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Abstract

We study a rich family of distributions that capture variable interactions signifi-
cantly more expressive than those representable with low-treewidth or pairwise
graphical models, or log-supermodular models. We call these cooperative graph-
ical models. Yet, this family retains structure, which we carefully exploit for
efficient inference techniques. Our algorithms combine the polyhedral structure of
submodular functions in new ways with variational inference methods to obtain
both lower and upper bounds on the partition function. While our fully convex upper
bound is minimized as an SDP or via tree-reweighted belief propagation, our lower
bound is tightened via belief propagation or mean-field algorithms. The resulting
algorithms are easy to implement and, as our experiments show, effectively obtain
good bounds and marginals for synthetic and real-world examples.

1 Introduction

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

Figure 1: Example coopera-
tive model. Edge colors in-
dicate the edge cluster. Dot-
ted edges are cut under the
current assignment.

Probabilistic inference in high-order discrete graphical models has
been an ongoing computational challenge, and all existing methods
rely on exploiting specific structure: either low-treewidth or pairwise
graphical models, or functional properties of the distribution such as
log-submodularity. Here, we aim to compute approximate marginal
probabilities in complex models with long-range variable interactions
that do not possess any of these properties. Instead, we exploit a
combination of structural and functional properties in new ways.

The classical example of image segmentation may serve to motivate
our family of models: we would like to estimate a posterior marginal
distribution over k labels for each pixel in an image. A common
approach uses Conditional Random Fields on a pixel neighborhood
graph with pairwise potentials that encourage neighboring pixels to
take on the same label. From the perspective of the graph, this model
prefers configurations with few edges cut, where an edge is said to
be cut if its endpoints have different labels. Such cut-based models,
however, short-cut elongated structures (e.g. tree branches), a problem known as shrinking bias.
Jegelka and Bilmes [1] hence replace the bias towards short cuts (boundaries) by a bias towards
configurations with certain higher-order structure: the cut edges occur at similar-looking pixel pairs.
They group the graph edges into clusters (based on, say, color gradients across the endpoints),
observing that the true object boundary is captured by few of these clusters. To encourage cutting
edges from few clusters, the cost of cutting an edge decreases as more edges in its cluster are cut.
In short, the edges “cooperate”. In Figure 1, each pixel takes on one of two labels (colors), and cut
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edges are indicated by dotted lines. The current configuration cuts three red edges and one blue edge,
and has lower probability than the configuration that swaps X3,1 to gray, cutting only red edges. Such
a model can be implemented by an energy (cost) h(#red edges cut) + h(#blue edges cut), where
e.g. h(u) =

√
u. Similar cooperative models can express a preference for shapes [2].

While being expressive, such models are computationally very challenging: the nonlinear function
on pairs of variables (edges) is equivalent to a graphical model of extremely high order (up to the
number of variables). Previous work hence addressed only MAP inference [3, 4]; the computation of
marginals and partition functions was left as an open problem. In this paper, we close this gap, even
for a larger family of models.

We address models, which we call cooperative graphical models, that are specified by an undirected
graph G = (V,E): each node i ∈ V is associated with a random variable Xi that takes values in
X = {1, 2, . . . , k}. To each vertex i ∈ V and edge {i, j}, we attach a potential function θi : X → R
and θi,j : X 2 → R, respectively. Our distribution is then

P (x) =
1

Z
exp

−(∑
i∈V

θi(xi) +
∑
{i,j}∈E

θi,j(xi, xj) + f(y(x))

) ν(x), (1)

where we call y : Xn → {0, 1}E the disagreement variable1, defined as yi,j = Jxi 6= xjK. The term
ν : Xn → R≥0 is the base-measure and allows to encode constraints, e.g., conditioning on some
variables. With f ≡ 0 we obtain a Markov random field.

Probabilistic inference in our model class (1) is very challenging, since we make no factorization
assumption about f . One solution would be to encode P (x) as a log-linear model via a new
variable z ∈ {0, 1}E and constraints ν(x, z) = Jy(x) = zK, but this in general requires computing
exponential-sized sufficient statistics from z. In contrast, we make one additional key assumption
that will enable the development of efficiently computable variational lower and upper bounds: we
henceforth assume that f : {0, 1}E → R is submodular, i.e., it satisfies

f(min(y,y′)) + f(max(y,y′)) ≤ f(y) + f(y′) for all y,y′ ∈ {0, 1}E ,

where the min and max operations are taken element-wise. For example, the pairwise potentials θi,j
are submodular if θi,j(0, 0) + θi,j(1, 1) ≤ θi,j(0, 1) + θi,j(1, 0). In our introductory example, f is
submodular if h is concave. As opposed to [3], we do not assume that f is monotone increasing.
Importantly, even if f is submodular, P (x) neither has low treewdith, nor is its logarithm sub- or
supermodular in x, properties that have commonly been exploited for inference.

Contributions. We make the following contributions: (1) We introduce a new family of prob-
abilistic models that can capture rich non-submodular interactions, while still admitting efficient
inference. This family includes pairwise and certain higher-order graphical models, cooperative cuts
[1], and other, new models. We develop new inference methods for these models; in particular, (2)
upper bounds that are amenable to convex optimization, and (3) lower bounds that we optimize with
traditional variational methods. Finally, we demonstrate the efficacy of our methods empirically.

1.1 Related work

Maximum-a-posteriori (MAP). Computing the mode of (1) for binary models is also known as
the cooperative cut problem, and has been analyzed for the case when both the pairwise interactions
θi,j are submodular and f is monotone [1]. While the general problem is NP-hard, it can be solved if
f is defined by a piecewise linear concave function [4].

Variational inference. Since computing marginal probabilities for (1) is #P-hard even for pairwise
models (when f ≡ 0) [5, 6], we revert to approximate inference. Variational inference methods for
discrete pairwise models have been studied extensively; a comprehensive overview may be found
in [7]. We will build on a selection of techniques that we discuss in the next section. Most existing
methods focus on pairwise models (f ≡ 0), and many scale exponentially with the size of the largest
factor, which is infeasible for our cooperative models. Some specialized tractable inference methods
exist for higher-order models [8, 9], but they do not apply to our family of models (1).

1The results presented in this paper can be easily extended to arbitrary binary-valued functions y(x).

2



Log-supermodular models. A related class of relatively tractable models are distributions P (x) =
1
Z exp(−g(x)) for some submodular function g; Djolonga and Krause [10] showed variational
inference methods for those models. However, our models are not log-supermodular. While [10]
also obtain upper and lower bounds, we need different optimization techniques, and also different
polytopes. In fact, submodular and multi-class submodular [11] settings are a strict subset of ours:
the function g(x) can be expressed via an auxiliary variable z ∈ {0, 1} that is fixed to zero using
ν(x, z) = Jz = 0K. We then set f(y(x, z)) = g(x1 6= z, x2 6= z, . . . , xn 6= z).

2 Notation and Background

Throughout this paper, we have n variables in a graph of m edges, and the potentials θi and θi,j are
stored in a vector θ. The characteristic vector (or indicator vector) 1A of a set A is the binary vector
which contains 1 in the positions corresponding to elements in A, and zeros elsewhere. Moreover,
the vector of all ones is 1, and the neighbours of i ∈ V are denoted by δ(i) ⊆ V .

Submodularity. We assume that f in Eqn. (1) is submodular. Occasionally (in Sec. 4 and 5, where
stated), we assume that f is monotone: for any y and y′ in {0, 1}E such that y ≤ y′ coordinate-wise,
it holds that f(y) ≤ f(y′). When defining the inference schemes, we make use of two polytopes
associated with f . First, the base polytope of a submodular function f is

B(f) = {g ∈ Rm | ∀y ∈ {0, 1}E : gTy ≤ f(y)} ∩ {g ∈ Rm | gT1 = f(1)}.
Although B(f) is defined by exponentially many inequalities, an influential result [12] states that it is
tractable: we can optimize linear functions overB(f) in timeO(m logm+mF ), where F is the time
complexity of evaluating f . This algorithm is part of our scheme in Figure 2. Moreover, as a result
of this (linear) tractability, it is possible to compute orthogonal projections onto B(f). Projection
is equivalent to the minimum norm point problem [13]. While the general projection problem has
a high degree polynomial time complexity, there are many very commonly used models that admit
practically fast projections [14, 15, 16].

The second polytope is the upper submodular polyhedron of f [17], defined as

U(f) = {(g, c) ∈ Rm+1 | ∀y ∈ {0, 1}E : gTy + c ≥ f(y)}.
Unfortunately, U(f) is not as tractable as B(f): even checking membership in U(f) is hard [17].
However, we can still succinctly describe specific elements of U(f). In §4, we show how to efficiently
optimize over those elements.

Variational inference. We briefly summarize key results for variational inference for pairwise
models, following Wainwright and Jordan [7]. We write pairwise models as2

P (x) = exp

−(∑
i∈V

θi(xi) +
∑
{i,j}∈E

(gi,jJxi 6= xjK + θi,j(xi, xj)

)
−A(g)

 ν(x),

where g ∈ RE is an arbitrary vector and A(g) is the log-partition function. For any choice of
parameters (θ,g), there is a resulting vector of marginals µ ∈ [0, 1]k|V |+k

2|E|. Specifically, for every
i ∈ V , µ has k elements µi,xi = P (Xi = xi), one for each xi ∈ X . Similarly, for each {i, j} ∈ E,
there are k2 elements µij,xixj

so that µij,xixj
= P (Xi = xi, Xj = xj). The marginal polytope M is

now the set of all such vectors µ that are realizable under some distribution P (x), and the partition
function can equally be expressed in terms of the marginals [7]:

A(g) = sup
µ∈M

− ∑
i∈V,xi

µi,xi
θi(xi)−

∑
{i,j}∈E

∑
xi,xj

µij,xixj
θi,j(xi, xj)−∆(µ)Tg


︸ ︷︷ ︸

〈stack(θ,g),µ〉

+H(µ), (2)

where H(µ) is the entropy of the distribution, ∆(µ) is the vector of disagreement probabilities with
entries ∆(µ)i,j =

∑
xi 6=xj

µij,xixj
, and stack(θ,g) adds the elements of θ and g into a single

2This formulation is slightly nonstandard, but will be very useful for the subsequent discussion in §3.
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vector so that the sum can be written as an inner product. Alas, neither M nor H(µ) have succinct
descriptions and we will have to approximate them. Because the vectors in the approximation of
M are in general not correct marginals, they are called pseudo-marginals and will be denoted by τ
instead of µ. Different approximations of M and H yield various methods, e.g. mean-field [7], the
semidefinite programming (SDP) relaxation of Wainwright and Jordan [18], tree-reweighted belief
propagation (TRWBP) [19], or the family of weighted entropies [20, 21]. Due to the space constraints,
we only discuss the latter. They approximate M with the local polytope

L = {τ ≥ 0 | (∀i ∈ V )
∑
xi

τi,xi = 1 and (∀j ∈ δ(i)) τi,xi =
∑
xj

τij,xixj
}.

The approximations H to the entropy H are parametrized by one weight ρi,j per edge and one ρi per
vertex i, all collected in a vector ρ ∈ R|V |+|E|. Then, they take the following form

H(τ ,ρ) =
∑
i∈V

ρiHi(τ i)+
∑
{i,j}∈E

ρi,jHi,j(τ i,j),where
Hi(τ i) = −

∑
xi
τi,xi log τi,xi , and

Hi,j(τ i,j) = −
∑
xi,xj

τij,xijxj
log τij,xixj

.

The most prominent example is traditional belief propagation, i.e., using the Bethe entropy, which
sets ρe = 1 for all e ∈ E, and assigns to each vertex i ∈ V a weight of ρi = 1− |δ(i)|.

3 Convex upper bounds

The above variational methods do not directly generalize to our cooperative models: the vectors of
marginals could be exponentially large. Hence, we derive a different approach that relies on the
submodularity of f . Our first step is to approximate f(y(x)) by a linear lower bound, f(y(x)) ≈
gTy(x), so that the resulting (pairwise) linearized model will have a partition function upper
bounding that of the original model. Ensuring that g indeed remains a lower bound means to satisfy
an exponential number of constraints f(y(x)) ≥ gTy(x), one for each x ∈ {0, 1}n. While this is
hard in general, the submodularity of f implies that these constraints are easily satisfied if g ∈ B(f),
a very tractable constraint. For g ∈ B(f), we have

logZ = log
∑

x∈{0,1}V
exp

(
− (
∑
i∈V

∑
xi

θi(xi) +
∑
{i,j}∈E

θi,j(xi, xj) + f(y(x)))
)

≤ log
∑

x∈{0,1}V
exp

(
− (
∑
i∈V

∑
xi

θi(xi) +
∑
{i,j}∈E

(θi,j(xi, xj) + gi,jJxi 6= xjK))
)
≡ A(g).

Unfortunately, A(g) is still very hard to compute and we need to approximate it. If we use an
approximation A(g) that upper bounds A(g), then the above inequality will still hold when we
replace A by A. Such approximations can be obtained by relaxing the marginal polytope M to an
outer bound M ⊇M, and using a concave entropy surrogate H that upper bounds the true entropy
H . TRWBP [19] or the SDP formulation [18] implement this approach. Our central optimization
problem is now to find the tightest upper bound, an optimization problem3 in g:

minimize
g∈B(f)

sup
τ∈M
〈stack(θ,g), τ 〉+H(τ ). (3)

Because the inner problem is linear in g, this is a convex optimization problem over the base polytope.
To obtain the gradient with respect to g (equal to the negative disagreement probabilities−∆(τ )), we
have to solve the inner problem. This subproblem corresponds to performing variational inference in
a pairwise model, e.g. via TRWBP or an SDP. The optimization properties of the problem (3) depend
on its Lipschitz continuity of the gradients (smoothness). Informally, the inferred pseudomarginals
should not drastically change if we perturb the linearization g. The formal condition is that there
exists some σ > 0 so that ‖∆(τ ) −∆(τ ′)‖ ≤ σ‖τ − τ ′‖ for all τ , τ ′ ∈ M. We discuss below
when this condition holds. Before that, we discuss two different algorithms for solving problem (3),
and how their convergence depends on σ.

3If we compute the Fenchel dual, we obtain a special case of the problem considered in [22] with the Lovász
extension acting as a non-smooth non-local energy function (in the terminology introduced therein).
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Frank-Wolfe. Given that we can efficiently solve linear programs over B(f), the Frank-Wolfe [23]
algorithm is a natural candidate for solving the problem. We present it in Figure 2. It iteratively
moves towards the minimizer of a linearization of the objective around the current iterate. The method
has a convergence rate of O(σ/t) [24], where σ is the assumed smoothness parameter. One can
either use a fixed step size γ = 2/(t + 2), or determine it using line search. In each iteration, the
algorithm calls the procedure LINEAR-ORACLE, which finds the vector s ∈ B(f) that minimizes the
linearization of the objective function in (3) over the base polytope B(f). The linearization is given
by the (approximate) gradient ∆(τ ), determined by the computed approximate marginals τ .

When taking a step towards s, the weight of edge ei is changed by sei = f({e1, e2, . . . , ei}) −
f({e1, e2, . . . , ei−1}). Due to the submodularity4 of f , an edge will obtain a higher weight if it
appears earlier in the order determined by the disagreement probabilities ∆(τ ). Hence, in every
iteration, the algorithm will re-adjusts the pairwise potentials, by encouraging the variables to agree
more as a function of their (approximate) disagreement probability.

1: procedure FW-INFERENCE(f,θ)
2: g← LINEAR-ORACLE(f,0)
3: for t = 0, 1, . . . , max steps do
4: τ ← VAR-INFERENCE(θ,g)
5: s← LINEAR-ORACLE(f, τ )
6: γ ← COMPUTE-STEP-SIZE(g, s)
7: g← (1− γ)g + γs

8: return τ , Â

1: procedure LINEAR-ORACLE(f, τ )
2: Let e1, e2, . . . , e|E| be the edges E sorted so

that ∆(τ )e1 ≥ ∆(τ )e2 ≥ . . . ≥ ∆(τ )e|E|

3: for i = 0, 1, . . . , |E| do
4: f−i ← f({e1, e2, . . . , ei−1})
5: f+i ← f({e1, e2, . . . , ei})
6: sei ← f+i − f−i

7: return s

Figure 2: Inference with Frank-Wolfe, assuming that VAR-INFERENCE guarantees an upper bound.

Projected gradient descent (PGD). Since it is possible to compute projections onto B(f), and
practically so for many submodular functions f , we can alternatively use projected gradient or
subgradient descent (PGD). Without smoothness, PGD converges at a rate of O(1/

√
t). If the

objective is smooth, we can use an accelerated methods like FISTA [25], which has both a much
better O(σ/t2) rate and seems to converge faster than many Frank-Wolfe variants in our experiments.

Smoothness and convergence. The final question that remains to be answered is under which
conditions problem (3) is smooth (the proof can be found in the appendix).

Theorem 1 Problem (3) is k2σ-smooth over B(f) if the entropy surrogate −H is 1
σ -strongly convex.

This result follows from the duality between smoothness and strong convexity for convex conjugates,
see e.g. [26]. It implies that the convergence rates of the proposed algorithms depend on the strong
convexity of the entropy approximation−H . The benefits of strongly convex entropy approximations
are known. For instance, the tree-reweighted entropy approximation is strongly convex with a
modulus σ depending on the size of the graph; similarly, the SDP relaxation is strongly convex [27].
London et al. [28] provide an even sharper bound for the tree reweighted entropy, and show how one
can strong-convexify any weighted entropy by solving a QP over the weights ρ.

In practice, because the inner problem is typically solved using an iterative algorithm and because the
problem is smooth, we obtain speedups by warm-starting the solver with the solution at the previous
iterate. We can moreover easily obtain duality certificates using the results in [24].

Joint optimization. When using weighted entropy approximations, it makes sense to optimize over
both the linearization g and the weights ρ jointly. Specifically, let T be some set of weights that yield
an entropy approximation H that upper bounds H . Then, if we expand H in problem (3), we obtain

minimize
g∈B(f),ρ∈T

sup
τ∈L
〈stack(θ,g), τ 〉+

∑
i∈V

ρiHi(τ i) +
∑
{i,j}∈E

ρi,jHi,j(τ i,j).

Note that inside the supremum, both g and ρ appear only linearly, and there is no summand that has
terms from both of them. Thus, the problem is convex in (g,ρ), and we can optimize jointly over

4This is also known as the diminishing returns property.
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both variables. As a final remark, if we already perform inference in a pairwise model and repeatedly
tighten the approximation by optimizing over ρ via Frank-Wolfe (as suggested in [19]), then the
complexity per iteration remains the same even if we use the higher-order term f .

4 Submodular lower bounds

While we just derived variational upper bounds, we next develop lower bounds on the partition
function. Specifically, analogously to the linearization for the upper bound, if we pick an element
(g, c) of U(f), the partition function of the resulting pairwise approximation always lower bounds
the partition function of (1). Formally,

logZ ≥ log
∑

x∈{0,1}V
exp

(
− (aTx +

∑
{i,j}∈E

θij,xixj +
∑
{i,j}∈E

gi,jJxi 6= xjK + c)
)

= A(g)− c.

As before, after plugging in a lower bound estimate of A, we obtain a variational lower bound over
the partition function, which takes the form

logZ ≥ sup
(g,c)∈U(f),τ∈M

−c+ 〈stack(θ,g), τ 〉+H(τ ), (4)

for any pair of approximations of M and H that guarantee a lower bound of the pairwise model.
We propose to optimize this lower bound in a block-coordinate-wise manner: first with respect to
the pseudo-marginals τ (which amounts to approximate inference in the linearized model), and
then with respect to the supergradient (g, c) ∈ U(f). As already noted, this step is in general
intractable. However, it is well-known [29] that for any Y ⊆ E we can construct a point (so
called bar supergradient) in U(f) as follows. First, define the vectors ai,j = f(1{i,j}) and bi,j =

f(1)−f(1−1{i,j}). Then, the vector (g, c) with g = b�1Y +(1−1Y )�a and c = f(Y )−bT1Y
belongs to U(f), where � denotes element-wise multiplication.

Theorem 2 Optimizing problem (4) for a fixed τ over all bar supergradients is equal to the following
submodular minimization problem minY⊆E f(Y ) +

(
∆(τ )� (b− a)− b

)T
1Y .

In contrast to computing the MAP, the above problem has no constraints and can be easily solved
using existing algorithms. As the approximation algorithm for the linearized pairwise model, one
can always use mean-field [7]. Moreover, if (i) the problem is binary with submodular pairwise
potentials θi,j and (ii) f is monotone, we can also use belief propagation. This is an implication
of the result of Ruozzi [30], who shows that traditional belief-propagation yields a lower bound on
the partition function for binary pairwise log-supermodular models. It is easy to see that the above
conditions are sufficient for the log-supermodularity of the linearized model, as g ≥ 0 when f is
monotone (because both a and b have non-negative components). Moreover, in this setting both
the mean-field and belief propagation objectives (i.e. computing τ ) can be cast as an instance of
continuous submodular minimization (see e.g. [31]), which means that they can be solved to arbitrary
precision in polynomial time. Unfortunately, problem (4) will not be jointly submodular, so we still
need to use the block-coordinate ascent method we have just outlined.

5 Approximate inference via MAP perturbations

For binary models with submodular pairwise potentials and monotone f we can (approximately)
solve the MAP problem using the techniques in [1, 4]. Hence, this opens as an alternative approach
the perturb-and-MAP method of Papandreou and Yuille [32]. This method relies on a set of tractable
first order perturbations: For any i ∈ V define θ′i(xi) = θi(xi)− ηi,xi , where η = (ηi,xi)i∈V,xi∈X
are a set of independently drawn Gumbel random variables. The optimizer argminxGη(x) of the
perturbed model energy Gη(x) =

∑
i∈V θ

′
i(xi) +

∑
{i,j}∈E θi,j(xi, xj) + f(y(x)) is then a sample

from (an approximation to) the true distribution. If this MAP problem can be solved exactly (which is
not always the case here), then it is possible to obtain an upper bound on the partition function [33].

6 Experiments

Synthetic experiments. Our first set of experiments uses a complete graph on n variables. The
unary potentials were sampled as θi(xi) ∼ Uniform(−α, α). The edges E were randomly split
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into five disjoint buckets E1, E2, . . . , E5, and we used f(y) =
∑5
j=1 hj(yEj ), where yEi are the

coordinates of y corresponding to that group, and the functions {hj} will be defined below. To
perform inference in the linearized pairwise models, we used: trwbp, jtree+ (exact inference, upper
bound), jtree- (same, lower bound), sdp (SDP), mf (mean-field), bp (belief propagation), pmap
(perturb-and-MAP with approximate MAP) and epmap (perturb-and-MAP with exact MAP). We
used libDAI [34] and implemented sdp using cvxpy [35] and SCS [36]. As a maxflow solver we
used [37]. Errors bars denote three standard errors.

Figure 3 shows the results for hi(yEi) = wi
√∑

e∈Ei
ye/
√
|Ei|, with weights wi ∼ Uniform(0, β).

In panel (c) we use mixed (attractive and repulsive) pairwise potentials, chosen as θi,j(xi, xj) =
wi,jJxi 6= xjK, where wi,j ∼ Uniform(−β, β). First, the results imply that the methods optimizing
the fully convex upper bound yield very good marginal probabilities over a large set of parameter
configurations. The estimate of the log-partition function from trwbp is also very good, while sdp is
much worse, which we believe can be attributed to the very loose entropy bound used in the relaxation.
The lower bounds (bp and mf) work well for settings when the pairwise strength β is small compared
to the unary strength α. Otherwise, both the bound and the marginals become worse, while jtree-
still performs very well. This could be explained by the hardness of the pairwise models obtained
after linearizing f . Finally, pmap (when applicable) seems very promising for small β.

To better understand the regimes when one should use trwbp or pmap, we compare their marginal
errors in Figure 5. We see that for most parameter configurations, trwbp performs better, and
significantly so when the edge interactions are strong.

Finally, we evaluate the effects of the approximate MAP solver for pmap in Figure 4. To be able
to solve the MAP problem exactly (see [4]), we used h(yEj ) = max{

∑
e∈Ej

yeve,
∑
e∈Ej

ve/2},
where ve ∼ Uniform(0, β). As evident from the figure, the gains from the exact solver seem minimal,
and it seems that solving the MAP problem approximately does not strongly affect the results.

An example from computer vision. To demonstrate the scalability of our method and obtain a
better qualitative understanding of the resulting marginals, we ran trwbp and pmap on a real world
image segmentation task. We use the same setting, data and models as [1], as implemented in
the pycoop5 package. Because libDAI was too slow, we wrote our own TRWBP implementation.
Figure 6 shows the results for two specific images (size 305 × 398 and 214 × 320). The example
in the first row is particularly difficult for pairwise models, but the rich higher-order model has no
problem capturing the details even in the challenging shaded regions of the image. The second row
shows results for two different model parameters. The second model uses a function f that is closer to
being linear, while the first one is more curved (see the appendix for details). We observe that trwbp
requires lower temperature parameters (i.e. relatively larger functions θi, θi,j and f ) than pmap, and
that the bottleneck of the complete inference procedure is running the trwbp updates. In other words,
the added complexity from our method is minimal and the runtime is dominated by the message
passing updates of TRWBP. Hence, any algorithms that speed up TRWBP (e.g., by parallelization or
better message scheduling) will result in a direct improvement on the proposed inference procedure.

7 Conclusion

We developed new inference techniques for a new broad family of discrete probabilistic models by
exploiting the (indirect) submodularity in the model, and carefully combining it with ideas from
classical variational inference in graphical models. The result are inference schemes that optimize
rigorous bounds on the partition function. For example, our upper bounds lead to convex variational
inference problems. Our experiments indicate the scalability, efficacy and quality of these schemes.
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