
Submodular Functions
and

Machine Learning
MLSS Kyoto

Stefanie Jegelka
MIT

Resources
•  submodularity.org
•  people.csail.mit.edu/stefje/mlss/literature.pdf

references for the lectures, pointers to surveys, papers, books
•  discml.cc talks on submodularity in machine learning

Setup

•  ground set V

•  (scoring) function

F : 2V ! R+

S ✓ V
max F (S)

Submodularity

4

extra cost:
one drink

|{z}

extra cost:
free refill !

.| {z }

diminishing marginal costs

F (A [s)� F (A) � F (B [s)� F (B)

BA

A ✓ B

Roadmap
•  Submodular set functions
–  links to convexity
–  special polyhedra

•  Minimizing submodular functions
–  general and special cases
–  constraints

•  Maximizing submodular functions
–  monotone & non-monotone
–  repulsive point processes

Maximizing Influence

6"

F (S [s)� F (S) F (T [s)� F (T)�

Kempe, Kleinberg & Tardos 2003

F (S) = expected # infected nodes

Informative Subsets

7"

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

•  where put sensors?
•  which experiments?
•  summarization

F (S) = “information”

Summarization
•  videos, text, pictures …
•  would like:

relevance, reliability, diversity
Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN)

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.

7

Monotonicity

if S ✓ T then F (S) F (T)

3 5 1

Maximizing monotone functions

•  NP-hard
•  approximation: greedy algorithms

max

|S|k
F (S)

if A ✓ B then F (A) F (B)

Maximizing monotone functions

max

S
F (S) s.t. |S| k

•  greedy algorithm:

 for i = 0, …, k-1

S0 = ;

e⇤ = arg max

e2V\Si

F (Si [{e})

Si+1 = Si [{e⇤}

How good is greedy? … in theory

max

S
F (S) s.t. |S| k

Theorem (Nemhauser, Fisher, Wolsey `78)

F monotone submodular, solution of greedy. Then

Sk

F (Sk) �
⇣
1� 1

e

⌘
F (S⇤)

in general, no poly-time algorithm can do better than that!

optimal solution

Questions
•  What if I have more complex constraints?
–  budget constraints
–  matroid constraints

•  Greedy takes O(nk) time. What if n, k are large?

•  What if my function is not monotone?

More complex constraints: budget

1.  run greedy:
2.  run a modified greedy:

3.  pick better of ,

" approximation factor:

max F (S) s.t.

X

e2S

c(e) B

e⇤ = argmax

F (Si [{e})� F (Si)

c(e)

Sgr

S
mod

Sgr S
mod

1

2

⇣
1� 1

e

⌘

(Leskovec et al 2007)

even better but less fast:
partial enumeration
(Sviridenko, 2004) or
filtering (Badanidiyuru &
Vondrák 2014)

Example: Camera network
•  Ground set:
•  Sensing quality model:

•  Configuration (subset) is feasible if no camera is
pointed in two directions
at once

1a

1b
3b

3a

V = {1a, 1b, . . . , 5a, 5b}

(partition) matroid
constraint!

Matroids (semi-formally)

16

S is independent (= feasible) if …

 … |S| ≤ k

Uniform matroid

… S contains at most
one element from each
square

Partition matroid

 … S contains no cycles

 Graphic matroid

•  S independent " T S also independent

•  Exchange property: S, U independent, |S| > |U|
" some can be added to U: independent

•  All maximal independent sets have the same size

✓
matroid properties:

Matroids

17

S is independent (=feasible) if …

… |S| ≤ k

Uniform matroid

… S contains at most
one element from each

group

Partition matroid

 … S contains no
cycles

 Graphic matroid

•  S independent " T S also independent

•  Exchange property: S, U independent, |S| > |U|
" some can be added to U: independent

✓

e 2 S U [e

Example: Camera network
•  Ground set:
•  Sensing quality model:

•  Configuration (subset) is feasible if no camera is pointed in
two directions at once

1a

1b
3b

3a

V = {1a, 1b, . . . , 5a, 5b}

(partition) matroid
constraint:

P1 = {1a, 1b}, . . . , P5 = {5a, 5b}

|S \ Pi| 1

require:

Greedy algorithm for matroids

1a

3b

S = ;
While 9e : S [e independent

S S [argmax

e:S[e indep.
F (S [e)

Theorem (Nemhauser, Wolsey, Fisher 78)
For monotone submodular functions:

F (Sgreedy) � 1
2F (S⇤)

better approximation (1-1/e): relaxation

Submodular welfare
•  assign set to person

to maximize

•  all possible
assignments

•  partition matroid:
assign each item only
once

Si i

kX

i=1

Fi(Si)

V =

Relaxation?
•  concave analog of Lovasz extension: not in polynomial time

•  multi-linear extension: probability distribution from x

sample element e with probability xe

= E

S⇠x

[F (S)]

fM (x) =
X

S✓V
F (S)

Y

e2S

xe

Y

e/2S

(1� xe)

(Calinescu-Chekuri-Pal-Vondrak 2011)

0.5

1.0

0.2

0.2

0.5

x

p(1) =

p(2) =

p(3) =

Multilinear extension

1.  concave in positive directions:
 concave function
of if .

2.  convex in swap directions:
 convex function
of if

! Optimization: continuous greedy
move in directions

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

fM (x) =
X

S✓V
F (S)

Y

e2S

xe

Y

e/2S

(1� xe)

fM (x+ �d)
d ⌫ 0�

fM (x+ �d)
d = 1i � 1j�0

v = argmax

v2P
v

>rfM (x

t
)

Relaxation: algorithm

1.  approximately maximize fM (Frank-Wolfe like algorithm)
2.  round (pipage rounding)

(Calinescu-Chekuri-Pal-Vondrak 2011)

Lovász extension as expectation

•  sample a threshold
uniformly between 0 and 1

•  Pick

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

0.5

1.0

0.2

0.2

0.5

✓

S

✓ = { i | xi � ✓ }

✓ e.g. ✓ = 0.4
fL(x) = ES⇠✓ [F (S)]

= ↵iF (Si)

•  convex

•  computable in O(n log n)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

•  concave in positive

directions, convex in
others

•  approximate by sampling

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Multilinear relaxation vs. Lovász ext.

f

M

(x) = E
S⇠x

[F (S)]
fL(x) = ES⇠✓ [F (S)]

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Multilinear relaxation vs. Lovász ext.

f

M

(x) = E
S⇠x

[F (S)]
fL(x) = ES⇠✓ [F (S)]

example: cut function

fM (x) = xu + xv � 2xuxv fL(x) = |xu � xv|

vu

Questions
•  What if I have more complex constraints?
–  budget constraints
–  matroid constraints

•  Greedy takes O(nk) time. What if n, k are large?
–  faster sequential algorithms
–  filtering
–  parallel / distributed

•  What if my function is not monotone?

Making greedy faster: stochastic

for i=1…k:

•  randomly pick set T of
size

•  find best a element in T
and add

max

S
F (S) s.t. |S| k

n

k
log

1

✏

Si Si�1 [{ai}

ai = argmax

a2T
F (a|Si�1)

(Mirzasoleiman et al 2014)

S

F (Sk) � (1� 1
e � ✏)F (S⇤)

approximation factor:

Performance

0 50 100 150 200
0

5

10

15

20

25

k

U
til

ity

Lazy−Greedy
Threshold−Greedy eps=0.2
Threshold−Greedy eps=0.3
Threshold−Greedy eps=0.4
Multi−Greedy
Rand−Greedy eps=0.01
Rand−Greedy eps=0.1
Rand−Greedy eps=0.3
Rand−Greedy eps=0.9
Random Selection

(a) Parkinsons

0 50 100 150 200
0

1

2

3

4

5

6

7

8 x 104

k

C
os

t

Lazy−Greedy

Random Selection

Threshold−Greedy eps = 0.2

Threshold−Greedy eps =0 .3

Rand−Greedy eps = 0.9

Threshold−Greedy eps = 0.4

Rand−Greedy eps = 0.01

Rand−Greedy eps = 0.3

Rand−Greedy eps = 0.1

(b) Parkinsons

0 2 4 6 8
x 104

18

18.5

19

19.5

20

Cost

U
til

ity

Lazy−Greedy
Threshold−Greegy eps=0.2
Threshold−Greegy eps=0.3
Threshold−Greegy eps=0.4
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Rand−Greedy eps = 0.001
Rand−Greedy eps = 0.01
Rand−Greedy eps = 0.1
Rand−Greedy eps = 0.3

(c) Parkinsons

0 50 100 150 200

1.5

1.55

1.6

1.65

1.7

1.75

x 104

k

U
til

ity

Lazy−Greedy
Threshold−Greegy eps=0.7
Threshold−Greegy eps=0.8
Threshold−Greegy eps=0.9
Multi−Greedy
Rand−Greedy eps=0.01
Rand−Greedy eps=0.1
Rand−Greedy eps=0.3
Rand−Greedy eps=0.9
Random Selection

(d) Images 10K

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9 x 104

k

C
os

t

Random Selection

Threshold−Greedy eps = 0.7

Threshold−Greedy eps = 0.9

Multi−Greedy

Rand−Greedy eps = 0.01
Rand−Greedy eps = 0.1

Rand−Greedy eps = 0.3

Rand−Greedy eps = 0.9

Lazy−Greedy

Threshold−Greedy eps = 0.8

(e) Images 10K

0 2 4 6 8 10
x 104

1.752

1.754

1.756

1.758

1.76

1.762

1.764

1.766

1.768

1.77

1.772
x 104

Cost

U
til

ity

Lazy−Greedy
Threshold−Greegy eps=0.7
Threshold−Greegy eps=0.8
Threshold−Greegy eps=0.9
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Rand−Greedy eps=.001
Rand−Greedy eps=.01
Rand−Greedy eps=0.1
RandGreedy eps=0.3
Multi−Greedy

(f) Images 10K

0 50 100 150 200
7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

x 104

k

U
til

ity

Sample−Greedy p = 0.03
Sample−Greedy p = 0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Rand−Greedy eps = 0.3
Rand−Greedy eps = 0.9
Rand−Greedy eps = 0.1

(g) Images 50K

0 50 100 150 200
0

2

4

6

8

10

12

14 x 104

k

C
os

t

Sample−Greedy p = 0.43

Sample−Greedy p = 0.33

Sample−Greedy p = 0.23

Sample−Greedy p = 0.03
Sample−Greedy p = 0.13

Random Selection

Rand−Greedy eps = 0.3
Rand−Greedy eps = 0.1

Rand−Greedy eps = 0.9

(h) Images 50K

0 5 10 15
x 104

8.72

8.74

8.76

8.78

8.8

8.82

8.84 x 104

Cost

U
til

ity

Sample−Greedy p = 0.03
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Rand−Greedy eps = 0.1
Rand−Greedy eps = 0.3
Rand−Greedy eps = 0.9

(i) Images 50K

Figure 1: Performance comparisons. a), d) and g) show the performance of
all the algorithms for different values of k on a set of 10,000 Tiny Images,
Parkinsons Telemonitoring, and a set of 50,000 Tiny Images respectively. b), e)
and h) show the cost of all the algorithms for different values of k on the same
datasets. c), f), i) show the utility obtained versus cost for a fixed k = 200.

Lemma 2. Given a current solution A, the expected gain of Rand-Greedy

in one step is at least 1−ε
k

∑

a∈A∗\A ∆(a|A).

Proof. Let us estimate the probability that R∩ (A∗ \A) "= ∅. The set R consists
of s = n

k
log 1

ε
random samples from V \A (w.l.o.g. with repetition), and hence

Pr[R ∩ (A∗ \A) = ∅] =

(

1−
|A∗ \A|

|V \A|

)s

≤ e−s
|A∗\A|
|V \A|

≤ e−
s
n |A∗\A|.

Therefore, by using the concavity of 1 − e−
s
nx as a function of x and the fact

that x = |A∗ \A| ∈ [0, k], we have

9

stochastic
greedy

“Lazy greedy”

faster

be
tte

r s
ol

ut
io

n

Distributed greedy algorithms

even more data …
 distributed greedy algorithm?

Distributed greedy algorithms

greedy is sequential.
pick in parallel??

pick k elements
on each machine.

combine and run
greedy again.

Is this useful?

Distributed greedy algorithms

pick in parallel
from m machines

Is this useful?

(Mirzasoleiman et al 2013)

Approximation factor:

O
⇣ 1

min{
p
k,m}

⌘

Distributed Greedy

2 4 6 8 10
0.8

0.85

0.9

0.95

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

Greedy/
Max

Greedy/
Merge

Random/
RandomRandom/

Greedy

α=2/m

GreeDI (α=1)α=4/m

(a) Tiny Images 10K
2 4 6 8 10

0.8

0.85

0.9

0.95

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDI (α=1) α=4/m

Greedy/
Merge

Greedy/
Max α=2/m

Random/
RandomRandom/

Greedy

(b) Tiny Images 10K
10 20 30 40 50 601.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2 x 104

k

D
is

tri
bu

te
d Random/

Greedy

α=4/m
α=2/m

Greedy/
Max

Greedy/
Merge

Random/
random

GreeDI (α=1)

(c) Tiny Images 80M (d)

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDI (α=1)

Greedy/
Max

Random/
Random

Random/
Greedy α=4/m

α=2/m
Greedy/

Merge

(e) Parkinsons Telemonitoring
20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

k

D
is
tri
bu
te
d/
C
en
tra
liz
ed

GreeDI (α=1)α=4/m

α=2/m Greedy/
Merge

Random/
Greedy Greedy/

Max

Random/
Random

(f) Parkinsons Telemonitoring
20 40 60 80 100 120

0

5

10

15

20

25

30

35

k

D
is

tri
bu

te
d

α=2/m
α=4/m

Random/
Greedy

Random/
randomGreedy/

Merge

Greedy/
Max

GreeDI (α=1)

(g) Yahoo! front page (h)

Figure 1: Performance of GREEDI compared to the other benchmarks. a) and b) show the mean and standard
deviation of the ratio of distributed vs. centralized solution for global and local objective functions with budget
k = 50 and varying the number m of partitions, for a set of 10,000 Tiny Images. c) shows the distributed
solution with m = 8000 and varying k for local objective functions on the whole dataset of 80,000,000 Tiny
Images. e) shows the ratio of distributed vs. centralized solution with m = 10 and varying k for Parkinsons
Telemonitoring. f) shows the same ratio with k = 50 and varying m on the same dataset, and g) shows the
distributed solution for m = 32 with varying budget k on Yahoo! Webscope data. d) shows a set of cluster
exemplars discovered by GREEDI, and each column in h) shows 8 images nearest to exemplars 9 and 16 in d).

from people with early-stage Parkinson’s disease. We normalized the vectors to zero mean and unit
norm. Fig. 1f compares the performance GREEDI to the benchmarks with fixed k = 50 and varying
number of partitions m. Similarly, Fig 1e shows the results for fixed m = 10 and varying k. We
find that GREEDI significantly outperforms the benchmarks.

Large scale experiments with Hadoop. Our second large scale experiment consists of 45,811,883
user visits from the Featured Tab of the Today Module on Yahoo! Front Page [26]. For each visit,
both the user and each of the candidate articles are associated with a feature vector of dimension 6.
Here, we used the normalized user features. Our experimental setup was a cluster of 5 quad-core ma-
chines running Hadoop with the number of reducers set to m = 32. Each reducer performed the lazy
greedy algorithm on its own set of 1,431,621 vectors (⇡34MB) in order to extract 128 elements with
the highest marginal gains w.r.t the local elements of the dataset in that particular partition. We then
merged the results and performed another round of lazy greedy selection on the merged results to ex-
tract the final active set of size 128. The maximum running time per reduce task was 2.5 hours. Fig.
1g shows the performance of GREEDI compared to the benchmarks. We note again that GREEDI
significantly outperforms the other distributed benchmarks and can scale well to very large datasets.

6 Conclusion
We have developed an efficient distributed protocol GREEDI, for maximizing a submodular function
subject to cardinality constraints. We have theoretically analyzed the performance of our method and
showed under certain natural conditions it performs very close to the centralized (albeit impractical
in massive data sets) greedy solution. We have also demonstrated the effectiveness of our approach
through extensive large scale experiments using Hadoop. We believe our results provide an impor-
tant step towards solving submodular optimization problems in very large scale, real applications.

Acknowledgments. This research was supported by SNF 200021-137971, DARPA MSEE
FA8650-11-1-7156, ERC StG 307036, a Microsoft Faculty Fellowship, an ETH Fellowship,
Scottish Informatics and Computer Science Alliance.

8

machines (# parts in partition)

(Mirzasoleiman et al 2013)

In practice,
performs often
quite well.

1.  special structure:
Improved guarantees
if F is Lipschitz or
a sum of many terms

2.  randomization

Distributed greedy algorithms

pick in parallel
from m machines

Pick the best of m+1 solutions

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

randomly distribute
across machines

•  each machine: approximation algorithm
•  level 2: approximation algorithm
" overall approximation factor:

↵�
��

E[F (bS)] � ↵�

↵+ �
F (S⇤)

Distributed greedy algorithms

pick in parallel
from m machines

Pick the best of m+1 solutions

(Mirzasoleiman et al 2013, de Ponte Barbosa et al 2015, see also Mirrokni, Zadimoghaddam 2015)

randomly distribute
across machines

E[F (bS)] � ↵�

↵+ �
F (S⇤) With greedy algorithm on both levels:

 , overall factor:

1
2 (1�

1
e)

↵ = � = 1� 1
e

Questions
•  What if I have more complex constraints?
–  matroid constraints
–  budget constraints

•  Greedy takes O(nk) time. What if n, k are large?
–  stochastic
–  distributed

•  What if my function is not monotone?

Non-monotone functions

if S ✓ T then F (S) F (T)

3 5 1 F (S) � 0 for all S
still assume:

Picking at random
•  Let F be a non-monotone nonnegative submodular function.

Pick set uniformly at random from

•  Then

•  If F is symmetric:

V

Pr(include i) = 1/2 for all i

E[F (S)] � 1
4F (S⇤)

E[F (S)] � 1
2F (S⇤)

S

Picking at random
•  Can we do this for constrained (monotone) maximization?

•  Example:

•  Pick k elements at random: will hit very few red ones

max

|S|k
F (S)

F (S) = |S \R|+ ✏ ·min{|S \B|, 1} |R| = k

F (S⇤) = F (R) = k

E[F (S)] <
⇣k + ✏

n

⌘
F (S⇤)

Non-monotone maximization

Can we do better than completely random?

max

S✓V
F (S)

E[F (S)] � 1
4F (S⇤)

F (A) = 95

optimal solution
F (A) = 40
greedy solution:

Greedy can fail …

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4

coverage: 100
cost: -60
gain 40

coverage: 30
cost: - 1
gain 29

coverage: 30
cost: - 1
gain 29

coverage: 40
cost: - 3
gain 37

S1 = ; [argmax

a2V
F (a)S0 = ;

F (A) = 95optimal solution: F (A) = 40
greedy solution:

Greedy can fail …

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4

coverage: 100
cost: -60
gain 40

coverage: 30
cost: - 1
gain 29

coverage: 30
cost: - 1
gain 29

coverage: 40
cost: - 3
gain 37

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

•  gain of adding (to A):

•  gain of removing (from B):

P(add) = �+

�+ +��

coverage: 100
cost: -60

�+ = 40

�� = 60

= 40%

add with probability

�+ = [F (A [ai)� F (A)]+

�� = [F (B \ a)� F (B)]+

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 100
cost: -60

�+ = 40

�� = 60

add with probability

add to A or remove from B

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 30
cost: - 1

add with probability

add to A or remove from B

�+ = 29

�� = [�29]+ = 0

=
29

29

=
29

29

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 30
cost: - 1

add with probability

add to A or remove from B

�+ = 29

=
37

40

�� = 0

Double greedy

Theorem (Buchbinder, Feldman, Naor, Schwartz ‘12)

F submodular, solution of double greedy. Then

 optimal solution

Sg

max

S✓V
F (S)

E[F (Sg)] � 1
2F (S⇤)

Non-monotone maximization
•  alternatives to double greedy?

local search (Feige et al 2007)

•  constraints?
possible, but different algorithms

•  distributed algorithms? yes!
–  divide-and-conquer as before (de Ponte Barbosa et al 2015)
–  concurrency control / Hogwild (Pan et al 2014)

Submodular maximization: summary
•  many applications: diverse, informative subsets

•  NP-hard, but greedy or local search
•  distinguish monotone / non-monotone

•  several constraints possible with constant
approximation factors
(monotone and non-monotone)

Adaptive/sequential settings
Sequential diagnosis:

•  learning a policy: model updated after observation
•  submodularity does not apply directly
•  suitable generalization: adaptive submodularity

greedy results generalize !

x1"

x2"

x3"

1"

1"

0"

0" 0"1"

="

="

="

x4"="

(Golovin & Krause 2013)

Roadmap
•  Submodular set functions
–  links to convexity
–  special polyhedra

•  Minimizing submodular functions
–  general and special cases
–  constraints

•  Maximizing submodular functions
–  monotone & non-monotone
–  repulsive point processes

Diversity and distributions

Point process:
distribution over sets

S ✓ V

P (S)

Diversity priors

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

P (S | data) / P (S) P (data | S)

“spread out”

Point processes -- examples
•  independent coin flips

•  if
then and are independent Y \ S Y \ T

P (Y = S) =
Y

i2S

pi
Y

j /2S

(1� pj)

S \ T = ;

Point processes -- examples
x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

P (z|x)P (x)P (x|z) /

/ exp

n

�
�

X

i
�ixi +

X

ij
⌫ijxixj

�

o

our examples: spatial coherence, “attractive” --- positive correlations

labels pixel
values

x 2 {0, 1}n

Repulsion?
in a graphical model:
•  computationally hard
•  dependencies between all elements " fully

connected

Determinantal point processes
S

S

K

•  normalized similarity matrix

•  sample Y:

K

P (S ✓ Y) = det(KS)

P (ei 2 Y) = Kii

P (ei, ej 2 Y) = KiiKjj �K2
ij

= P (ei 2 Y)P (ej 2 Y)�K2
ij

repulsion

F (S) = log det(KS) is submodular

DPP sample
uniform DPP

sij = exp(� 1
2�2 kxi � xjk2) �2 = 35

similarities:

DPP sample – larger bandwidth
uniform DPP

�2 = 135sij = exp(� 1
2�2 kxi � xjk2)

DPPs
•  definitions

•  computing marginals

•  sampling

•  computing the mode (MAP)

Determinantal Point Processes
•  Macchi 1975: “fermion processes”
•  Borodin & Olshanski 2000: “determinantal PP”

2 Definitions:
•  marginal kernel K:
–  positive semidefinite
–  eigenvalues in [0,1]:

•  L-ensemble: (Borodin & Rains, 2005)

–  positive semidefinite L
–  normalization constant:

P (S ✓ Y) = det(KS)

0 � K � 1

P (Y = T) / det(LT)

X

S✓V
det(LS) = det(L+ In)

2 Definitions
Marginal kernel

• 

•  K from L:

L-ensemble

• 

•  L from K:

P (S ✓ Y) = det(KS) P (Y = T) / det(LT)

0 � K � 1 0 � L

K = L(L+ I)�1

L =
nX

k=1

�kvkv
>
kK =

nX

k=1

�k
1+�k

vkv
>
k

L = K(I �K)�1

Geometric view
•  data points : feature vectors in
•  L-ensemble:

•  Then

x1, . . . , xn Rd

Lij = x

>
i xj

PL(S) / det(LS) = Vol

2
({xi}i2S)

What happens if dimension d < number of points n?

“Everything” is simple !
•  normalization

•  marginal probabilities: from marginal kernel

•  conditioning:

also a DPP (Borodin & Rains, 2005)

•  …

X

S✓V
det(LS) = det(L+ In)

K = L(L+ I)�1

P (Y = A [B | A ✓ Y) =
det(LA[B)

det(L+ IV\A)

How many points in the sample?
•  L has eigenvalues

•  cardinality |Y| of sample: Poisson Binomial
flip n coins, -- how many heads?

�1,�2, . . . ,�n

pk(head) =
�k

�k+1

E[|Y |] =
nX

k=1

�k

�k + 1
= trace(K)

Can we sample efficiently?

Sampling: main idea
•  Every DPP is a mixture of “elementary” DPPs

1.  Sample a component with probability

2.  Sample from

•  has n eigenvectors
•  indexes a set of eigenvectors
• 

PL(Y) =
X

T

⇡TP
T (Y)

L

T ✓ {1, . . . , n}

⇡T =
Y

k2T

�k
det(L+I)

= 1
Z

X

T✓{1,...,n}

Y

k2T

�kP
T (Y)

PT ⇡T

Y PT

Sampling Y
•  compute eigendecomposition

1.  sample eigenvectors:

add to with probability

2.  sample |V| points:

vk
V = ;

V
�k

�k+1

(Hough et al 2006)

L =
nX

k=1

�kvkv
>
k

" recall: Bernoulli process,

E[|Y |] =
nX

k=1

�k

�k + 1

V

Elementary DPP
•  “elementary” DPP: all eigenvalues of K are 0 or 1.
•  pick a set A of eigenvectors of our L

–  eigenvalues:

–  sample from this DPP: a.s.
–  Why?

vk

KA =
X

k2A

vkv
>
k

1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
n�|A|

|Y | = |A|

E
⇥
|Y |

⇤
= |A|

PK(Y) = det(KA
Y) = 0

for |Y | > |A| :

PA(Y)

V

Sampling Y
•  compute eigendecomposition

1.  sample eigenvectors:
add to with probability

2.  sample |V| points:
while
 sample a point and add to :

 an orthonormal basis of
 orthogonal to

vk
V = ;

V
�k

�k+1

(Hough et al 2006)

L =
nX

k=1

�kvkv
>
k

V 6= ;

Pr(i) =
1

|V |
X

v2V

(v>ei)
2

V
ei

Y = ;

Y

Sampling

0 1
0

10

20
x 10

−3

Position
Step 0

P
ro

b
a
b

ili
ty

0 1
Position
Step 1

0 1
Position
Step 2

(a) Sampling points on an interval

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7 Step 8

(b) Sampling points in the plane

Figure 8: Sampling DPP over one-dimensional (top) and two-dimensional (bottom) particle
positions. Red circles indicate already selected positions. On the bottom, lighter color
corresponds to higher probability. The DPP naturally reduces the probabilities for positions
that are similar to those already selected.

20

from: (Kulesza & Taskar, FTML)

Finding the mode

•  find

•  submodular maximization problem!

P (Y = T) / det(LT)

T = argmax

T✓V
P (T)

= argmax

T✓V
log det(LT) non-monotone

submodular

The simplest DPP

P (Y = S) =
Y

i2S

pi
Y

j /2S

(1� pj)

K =

2

664

p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

3

775

Example: random spanning trees

•  sample a spanning tree
uniformly at random

•  probability of a set of edges
 occurring together?

•  negative correlation:
This is a DPP!

Pr(S ✓ T)

S ✓ E

feature vector
for edge e = (u, v)

be =

2

66664

0
1
0

�1
0

3

77775

u

v
xe = L†/2

be

Pr(S ✓ T)
Y

e2S

Pr(e 2 T)

Application: pose estimation

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

Application: pose estimation

•  quality model: part detectors for likelihood of body part at
location / orientation

•  similarity model: location
•  data: 73 still frames from TV shows, each 3+ people

Lij = x

>
i xj = qi�

>
i �jqj

quality score normalized feature vector

Qij = �>
i �j

det(LS) =

Y

i2S

q2i

!
det(QS)

(Kulesza&Taskar 2010)

Pose estimation

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

(Kulesza & Taskar 10)

Summary
•  Submodular set functions
–  links to convexity
–  special polyhedra

•  Minimizing submodular functions
–  general and special cases: polynomial-time
–  constraints: NP-hard, approximations

•  Maximizing submodular functions
–  monotone & non-monotone: NP-hard, constant-factor

approximations
–  determinantal point processes

Submodularity and machine learning

78"

bla blablala oh bla bl abl lba bla
gggg hgt dfg uyg sd djfkefbjal
odh wdbfeowhjkd fenjk jj

bla blablala oh bla dw
bl abl lba bla gggg hgt dfg uyg
sd djfkefbjal odh wdbfeowhjkd
fenjk jj

bla blablala oh bla bl abl lba bla
gggg hgt dfg uyg efefm o

sd djfkefbjal odh wdbfeowhjkd
fenjk jj ef

owskf wu

6

1st iteration 2nd iteration 3rd iteration 8th iteration

Fig. 4. Greedy MAP-inference in our model for pedestrian-detection example from Figure 1. For each iteration, we
give the Hough image M

t (top) and highlight in red the detection corresponding to its maximum (bottom). Note how
the Hough images M

t

(h) are changed between iterations, so that implicit “non-maximum suppression” driven by the
probability function is performed. As a result, multiple pedestrians are detected despite significant overlaps between
them.

including performing loopy belief-propagation [22] in
the bipartite graph defined by (9). The special form
of the pairwise terms permits a very compact message
representation (the same as used in the affinity prop-
agation [23]). We have also tried simulated annealing
optimization for the binary-labelled function (10).

Both loopy belief propagation (LBP) and simulated
annealing (SA) were not able to handle the very high
order potentials present in our model. To overcome this
problem, we adaptively reduced the size of our hypoth-
esis space. We did this by using standard Hough voting
to find (sample) a moderately large number (dozens to
hundreds) of peaks in the Hough image. We then restrict
the Hough space H to these peaks. As the majority of
voting element vote for a limited number hypotheses
each (p(x

i

|I
i

) = 0 for many assignments values of x

i

),
we were able to reduce the size of the Hough space
considerably without loss of many energy terms.

In our experiments LBP and SA gave reasonable
results with the adaptive sparsification heuristics dis-
cussed above. However, they were still quite computa-
tionally expensive. Also the inability of these inference
methods to handle large set of hypotheses is a significant
limitation which potentially can lead to loss of detections
and lower recall rate of object detection performance.
Submodularity and connection with uncapacitated fa-
cility location problem.

The maximization of (10) can be viewed as the well
studied in operation research community facility location
task, that considers the problem of optimal placement of
facilities (detected objects) in order to minimize trans-
portation costs (negative votes from voting element).
One of the well-known properties of the objective func-
tion of facility location problem (10) is it’s submodu-

larity (see e.g. [24]) Unlike the problem of minimizing
submodular functions, the problem of maximizing sub-
modular functions is NP-hard. But approximations have
been studied extensively for both the general task of
submodular function maximization and the particular
problem of facility location. The best approximation
factor known for facility location is 0.828 that is achieved
by polynomial-time algorithm based on the idea of
randomized rounding [25].

The greedy algorithm, that iteratively augments a cur-
rent solution with an element of maximum incremental
value, is proven to have an approximation factor 0.632
for the task of submodular functions maximization [26].
This simple method has been shown to be an efficient
heuristic for both maximizing submodular functions
over different constraint structures (e.g. [27]) and facility
location problem (e.g. [28]). Not surprisingly, in our
framework greedy algorithm showed approximately the
same accuracy as LBP and SA. Moreover in contrast
to LBP and SA, it turned out that the iterative greedy
inference doesn’t require reducing the hypothesis space.
This property potentially allows greedy algorithm to
achieve higher recall compared to LBP and SA.

Iterative sampling with dense set of hypotheses. The
greedy iterative algorithm starts with all y

h

set to 0 and
x

i

set to 0 (background). In step t the algorithm makes a
hypothesis h

t active (by setting y

h

t
= 1), simultaneously

switching some of x

i

to h

t (x
i

is switched to h

t only if
this increases the posterior). The hypothesis h

t is picked
so that the biggest increase of the posterior is obtained.

In each iteration, it identifies the optimal hypothesis
h

t to be made active by using Hough voting. In iteration

distributions over labels, sets
log-submodular/

supermodular probability
e.g. “attractive” graphical models,

determinantal point processes

(convex) regularization
submodularity: “discrete

convexity”
e.g. combinatorial sparse estimation

diffusion processes,
covering, rank,
connectivity,

entropy,
economies of scale,
summarization, …

submodular
phenomena

submodularity
& machine
learning!

