
Generalized clustering via kernel embeddings

Stefanie Jegelka1, Arthur Gretton2,1, Bernhard Schölkopf1, Bharath K.
Sriperumbudur3, and Ulrike von Luxburg1

1 Max Planck Institute for Biological Cybernetics, Tübingen, Germany
2 Carnegie Mellon University, Pittsburgh, PA 15213, USA
3 Dept. of ECE, UC San Diego, La Jolla, CA 92093, USA

Abstract. We generalize traditional goals of clustering towards distin-
guishing components in a non-parametric mixture model. The clusters
are not necessarily based on point locations, but on higher order criteria.
This framework can be implemented by embedding probability distribu-
tions in a Hilbert space. The corresponding clustering objective is very
general and relates to a range of common clustering concepts.

1 Introduction

In this paper we consider a statistical, non-parametric framework for clustering.
Assuming the data points to be drawn from some underlying distribution P , we
treat a cluster as a sample from a component distribution Pk. A clustering can
then be described as a decomposition of the underlying distribution of the form
P =

∑K
k=1 πkPk with mixture weights πk.

(a) (b) (c)
Fig. 1. (a) Traditional
clustering, (b) generalized
clustering; (c) example
2D result labeled by the
MMD approach.

A common statistic to quantify the separation between clusters is the distance
between the cluster means (e.g. Figure 1.a). However, separation based on �lo-
cation� is not always what we want to achieve. The example in Figure 1.b is
a mixture of two Gaussians with identical means, but with di�erent variances.
In this situation a decomposition is desirable where the di�erence between the
variances of P1 and P2 is large. The di�erence between cluster means or between
cluster variances are just two examples of distance functions between distribu-
tions. A straightforward generalization of the traditional clustering problem is
to replace the distance between the means by a more general distance function.
To avoid unnecessarily complicated solutions, we additionally require that the
components Pk be �simple�. This leads to the following generalized clustering
problem:

Generalized clustering: Decompose the density into �simple� components
Pi, while maximizing a given distance function between the Pi.
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A particularly suitable distribution representation and associated distance mea-
sure is given by Gretton et al. (2006). In this framework, a probability distri-
bution P is embedded as µ[P] into a reproducing kernel Hilbert space (RKHS)
H corresponding to some kernel function k. The Hilbert space norm ‖µ[P]‖H
can be interpreted as a �simplicity score�: the smaller the norm, the �simpler�
the corresponding distribution (e.g., the smoother the density). The maximum
mean discrepancy MMD(P,Q) between two distributions P and Q is de�ned as
the Hilbert space distance ‖µ[P ] − µ[Q]‖H between the two embedded distri-
butions. MMD with a dth-order polynomial kernel only discriminates between
distributions based on the �rst d moments; with a linear kernel, it is simply the
distance of means. At the most general level, i.e., with a characteristic kernel
(e.g., a Gaussian kernel), all moments are accounted for (Sriperumbudur et al.,
2008). Thus, the combination of simplicity score and distance between distri-
butions a�orded by RKHS embeddings yields a straightforward expression for
the two objectives of generalized clustering. Our formulation will turn out to be
very generic and to relate to many well-known clustering criteria. In this sense,
the main contribution of this work is to reveal and understand the properties of
the MMD approach and its relations to existing clustering algorithms. We will
discuss them in Section 4 and simplicity in Section 5, after formally introducing
MMD in Section 2 and the optimization problem in Section 3.

Alternative approaches to generalized clustering exist in the literature, but they
are less general than the MMD approach. We summarize them in Section 4.

2 Maximum mean discrepancy (MMD)

We begin with a concise presentation of kernel distribution embeddings and the
MMD, following Gretton et al. (2006). Given a kernel function k : X × X → R

on some space X , it is well known that points x ∈ X can be embedded into the
corresponding reproducing kernel Hilbert space H via the embedding ϕ : X →
H, x 7→ k(x, ·). If P denotes a probability distribution on X , one can show that
the expectation µ[P] := Ex∼P [ϕ(x)] realizes an embedding4 µ : P → H of the
space of all probability distributions P in H. The Maximum Mean Discrepancy
between two distributions P1 and P2 can be de�ned in two equivalent ways:

MMD(P1, P2) = ‖µ[P1]− µ[P2]‖H (1)

= sup
g∈H,‖g‖H≤1

(Ex∼P1g(x)− Ey∼P2g(y)) . (2)

The �rst form shows that MMD is a metric. The second form shows that two
probability distributions P1 and P2 are particularly �far� from each other if there
exists a smooth function g that has largest magnitude where the probability mass

of P1 di�ers most from that of P2. Given samples {X(1)
i }ni=1 and {X(2)

i }ni=1, the
embedding and the MMD can be empirically estimated as

4 Assume EP [k(x, x)] <∞ and k is characteristic, then the embedding is injective (see
Sriperumbudur et al. (2008) for the proof and the de�nition of `characteristic').
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µ[P̂1] =
1
n

n∑
i=1

ϕ(Xi) =
1
n

n∑
i=1

k(Xi, ·) (3)

M̂MD(P1, P2) = MMD(P̂1, P̂2) := ‖µ[P̂1]− µ[P̂2]‖H.

3 The generalized clustering optimization problem

We now describe how kernel distribution embeddings can be used to implement
a generalized clustering algorithm. For simplicity, we focus on the case of two
clusters only. Our goal is to decompose the underlying distribution P such that
MMD(P1, P2) is large and ‖µ[P1]‖H and ‖µ[P2]‖H are small. With only a �nite
sample {Xi}ni=1, we must estimate these quantities empirically. To this end,

we parameterize the empirical distributions P̂k via assignments α
(k)
i of Dirac

measures δXi on the sample points Xi:

π̂kP̂k =
1
n

n∑
i=1

α
(k)
i δXi

with π̂k =
1
n

n∑
i=1

α
(k)
i

for α
(1)
i + α

(2)
i = 1. For a soft clustering we allow α(1), α(2) ∈ [0, 1]n; for a hard

clustering we constrain α(1), α(2) ∈ {0, 1}n. The resulting decomposition takes
the form P̂ = π̂1P̂1 + π̂2P̂2. These estimates lead to the following optimization
problem (note that α(2) = 1− α(1) is determined by α(1)):

max
α(1)

Ψ(α(1)) := max
α(1)

MMD-Term(P̂1, P̂2) + λ · Regularization-Term(P̂1, P̂2).

Let K = (k(Xi, Xj))i,j=1,...,n denote the kernel matrix of the sample. The MMD-
Term and its parametric form are then

π̂1π̂2MMD(P̂1, P̂2) = π̂1π̂2‖µ[P̂1]− µ[P̂2]‖2H (4)

=
π̂2

n2π̂1
(α(1))>Kα(1) +

π̂1

n2π̂2
(α(2))>Kα(2) − 2

n2
(α(1))>Kα(2).

The product of the cluster sizes π̂1, π̂2 acts as a balancing term to avoid partic-
ularly small clusters. We will call the maximization of (4) maxMMD and give
various interpretations in Section 4. As a regularization term we use

λ1‖µ[P̂1]‖2H + λ2‖µ[P̂2]‖2H =
λ1

n2π̂2
1

(α(1))>Kα(1) +
λ2

n2π̂2
2

(α(2))>Kα(2) (5)

To avoid empty clusters, we introduce a constraint for the minimum size ε > 0
of a cluster. This leads to the �nal optimization problem

max
α(1)∈[0,1]n

Ψ(α(1)) s. t. ε ≤
∑
i

α
(1)
i ≤ (1− ε).

As we shall see in Section 4, maxMMD alone can be optimized e�ciently via a
variant of the kernel k-means algorithm ensuring the minimum size constraint.
For the full objective, we used the Ipopt solver (Wächter and Biegler, 2006). Even
though we evaluated our criterion and variants in many experiments, we will
exclude them to save space and concentrate on the theory, our main contribution.
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4 MaxMMD, discriminability, and related approaches

We will now describe how the discriminability criterion maxMMD (Eqn. (4))
encompasses the concepts behind a number of classical clustering objectives.
Figure 2 gives an overview.
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Fig. 2. Overview of connections. Red links are conceptual, black links mathematical.
First, discriminability is conceptually close to learnability. Learning seeks to detect
patterns in the data, i.e., dependencies between data and labels (cluster assignments).
Only if we capture those dependencies can we reliably predict labels. In other words,
we want clusters to maximize the dependence between data and labels. If the label
distribution is closely linked to the data, it represents the data well. Representation
conceptually connects to compression and coding. Clusters that are less complex to
describe have lower entropy. Small entropy means dense clusters, which leads back to a
generalization of the k-means criterion. Extended by weights, this criterion encompasses
spectral clustering, e.g., graph cut criteria. Those cuts favor sparse connections between
clusters, simply another measure of discriminability. Spectral clustering also relates to
discriminability via the angle of embeddings µ[P1], µ[P2].

Concept 1 (Discriminability) MaxMMD seeks dissimilar components Pk.

Since MMD is a metric for distributions, maxMMD strives for distant component
distributions by construction. Hence, it indirectly promotes discriminability of
the clusters by their statistics.
Moreover, MaxMMD behaves similarly to the Jensen-Shannon (JS) divergence in
the clustering context. For a mixture P = π1P1+π2P2, the latter isDJS(P1, P2) =
π1DKL(P1, P )+π2DKL(P2, P ) (Fuglede and Topsøe, 2004). If we replace the KL
divergence DKL by the squared MMD, we arrive at the parallel form

π1MMD(P1, P )2 + π2MMD(P2, P )2 = π1π2MMD(P1, P2)2. (6)

Discriminability via projections or some moments is used by, e.g., Chaudhuri and
Rao (2008), Arora and Kannan (2001), but for speci�c distributions. Information-
theoretic clustering (Gokcay and Principe, 2002, Jenssen et al., 2004) measures
discriminability by the cosine of the angle between the µ[Pk]. Its motivation,
however, restricts k to have a speci�c form, whereas MMD is more general.
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Concept 2 (Learnability) MaxMMD �nds clusters that are well learnable.

It turns out that our objective also connects unsupervised and supervised learn-
ing. In supervised learning, the Bayes risk R∗ measures the di�culty of a learning
problem. If R∗ is large, then there is no good rule (among the simple ones we
choose from) to tell the classes apart, i.e., they are almost indiscriminable. We
will see that the negative MMD corresponds to a particular Bayes risk.
Assume for a moment that the cluster assignments are known, i.e., the data
points Xi have labels Yi ∈ {−1, 1}, all sampled from an unknown joint distri-
bution P (X,Y ). We search for a classi�er g : X → {−1, 1} from a space G of
candidate functions. Here, G is the set of all functions in H with ‖g‖H ≤ 1. Let
P (X) = π1P1 + π2P2 with π1 = P (Y = 1) and π2 = P (Y = −1). Choosing loss

`(y, g(x)) =

{
−g(x)
π1

if y = 1
g(x)
π2

if y = −1

and using the de�nition (1) of MMD, the Bayes risk becomes

R∗ = inf
g∈G
−
(∫

gdP1 −
∫
gdP2

)
= − sup

g∈G

(∫
gdP1 −

∫
gdP2

)
= −MMD(P1, P2). (7)

A large MMD hence corresponds to a low Bayes risk. The classi�er g∗ that
minimizes the risk is (Gretton et al., 2008)

g∗ = arg inf
g∈H,‖g‖H≤1

−
(∫

gdP1 −
∫
gdP2

)
=

µ[P1]− µ[P2]
‖µ[P1]− µ[P2]‖H

, i.e.,

g∗(x) = 〈g∗, ϕ(x)〉H ∝
∫
k(x, x′)dP1(x′)−

∫
k(x, x′′)dP2(x′′).

Estimating µ[Pk] as in (3) with the assignments α
(k)
i yields a Parzen window

classi�er with the window function k, assuming k is chosen appropriately.
In clustering, we choose labels Yi and hence implicitly P1 and P2. Maximiz-
ing their MMD de�nes classes that are well learnable with G. This concept is
reminiscent of Maximum Margin Clustering (MMC) that seeks to minimize a
0-1-loss (Xu et al., 2005). As opposed to MMC, however, we do not maximize
a minimum separation (margin) between the cluster points in the RKHS, but
strive for discrepancy of the means in H.

Concept 3 (Dependence maximization) MaxMMD seeks the dependence be-

tween data and cluster assignments.

What is the aim of learning? We assume an association between the data and
the labels that can be expressed by a pattern or learnable rule. Well-learnable
cluster assignments are in conformity with such a dependence.
In matrix notation and with binary assignments, Criterion (4) becomes

π̂1π̂2‖µ[P̂1]− µ[P̂2]‖2H = tr(KL)− const = −HSIC(P, α(1))− const (8)
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where K is the kernel matrix of the data and L that of the labels with entries
lij = n−1π̂

−1/2
1 if α

(1)
i = α

(1)
j = 1, lij = n−1π̂

−1/2
2 if α

(1)
i = α

(1)
j = 0 and lij = 0

otherwise. HSIC (Gretton et al., 2005) is a measure of statistical dependence
between random variables. Hence, maxMMD is equivalent to maximizing the

dependence between cluster assignments and the data distribution.

This criterion has been used in existing clustering approaches. Song et al. (2007)
exploit the HSIC formulation to introduce structural constraints. The criterion
by Aghagolzadeh et al. (2007) is similar to (8) but derived as an estimate of the
Mutual Information between labels and data.

Concept 4 (Representation) MaxMMD aims to �nd functions µ[P̂k] that

represent the data well.

We can rewrite the maxMMD criterion as

2π̂1π̂2‖µ[P̂1]− µ[P̂2]‖2H = const−
2∑
k=1

n∑
i=1

α
(k)
i ‖ϕi − µ[P̂k]‖2H. (9)

Consider a probabilistic encoding with a limited number of deterministic code-
book vectors y(l) = µ[P̂l]. Choose a label l(Xi) for a point Xi with probability

P̂ (l|Xi) = α
(l)
i and encode it as y(Xi) = y(l(Xi)) (Rose, 1994). Then Crite-

rion (9) is an estimate of the average distortion E[D] =
∫
d(X, y(X))dP (X, k)

with divergence d(Xi, y(Xi)) = ‖ϕi − y(Xi)‖2H. An assignment with minimal
distortion, as favored by (9), is a good encoding, i.e., it represents the data well.
Following further algebra, the minimization of the average distortion corresponds
to the maximization of the sum of dot products

2∑
k=1

n∑
i=1

α
(k)
i 〈ϕ(Xi), µ[P̂k]〉H =

2∑
k=1

n∑
i=1

α
(k)
i fµ[P̂k](Xi). (10)

The functions fµ[P̂k] have the form of a Parzen window estimator: fµ[P̂k](X) =∑n
j=1 α

(k)
j k(X,Xj). Criterion (10) is large if the fµ[P̂k] represent the density

structure of the data, i.e., if each Xi is likely under the estimator it belongs to.

Concept 5 (Entropy) MaxMMD �nds clusters with low generalized entropy.

With the de�nition nµ[P̂k] = π̂−1
k

∑
i α

(k)
i ϕ(Xi), Criterion (10) becomes

max
2∑
k=1

π̂k‖µ[P̂k]‖2H. (11)

The related term H2(Pk) = − log ‖µ[Pk]‖2H, as shown by Erdogmus and Principe
(2006), is the Parzen window estimate of a generalized entropy, the Renyi en-
tropy (Renyi, 1960). Consequently, large norms ‖µ[P̂k]‖H result in small Renyi
entropies of the P̂k. Thus, similar to the analogy in Equation (6), Criterion (11)
parallels the JS divergence: maximizing DJS minimizes the weighted sum of
Shannon entropies, DJS(P1, P2) = HS(P )− π1HS(P1)− π2HS(P2) (Lin, 1991).
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Criterion (9) is in fact the kernel k-means objective. While linear k-means seeks
clusters with minimal variance, its kernel version generalizes to clusters with
minimal entropy, as shown by Concept 5, and in line with the viewpoint of
Erdogmus and Principe (2006) that entropy is a generalization of variance to
non-Gaussian settings.
Entropy can be viewed as an information theoretic complexity measure; recall
the association between coding length and Shannon entropy. This means that
maxMMD favors less complex clusters in an information theoretic sense.
The function µ[Pk] has a larger norm if (the image of) its support is narrower. In
light of this view, small entropies relate to criteria that favor small, dense clus-
ters. For graphs, those are densely connected subgraphs. Construct a graph with
vertices Xi. Let the kernel matrix K be its adjacency matrix (with k(X,X) = c
for allX) and cluster Ck have nk nodes. Letm(Ck) denote the sum of the weights
of the within-cluster edges. Then maxMMD promotes the average connectedness
of a vertex within its cluster:

π̂k‖µ[P̂k]‖2H = π̂−1
k (α(k))>Kα(k) = nc+ n

m(Ck)
nk

.

Edge density is vital in the modularity criterion (Newman and Girvan, 2004)
that compares the achieved to the expected within-cluster connectivity.

5 Regularization

λ=(0,0) λ=(0.2,0.4) λ=(0.4,0.4) Fig. 3. E�ect of
increasing regu-
larization with
Gaussian kernel
(estimates by
binning).

As we have seen, the maxMMD criterion is well supported by classical clustering
approaches. That said, clustering by maxMMD alone can result in P̂k with non-
smooth, steep boundaries, as in Figure 3. Smoothness of a function f in form of
�simplicity� is commonly measured by the norm ‖f‖H, for example in Support
Vector Machines. To avoid steep or narrow P̂k � unless the data allows for that
� we add a smoothness term for the estimates fµ[P̂k],

ρ(α(1), α(2)) := λ1‖µ[P̂1]‖2H + λ2‖µ[P̂2]‖2H.

The weights π̂k do not come into play here. If µ[Pk] is small, then its support in
H is broader, and Pk has higher entropy (uncertainty). Thus, constraining the
norms can avoid �over�tting�. Furthermore, we can introduce prior knowledge
about di�erent entropies of the clusters by choosing λ1 6= λ2.
To enforce overlap and smoothness, more direct restriction of the assignments
α(k) is also conceivable, similar to the updates in soft k-means. This type of
regularization is motivated by the analogy (9) to kernel k-means. Both ways of
regularization restrict the set of candidate distributions for Pk.



8 Jegelka, Gretton, Schölkopf, Sriperumbudur and von Luxburg

6 Conclusion

The literature on clustering is overwhelming, and it is di�cult even to get an
overview of what is out there. We believe that it is very important to �tidy
up� and discover relationships between di�erent clustering problems and algo-
rithms. In this paper we study a generalized clustering problem which considers
clustering from a higher level point of view, based on embeddings of distribu-
tions to high dimensional vector spaces. This approach reveals connections to
the concepts behind many well-known clustering criteria.

Acknowledgments. We thank Bob Williamson, Mark Reid and Dominik Janz-
ing for discussions.
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