ T then F (S)  F (T )

3 5 1 



Maximizing monotone functions 

•  NP-hard 
•  approximation: greedy algorithms 

max

|S|k
F (S)

if A ✓ B then F (A)  F (B)



Maximizing monotone functions 

max

S
F (S) s.t. |S|  k

•  greedy algorithm: 
 

 
 

    for i = 0, …, k-1 
 
 
 
 
 

S0 = ;

e⇤ = arg max

e2V\Si

F (Si [ {e})

Si+1 = Si [ {e⇤}



How good is greedy? … in theory 

max

S
F (S) s.t. |S|  k

Theorem (Nemhauser, Fisher, Wolsey `78) 
 

F monotone submodular,         solution of greedy. Then 
 
 
 
 

Sk

F (Sk) �
⇣
1� 1

e

⌘
F (S⇤)

in general, no poly-time algorithm can do better than that! 

optimal solution 



Questions 
•  What if I have more complex constraints? 
–  budget constraints 
–  matroid constraints 

•  Greedy takes O(nk) time. What if n, k are large? 
 
•  What if my function is not monotone? 



More complex constraints:   budget 

 
 

1.  run greedy: 
2.  run a modified greedy: 

3.  pick better of        ,              
    
" approximation factor: 

max F (S) s.t.

X

e2S

c(e)  B

e⇤ = argmax

F (Si [ {e})� F (Si)

c(e)

Sgr

S
mod

Sgr S
mod

1

2

⇣
1� 1

e

⌘

(Leskovec et al 2007) 

even better but less fast: 
partial enumeration 
(Sviridenko, 2004) or 
filtering (Badanidiyuru & 
Vondrák 2014) 



Example: Camera network 
•  Ground set:   
•  Sensing quality model: 

•  Configuration (subset) is feasible if no camera is 
pointed in two directions 
at once 

1a

1b
3b

3a

V = {1a, 1b, . . . , 5a, 5b}

(partition) matroid 
constraint! 



Matroids (semi-formally) 
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S is independent ( = feasible) if … 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
     … |S| ≤ k 

 
 

Uniform matroid 

… S contains at most 
one element from each 
square 
 

Partition matroid 

 … S contains no cycles 
 
 

     Graphic matroid 

•  S independent   "   T     S also independent 
 

•  Exchange property:  S, U independent, |S| > |U| 
" some             can be added to U:             independent 

•  All maximal independent sets have the same size 

✓
matroid properties: 



Matroids 

17 

S is independent (=feasible) if … 
 

 
 
 
… |S| ≤ k    
 
 

Uniform matroid 

 
 
 

… S contains at most 
one element from each 

group 
 

Partition matroid 

 
 
 

     … S contains no 
cycles 

 
 

     Graphic matroid 

•  S independent   "   T     S also independent 
 

•  Exchange property:  S, U independent, |S| > |U| 
" some             can be added to U:             independent 

✓

e 2 S U [ e



Example: Camera network 
•  Ground set:   
•  Sensing quality model: 

•  Configuration (subset) is feasible if no camera is pointed in 
two directions at once 

1a

1b
3b

3a

V = {1a, 1b, . . . , 5a, 5b}

(partition) matroid 
constraint: 

P1 = {1a, 1b}, . . . , P5 = {5a, 5b}

|S \ Pi|  1

require: 



Greedy algorithm for matroids 

1a

3b

S = ;
While 9e : S [ e independent

S  S [ argmax

e:S[e indep.
F (S [ e)

Theorem (Nemhauser, Wolsey, Fisher 78) 
For monotone submodular functions: 
 
 

F (Sgreedy) � 1
2F (S⇤)

better approximation (1-1/e):  relaxation 



Submodular welfare 
•  assign set      to person 

to maximize 

•           all possible 
assignments 

•  partition matroid: 
assign each item only 
once 

Si i

kX

i=1

Fi(Si)

V =



Relaxation? 
•  concave analog of Lovasz extension: not in polynomial time   

# 
•  multi-linear extension: probability distribution from x 

sample element e with probability xe 

 
= E

S⇠x

[F (S)]

fM (x) =
X

S✓V
F (S)

Y

e2S

xe

Y

e/2S

(1� xe)

(Calinescu-Chekuri-Pal-Vondrak 2011) 

0.5

1.0

0.2

0.2

0.5

x

p(1) =

p(2) =

p(3) =



Multilinear extension 

 
 

1.  concave in positive directions: 
                      concave function 
of    if            .  
     

2.  convex in swap directions: 
                      convex function 
of     if              
 

! Optimization: continuous greedy 
move in directions 

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

fM (x) =
X

S✓V
F (S)

Y

e2S

xe

Y

e/2S

(1� xe)

fM (x+ �d)
d ⌫ 0�

fM (x+ �d)
d = 1i � 1j�0

v = argmax

v2P
v

>rfM (x

t
)



Relaxation: algorithm 

 

1.  approximately maximize fM (Frank-Wolfe like algorithm) 
2.  round   (pipage rounding) 

(Calinescu-Chekuri-Pal-Vondrak 2011) 



Lovász extension as expectation 

•  sample a threshold     
uniformly between 0 and 1 

•  Pick 

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

0.5

1.0

0.2

0.2

0.5

✓

S

✓ = { i | xi � ✓ }

✓ e.g. ✓ = 0.4
fL(x) = ES⇠✓ [F (S)]

= ↵iF (Si)



•  convex 

•  computable in O(n log n) 

0

0.5

1

0

0.5

1
0

0.2

0.4
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0.8

1

xa
xb

f(x
)

 
•  concave in positive 

directions, convex in 
others 

•  approximate by sampling 

0
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1
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0.8

1

Multilinear relaxation vs. Lovász ext. 

f

M

(x) = E
S⇠x

[F (S)]
fL(x) = ES⇠✓ [F (S)]
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Multilinear relaxation vs. Lovász ext. 

f

M

(x) = E
S⇠x

[F (S)]
fL(x) = ES⇠✓ [F (S)]

example: cut function 

fM (x) = xu + xv � 2xuxv fL(x) = |xu � xv|

vu



Questions 
•  What if I have more complex constraints? 
–  budget constraints 
–  matroid constraints 

•  Greedy takes O(nk) time. What if n, k are large? 
–  faster sequential algorithms 
–  filtering 
–  parallel / distributed 

 
•  What if my function is not monotone? 



Making greedy faster: stochastic 

for i=1…k: 
 

•  randomly pick set T of 
size 
 

•  find best a element in T 
and add  

max

S
F (S) s.t. |S|  k

n

k
log

1

✏

Si  Si�1 [ {ai}

ai = argmax

a2T
F (a|Si�1)

(Mirzasoleiman et al 2014) 

S

F (Sk) � (1� 1
e � ✏)F (S⇤)

approximation factor: 
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(d) Images 10K
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Figure 1: Performance comparisons. a), d) and g) show the performance of
all the algorithms for different values of k on a set of 10,000 Tiny Images,
Parkinsons Telemonitoring, and a set of 50,000 Tiny Images respectively. b), e)
and h) show the cost of all the algorithms for different values of k on the same
datasets. c), f), i) show the utility obtained versus cost for a fixed k = 200.

Lemma 2. Given a current solution A, the expected gain of Rand-Greedy

in one step is at least 1−ε
k

∑

a∈A∗\A ∆(a|A).

Proof. Let us estimate the probability that R∩ (A∗ \A) "= ∅. The set R consists
of s = n

k
log 1

ε
random samples from V \A (w.l.o.g. with repetition), and hence

Pr[R ∩ (A∗ \A) = ∅] =

(

1−
|A∗ \A|

|V \A|

)s

≤ e−s
|A∗\A|
|V \A|

≤ e−
s
n |A∗\A|.

Therefore, by using the concavity of 1 − e−
s
nx as a function of x and the fact

that x = |A∗ \A| ∈ [0, k], we have
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Distributed greedy algorithms 

even more data … 
         distributed greedy algorithm? 



Distributed greedy algorithms 

greedy is sequential. 
pick in parallel?? 

pick k elements  
on each machine. 

combine and run 
greedy again. 

Is this useful? 



Distributed greedy algorithms 

pick in parallel 
from m machines 

Is this useful? 

(Mirzasoleiman et al 2013) 

Approximation factor: 
 
 
 
 

O
⇣ 1

min{
p
k,m}

⌘



Distributed Greedy 
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Figure 1: Performance of GREEDI compared to the other benchmarks. a) and b) show the mean and standard
deviation of the ratio of distributed vs. centralized solution for global and local objective functions with budget
k = 50 and varying the number m of partitions, for a set of 10,000 Tiny Images. c) shows the distributed
solution with m = 8000 and varying k for local objective functions on the whole dataset of 80,000,000 Tiny
Images. e) shows the ratio of distributed vs. centralized solution with m = 10 and varying k for Parkinsons
Telemonitoring. f) shows the same ratio with k = 50 and varying m on the same dataset, and g) shows the
distributed solution for m = 32 with varying budget k on Yahoo! Webscope data. d) shows a set of cluster
exemplars discovered by GREEDI, and each column in h) shows 8 images nearest to exemplars 9 and 16 in d).

from people with early-stage Parkinson’s disease. We normalized the vectors to zero mean and unit
norm. Fig. 1f compares the performance GREEDI to the benchmarks with fixed k = 50 and varying
number of partitions m. Similarly, Fig 1e shows the results for fixed m = 10 and varying k. We
find that GREEDI significantly outperforms the benchmarks.

Large scale experiments with Hadoop. Our second large scale experiment consists of 45,811,883
user visits from the Featured Tab of the Today Module on Yahoo! Front Page [26]. For each visit,
both the user and each of the candidate articles are associated with a feature vector of dimension 6.
Here, we used the normalized user features. Our experimental setup was a cluster of 5 quad-core ma-
chines running Hadoop with the number of reducers set to m = 32. Each reducer performed the lazy
greedy algorithm on its own set of 1,431,621 vectors (⇡34MB) in order to extract 128 elements with
the highest marginal gains w.r.t the local elements of the dataset in that particular partition. We then
merged the results and performed another round of lazy greedy selection on the merged results to ex-
tract the final active set of size 128. The maximum running time per reduce task was 2.5 hours. Fig.
1g shows the performance of GREEDI compared to the benchmarks. We note again that GREEDI
significantly outperforms the other distributed benchmarks and can scale well to very large datasets.

6 Conclusion
We have developed an efficient distributed protocol GREEDI, for maximizing a submodular function
subject to cardinality constraints. We have theoretically analyzed the performance of our method and
showed under certain natural conditions it performs very close to the centralized (albeit impractical
in massive data sets) greedy solution. We have also demonstrated the effectiveness of our approach
through extensive large scale experiments using Hadoop. We believe our results provide an impor-
tant step towards solving submodular optimization problems in very large scale, real applications.

Acknowledgments. This research was supported by SNF 200021-137971, DARPA MSEE
FA8650-11-1-7156, ERC StG 307036, a Microsoft Faculty Fellowship, an ETH Fellowship,
Scottish Informatics and Computer Science Alliance.
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# machines (# parts in partition) 

(Mirzasoleiman et al 2013) 

In practice, 
performs often 
quite well. 

1.  special structure: 
Improved guarantees 
if F is Lipschitz or 
a sum of many terms 

2.   randomization 



Distributed greedy algorithms 

pick in parallel 
from m machines 

Pick the best of m+1 solutions 

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015) 

randomly distribute 
across machines 

•  each machine:       approximation algorithm 
•  level 2:       approximation algorithm 
"  overall approximation factor: 

↵�
��

E[F (bS)] � ↵�

↵+ �
F (S⇤)



Distributed greedy algorithms 

pick in parallel 
from m machines 

Pick the best of m+1 solutions 

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015) 

randomly distribute 
across machines 

E[F (bS)] � ↵�

↵+ �
F (S⇤) With greedy algorithm on both levels: 

                              , overall factor: 
  
 
 
 

1
2 (1�

1
e )

↵ = � = 1� 1
e



Questions 
•  What if I have more complex constraints? 
–  matroid constraints 
–  budget constraints 

•  Greedy takes O(nk) time. What if n, k are large? 
–  stochastic 
–  distributed 

 

•  What if my function is not monotone? 



Non-monotone functions 

if S ✓ T then F (S)  F (T )

3 5 1 F (S) � 0 for all S
still assume: 



Picking at random 
•  Let F be a non-monotone nonnegative submodular function. 

Pick set     uniformly at random from 

•  Then 

•  If F is symmetric:  

V

Pr( include i) = 1/2 for all i

E[F (S)] � 1
4F (S⇤)

E[F (S)] � 1
2F (S⇤)

S



Picking at random 
•  Can we do this for constrained (monotone) maximization? 

•  Example: 

•  Pick k elements at random: will hit very few red ones 

max

|S|k
F (S)

F (S) = |S \R|+ ✏ ·min{|S \B|, 1} |R| = k

F (S⇤) = F (R) = k

E[F (S)] <
⇣k + ✏

n

⌘
F (S⇤)



Non-monotone maximization 

Can we do better than completely random? 

max

S✓V
F (S)

E[F (S)] � 1
4F (S⇤)



F (A) = 95

optimal solution 
F (A) = 40
greedy solution: 

Greedy can fail … 

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4 

coverage: 100 
cost:          -60 
gain            40 

coverage:   30 
cost:          -  1 
gain            29 

coverage:   30 
cost:          -  1 
gain            29 

coverage:   40 
cost:          -  3 
gain            37 

S1 = ; [ argmax

a2V
F (a)S0 = ;



F (A) = 95optimal solution: F (A) = 40
greedy solution: 

Greedy can fail … 

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4 

coverage: 100 
cost:          -60 
gain            40 

coverage:   30 
cost:          -  1 
gain            29 

coverage:   30 
cost:          -  1 
gain            29 

coverage:   40 
cost:          -  3 
gain            37 



Double (bidirectional) greedy 

V

A

B

A = ;, B = VStart: 

for  i=1, …, n //add or remove? 

•  gain of adding (to A): 

•  gain of removing (from B): 

P(add) = �+

�+ +��

coverage: 100 
cost:          -60 

�+ = 40

�� = 60

= 40% 

add with probability 

�+ = [F (A [ ai)� F (A) ]+

�� = [F (B \ a)� F (B) ]+



Double (bidirectional) greedy 

V

A

B

A = ;, B = VStart: 

for  i=1, …, n //add or remove? 

P(add) = �+

�+ +��

coverage: 100 
cost:          -60 

�+ = 40

�� = 60

add with probability 

add to A  or  remove from B 



Double (bidirectional) greedy 

V

A

B

A = ;, B = VStart: 

for  i=1, …, n //add or remove? 

P(add) = �+

�+ +��

coverage:   30 
cost:          -  1 

add with probability 

add to A  or  remove from B 

�+ = 29

�� = [�29]+ = 0

=
29

29
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Double (bidirectional) greedy 

V

A

B

A = ;, B = VStart: 

for  i=1, …, n //add or remove? 

P(add) = �+

�+ +��

coverage:   30 
cost:          -  1 

add with probability 

add to A  or  remove from B 

�+ = 29

=
37

40

�� = 0



Double greedy 

Theorem (Buchbinder, Feldman, Naor, Schwartz ‘12) 
 

F  submodular,         solution of double greedy. Then 
 
 
 
 optimal solution 

Sg

max

S✓V
F (S)

E[F (Sg)] � 1
2F (S⇤)



Non-monotone maximization 
•  alternatives to double greedy?  

local search (Feige et al 2007) 

•  constraints?  
possible, but different algorithms 

•  distributed algorithms? yes! 
–  divide-and-conquer as before (de Ponte Barbosa et al 2015) 
–  concurrency control / Hogwild (Pan et al 2014) 



Submodular maximization: summary 
•  many applications: diverse, informative subsets 

•  NP-hard, but greedy or local search 
•  distinguish monotone / non-monotone 

•  several constraints possible with constant 
approximation factors 
(monotone and non-monotone) 



Adaptive/sequential settings 
Sequential diagnosis: 

 
 
 
 

•  learning a policy:  model updated after observation 
•  submodularity does not apply directly 
•  suitable generalization: adaptive submodularity 

greedy results generalize ! 

x1"

x2"

x3"

1"

1"

0"

0" 0"1"

="

="

="

x4"="

(Golovin & Krause 2013) 



Roadmap 
•  Submodular set functions 
–  links to convexity 
–  special polyhedra 

 

•  Minimizing submodular functions 
–  general and special cases 
–  constraints 

 

•  Maximizing submodular functions 
–  monotone & non-monotone 
–  repulsive point processes 



Diversity and distributions 

Point process: 
distribution over sets 
 

S ✓ V

P (S)



Diversity priors 
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Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

P (S | data) / P (S) P (data | S)

“spread out” 



Point processes -- examples 
•  independent coin flips 

•  if 
then              and               are independent Y \ S Y \ T

P (Y = S) =
Y

i2S

pi
Y

j /2S

(1� pj)

S \ T = ;



Point processes -- examples 
x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

P (z|x)P (x)P (x|z) /

/ exp

n

�
�

X

i
�ixi +

X

ij
⌫ijxixj

�

o

our examples: spatial coherence, “attractive” --- positive correlations 

labels pixel  
values 

x 2 {0, 1}n



Repulsion? 
in a graphical model: 
•  computationally hard 
•  dependencies between all elements " fully 

connected 



Determinantal point processes 
S

S

K

•  normalized similarity matrix 

•  sample Y: 

K

P (S ✓ Y ) = det(KS)

P (ei 2 Y ) = Kii

P (ei, ej 2 Y ) = KiiKjj �K2
ij

= P (ei 2 Y )P (ej 2 Y )�K2
ij

repulsion 

F (S) = log det(KS) is submodular 



DPP sample 
uniform DPP 

sij = exp(� 1
2�2 kxi � xjk2) �2 = 35

similarities: 



DPP sample – larger bandwidth 
uniform DPP 

�2 = 135sij = exp(� 1
2�2 kxi � xjk2)



DPPs 
•  definitions 

•  computing marginals 

•  sampling 

•  computing the mode (MAP) 



Determinantal Point Processes 
•  Macchi 1975: “fermion processes” 
•  Borodin & Olshanski 2000: “determinantal PP” 

2 Definitions: 
•  marginal kernel K:  
–  positive semidefinite 
–  eigenvalues in [0,1]: 

•  L-ensemble: (Borodin & Rains, 2005) 

–  positive semidefinite L 
–  normalization constant: 

 

P (S ✓ Y ) = det(KS)

0 � K � 1

P (Y = T ) / det(LT )

X

S✓V
det(LS) = det(L+ In)



2 Definitions 
Marginal kernel 

•    

•  K from L:   

L-ensemble 

•    

•  L from K: 

P (S ✓ Y ) = det(KS) P (Y = T ) / det(LT )

0 � K � 1 0 � L

K = L(L+ I)�1

L =
nX

k=1

�kvkv
>
kK =

nX

k=1

�k
1+�k

vkv
>
k

L = K(I �K)�1



Geometric view 
•  data points                     :  feature vectors in 
•  L-ensemble: 

•  Then 

x1, . . . , xn Rd

Lij = x

>
i xj

PL(S) / det(LS) = Vol

2
({xi}i2S)

What happens if dimension d < number of points n? 



“Everything” is simple ! 
•  normalization 

•  marginal probabilities: from marginal kernel 

•  conditioning: 
 
 
 
also a DPP (Borodin & Rains, 2005) 

•  … 

X

S✓V
det(LS) = det(L+ In)

K = L(L+ I)�1

P (Y = A [B | A ✓ Y ) =
det(LA[B)

det(L+ IV\A)



How many points in the sample? 
•  L  has eigenvalues 

•  cardinality |Y| of sample: Poisson Binomial 
flip n coins,                                       -- how many heads?  

�1,�2, . . . ,�n

pk(head) =
�k

�k+1

E[|Y |] =
nX

k=1

�k

�k + 1
= trace(K)

Can we sample efficiently? 



Sampling: main idea 
•  Every DPP is a mixture of “elementary” DPPs 

1.  Sample a component         with probability 

2.  Sample       from   
 
•     has n eigenvectors 
•                           indexes a set of eigenvectors 
•    
 

PL(Y ) =
X

T

⇡TP
T (Y )

L

T ✓ {1, . . . , n}

⇡T =
Y

k2T

�k
det(L+I)

= 1
Z

X

T✓{1,...,n}

Y

k2T

�kP
T (Y )

PT ⇡T

Y PT



Sampling Y 
•  compute eigendecomposition 
 

1.  sample eigenvectors:    
 
add      to      with probability 
  

2.  sample |V| points: 
 

vk
V = ;

V
�k

�k+1

(Hough et al 2006) 

L =
nX

k=1

�kvkv
>
k

" recall: Bernoulli process, 

E[|Y |] =
nX

k=1

�k

�k + 1

V



Elementary DPP 
•  “elementary” DPP:  all eigenvalues of K are 0 or 1. 
•  pick a set A of eigenvectors        of our L 

–  eigenvalues: 

–  sample from this DPP:                      a.s.   
–  Why? 

vk

KA =
X

k2A

vkv
>
k

1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
n�|A|

|Y | = |A|

E
⇥
|Y |

⇤
= |A|

PK(Y ) = det(KA
Y ) = 0

for |Y | > |A| :

PA(Y )



V

Sampling Y 
•  compute eigendecomposition 
 

1.  sample eigenvectors:    
add      to      with probability 
  

2.  sample |V| points: 
while  
     sample a point and add to    :       
 
 
   
               an orthonormal basis of      
               orthogonal to   

vk
V = ;

V
�k

�k+1

(Hough et al 2006) 

L =
nX

k=1

�kvkv
>
k

V 6= ;

Pr(i) =
1

|V |
X

v2V

(v>ei)
2

V  
ei

Y = ;

Y



Sampling 
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Figure 8: Sampling DPP over one-dimensional (top) and two-dimensional (bottom) particle
positions. Red circles indicate already selected positions. On the bottom, lighter color
corresponds to higher probability. The DPP naturally reduces the probabilities for positions
that are similar to those already selected.

20

from: (Kulesza & Taskar, FTML) 



Finding the mode 
 

•  find 

•  submodular maximization problem! 

P (Y = T ) / det(LT )

T = argmax

T✓V
P (T )

= argmax

T✓V
log det(LT ) non-monotone 

submodular 



The simplest DPP 

P (Y = S) =
Y

i2S

pi
Y

j /2S

(1� pj)

K =

2

664

p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

3

775



Example: random spanning trees 

•  sample a spanning tree 
uniformly at random 

•  probability of a set of edges             
           occurring together? 

•  negative correlation:  
This is a DPP! 

Pr(S ✓ T )

S ✓ E

feature vector  
for edge e = (u, v)

be =

2

66664

0
1
0

�1
0

3

77775

u 

v 
xe = L†/2

be

Pr(S ✓ T ) 
Y

e2S

Pr(e 2 T )



Application: pose estimation 
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Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.
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Application: pose estimation 

•  quality model: part detectors for likelihood of body part at 
location / orientation 

•  similarity model: location 
•  data: 73 still frames from TV shows, each 3+ people 

Lij = x

>
i xj = qi�

>
i �jqj

quality score normalized feature vector 

Qij = �>
i �j

det(LS) =

 
Y

i2S

q2i

!
det(QS)

(Kulesza&Taskar 2010) 



Pose estimation 
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Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.
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For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.
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of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.
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(Kulesza & Taskar 10) 



Summary 
•  Submodular set functions 
–  links to convexity 
–  special polyhedra 

•  Minimizing submodular functions 
–  general and special cases:  polynomial-time 
–  constraints: NP-hard, approximations 

•  Maximizing submodular functions 
–  monotone & non-monotone: NP-hard, constant-factor 

approximations 
–  determinantal point processes 



Submodularity and machine learning 

78"

bla blablala oh bla bl abl lba bla  
gggg  hgt dfg uyg sd djfkefbjal 
odh wdbfeowhjkd  fenjk jj 
 
bla blablala oh bla dw  
bl abl lba bla gggg  hgt dfg uyg 
sd djfkefbjal odh wdbfeowhjkd  
fenjk jj 
 
bla blablala oh bla bl abl lba bla  
gggg  hgt dfg uyg efefm  o 
 
 
sd djfkefbjal odh wdbfeowhjkd  
fenjk jj ef  
 
owskf wu 

6

1st iteration 2nd iteration 3rd iteration 8th iteration

Fig. 4. Greedy MAP-inference in our model for pedestrian-detection example from Figure 1. For each iteration, we
give the Hough image M

t (top) and highlight in red the detection corresponding to its maximum (bottom). Note how
the Hough images M

t

(h) are changed between iterations, so that implicit “non-maximum suppression” driven by the
probability function is performed. As a result, multiple pedestrians are detected despite significant overlaps between
them.

including performing loopy belief-propagation [22] in
the bipartite graph defined by (9). The special form
of the pairwise terms permits a very compact message
representation (the same as used in the affinity prop-
agation [23]). We have also tried simulated annealing
optimization for the binary-labelled function (10).

Both loopy belief propagation (LBP) and simulated
annealing (SA) were not able to handle the very high
order potentials present in our model. To overcome this
problem, we adaptively reduced the size of our hypoth-
esis space. We did this by using standard Hough voting
to find (sample) a moderately large number (dozens to
hundreds) of peaks in the Hough image. We then restrict
the Hough space H to these peaks. As the majority of
voting element vote for a limited number hypotheses
each (p(x

i

|I
i

) = 0 for many assignments values of x

i

),
we were able to reduce the size of the Hough space
considerably without loss of many energy terms.

In our experiments LBP and SA gave reasonable
results with the adaptive sparsification heuristics dis-
cussed above. However, they were still quite computa-
tionally expensive. Also the inability of these inference
methods to handle large set of hypotheses is a significant
limitation which potentially can lead to loss of detections
and lower recall rate of object detection performance.
Submodularity and connection with uncapacitated fa-
cility location problem.

The maximization of (10) can be viewed as the well
studied in operation research community facility location
task, that considers the problem of optimal placement of
facilities (detected objects) in order to minimize trans-
portation costs (negative votes from voting element).
One of the well-known properties of the objective func-
tion of facility location problem (10) is it’s submodu-

larity (see e.g. [24]) Unlike the problem of minimizing
submodular functions, the problem of maximizing sub-
modular functions is NP-hard. But approximations have
been studied extensively for both the general task of
submodular function maximization and the particular
problem of facility location. The best approximation
factor known for facility location is 0.828 that is achieved
by polynomial-time algorithm based on the idea of
randomized rounding [25].

The greedy algorithm, that iteratively augments a cur-
rent solution with an element of maximum incremental
value, is proven to have an approximation factor 0.632
for the task of submodular functions maximization [26].
This simple method has been shown to be an efficient
heuristic for both maximizing submodular functions
over different constraint structures (e.g. [27]) and facility
location problem (e.g. [28]). Not surprisingly, in our
framework greedy algorithm showed approximately the
same accuracy as LBP and SA. Moreover in contrast
to LBP and SA, it turned out that the iterative greedy
inference doesn’t require reducing the hypothesis space.
This property potentially allows greedy algorithm to
achieve higher recall compared to LBP and SA.

Iterative sampling with dense set of hypotheses. The
greedy iterative algorithm starts with all y

h

set to 0 and
x

i

set to 0 (background). In step t the algorithm makes a
hypothesis h

t active (by setting y

h

t
= 1), simultaneously

switching some of x

i

to h

t (x
i

is switched to h

t only if
this increases the posterior). The hypothesis h

t is picked
so that the biggest increase of the posterior is obtained.

In each iteration, it identifies the optimal hypothesis
h

t to be made active by using Hough voting. In iteration

distributions over labels, sets 
log-submodular/

supermodular probability 
e.g. “attractive” graphical models, 

determinantal point processes  

(convex) regularization 
submodularity: “discrete 

convexity” 
e.g. combinatorial sparse estimation 

diffusion processes, 
covering, rank, 
connectivity, 

entropy, 
economies of scale, 
summarization, … 

submodular  
phenomena 

submodularity 
& machine 
learning! 


