Supplementary material for “Online Submodular Minimization for
Combinatorial Structures”

Here, we provide details of proofs in the main paper.

1. Proof of Lemma 1

Lemma 1. Let g; be a subgradient of fi (ob-
tained by the greedy algorithm).  Then |g:l] <
Bmaxacg |fi(A)| — fi(D), where 8 = 1 if fi is non-
decreasing, and 3 = 3 otherwise.

Proof. Since t is fixed, we will drop the subscript in
this proof. Essential for the proof is that g € Py, in
fact, it lies in the base polytope (Fujishige, 2005). This
means that

g-xa < f(A) (1)

for all A C E. Assume first that f is nonnegative and
nondecreasing. Then Equation (1) immediately leads
to a bound on ||g||, by bounding the ¢ norm by the ¢4
norm:

gl < llglh =9 x& < F(E). (2)
This proves the lemma for nondecreasing functions.

For arbitrary submodular functions, we use the con-
struction of g in slightly more detail, but the basic
arguments are the same. For ease of notation, let
~v = maxacg |f(A)]. We first recall how g was con-
structed, given x > 0. We denote the components of z
by z;, 1 <7 < m. We find a permutation 7 such that
Tr(1) = Tp(2) = -+ = Tr(m)- Lhis ordering induces a
maximal chain of sets, ) = Ag C Ay C ... C A,, with
Ag =0 and A; = A;_1 U {ex(;)}. Setting

Iy = f(Ai) — f(Aim1) (3)

yields g, with g - xa, = f(4;) — f(0).
max{g,0} be the element-wise maximum.

Claim 1. ||g7||; = Zi\il 9: <7 - f(0).

Let gt =

Consider the subset ET of elements e;, with g > 0,
and let B; be the set of the j first such elements, where
we use the ordering induced by z, restricted to ET.
We call this restriction 7#*: {1,...|E*|} — E*. The
jth element in BT, €xt(j), also occurs at some point
7(i(4)) in the full sequence, so that e +(;) = ex(i(j))-
Since the nonnegative elements are a subsequence, we
know that i(j) > j and thus B; C A;;). By the

definition of g; and diminishing marginal costs (sub-
modularity), it holds for all e,/(;) € ET that
gr () = F(Aig—1 U {es}) — fF(Aigy-1) (4)
< f(Bj—1U{e}) — f(Bj) =1 g;.  (5)
The definition of the g} implies that >_. ¢} + f(0) =
f(Bj) <. In consequence,

|E*] |E*

\
gt = Z Irr(5) < Z g§ <7 - f(0). (6)
j=1 j=1

This proves the claim.

We next use this result to bound the sum of the ab-
solute values of the negative entries. By definition of
g, we know that Zle gi = f(Ax) — f(0), in particular
also for k = m. Since —v < f(Ag) < v, it follows that

A =f0)< D g+ Y, g <y—f0). (7

1:9; <0 i:9;>0
Using the claim, we get that
Yogz—f0)- > g>=-2v, (8
1:9; <0 i:9; >0
and thus >, o [gi| < 2v. In total, this shows that
ol = 3 Jgil + 3 lgil < 37— (0) <47, (9)
3:9,<0 i:9,>0

With ||g|l2 < ||g]l1, the lemma follows. O

2. Detailed proof of Theorem 2

First, we re-state the theorem.

Theorem 2. For an approximation f that satisfies
(C1) and (C2), M = max; f;(E), and n = T~1/2,
Algorithm 2 achieves an expected a-regret B[R, (T)] <

3amM /T = O(am/VT).

Proof. Let
t—1 .
S; = argmin ~(S) + ar(9);
¢ = argm ZTzlf( ) (S)
~ t—1 . t
Sy = argmin ~(S); S = argmin +(9).
= argmin Y Fr(S) 7 —angmin 3 £,(5)
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First, we show a relation for 23:1 ft(Si41) and later
relate it to the actual cost ZtT:l f+(S:). The first in-

equality is
T . T .
Yo, S <Y fulSra). (10)

It holds trivially for T'= 1. The case T'+ 1 follows by
induction and the optimality of Spq:

~

ZT+1f(5t+1 < Z fi(Sr41) + fria(Sry2)

t=1
< Zt: ft(ST+2) + fT+1(ST+2)

We now replace fi in Equation (10) by fi + ar:

T

Y, Je(Sia) +ar(sy) <Z
<.,

Rearranging the terms yields

T

Do, JlSia) < Z; Fi(Sr41) + a(r(Sr41) = r(S1))-

(11)

To transfer this result to the series of S, we use that

£e(Se) < fulSesr) + (fe(Se) = fi(Si41)):

T T

Z fi(Sy) < Z ST+1

t=1 ; t=1
+2_(ul

=1

(12)

— fe(Se41)) + a(r(Sri1) — r(S1)).

~+

Condition (C1) implies that

ZtT:l fe(Sr41) < Zil fe(S5) < aZtTZI fe (S5,

and that 31, fi(S)) < Y1, fi(So).
Equation (12), this yields

> 5 —aY (S
< Z (fi(S) = fi(Ser1)) +

Together with

a(r(Sri1) = 7(Sh))-
(13)

It remains to bound the two terms on the right hand
side, and these bounds depend on r € [0, M /n]¥

We first address the random perturbation r in
[0, M/n]F. The last term can be bounded as

oE[r(Sr41) — r(S1)] < amM /. (14)

fe(Sri1) + ar(St1)

ST—H + Oz’I"(ST_H)

To bound the expected sum of differences of the func-
tion values, we use a technique by Hazan & Kale
(2009). For the analysis, one can assume that r is re-
sampled in each round. We first bound P(S; # Si11).
A simple union bound holds:

P(Sy # Si41) < Z:l
+ Zzl P(e; ¢ Sy and e; € Syy1).
(15)

To bound the right hand side, we fix 7 and look at
P(e; € S and e; ¢ Si11). Denote the components of
r by rj and define r’ : 2F — R as7/(9) = De 8,41 T
so 1'(ej) =r(e;) =r; for all j # i, but r'(e;) = 0; and

P(e; € Sy and e; € Siy1)

define ® : 28 — R as ®(S) = S22 fr + ar'(9).
Now let
S' = argmin ®}(S); S? = argmin ®(S).
SeS,e; €S SeS,e; ¢S

The event e; € Sy only happens if ®}(St) + ar; <
®}(S%) and S; = S'. On the other hand, to have
e; ¢ Si+1, it must be that ®,(S')+ar; > ®,(S?)—aM,
since otherwise
t+1 .
Y (8 ar(Sh) = @48 +ar + fi(5Y)

< ®}(9?)

< ®4(B) + fu(B)
for all B € S with ¢; ¢ B. Here, we used that f,(S) <
afi(S) < aM for all S C E. Let v = a=1(®'(S?) —
®’(S1)), then e; € S; and e; ¢ Sy41 only if r; € [v —
M, v]. The number 7; is in this range with probability
at most 7 since it is chosen uniformly at random from
[0, M/n], so P(e; € St and e; ¢ Sty1) < n. The bound

on P(e; ¢ S; and e; € S;y1) follows by an analogous
argumentation. Together, those results bound (15):

P(S¢ # Sit1) < Zm

+ Z P(e; ¢ Sy and e; € S¢41)
< 2mm. (16)

P 61' € St and €; ¢ St+1)

Equation 16 helps to bound the sum of function values,
using f(C) < aM for all C:

Zthl E [ft(St) - ft(5t+1)]

<SPS #£58 (B
<>, P(Si # Sip) max f(B)
< 2amMTn. (17)
4) and (17

E[Y  f(S)] —a  f(S5)

< aMm/n+2amMTn.

Combining Inequalities (13), (1 ) results in
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The final regret bound follows for n = T-1/2, O

3. Proof of Lemma 2

Lemma 2. Letf be randomly chosen between f* and
1 with equal probabilities. Then f(S) < E[f(S)] <
(IV1/2)f(S) for all minimal (s,t)-cuts S.

Proof. First, we bound f~(S). Let A~(S) be the set
of head nodes of edges in S, i.e., at most all nodes on
the ¢ side of the cut.

(8= ZveA—(S) f(SNE,)
< IA_(S)IUEg@fS)f(SﬂEJ)
< [AT(9)If(S).

Analogously, it follows that f(S) < |AT(S)|f(S),
|AT(S)| being the number of tail nodes of edges in
S. We combine these bounds to

E[f(S)] = (f7(5) + F(5))/2
FSIAT(S)+]AT(S)])/2
fFS)vis2.

IN A

4. Proof of Lemma 3

Let S* = argmingcsy , f:(S), and S =
argming. g ., f2(S). We play S; as prescribed by al-
gorithm A.

Lemma 3. Let ]TBA be the regret of an online algorithm
A when used with linear cost functions with a range
like f2. Using A with f? when observing f; leads to

an ag-regret of Re, (T) < agﬁA/u.

Proof. Since we use f2 in A, the regret R4 bounds
S, (f2(S:) — f2(S*)). Therefore, we relate the actual
regret, >, (ft(St) — g f:(S*)), to the regret of A. We
use that f2(S) < f2(S) < a2f2(S). We have that

e RS~ 0f2(s)
2,50 = 05D = 2, T T g (57)

<Y (f7(S) = ag fR(S7))/ (agr)
<, aa(fE(S) = FE(57)/(agr)
< ag(f7(S) = 7 (5)/(v)
:Oégztf?A/%

since §* = argming.g 3., f2(S) is optimal for f2. [

5. Multiple labels for label costs in
Algorithm 3

Here, we outline how to simulate label costs when one
edge can have more than one label. This simulation
applies to the spanning tree example.

Let k£ be the maximum number of labels any edge can
have. We assign k£ “slots” to each edge. Each label
¢ € 7(e) occupies 1 < ~.(¢) < k slots, such that
Y ten(e) Ye) = k. Define k copies G; = (V. E;) of
G. Edge e is contained in E;(L) if ¢ of its slots are
filled by labels in L. Then we use

This sum is still submodular, and maximum only if
E(L) contains a tree of full edges. The approximation
factor increases moderately to O(log(nk)).

6. Problems when applying the
algorithms in (Kakade et al., 2009)
to the submodular-cost setting

Kakade et al. (2009) show online approximation algo-
rithms that use an offline approximation algorithm as
a black box. Their method generalizes online gradi-
ent descent (Zinkevich, 2003) to use the approxima-
tion algorithm in an approximate projection. Their
cost function is of the form ¢ : 2F x R — R,
e(S,w) = (¢(S),w) and must be linear in w. That
means, it is the dot product between some feature vec-
tor of S and a weight vector. (In the paper, they leave
nonlinear costs as an open problem.)

To use this framework, we must express any non-
decreasing submodular f via a cost vector w! as
c(S,wf) = f(S). The set of non-decreasing submod-
ular functions on F is equivalent to a convex cone in
R2“'. This set has a non-empty relative interior (e.g.,
f(S) =log(1+1S])). As a result, simple linear alge-
bra shows that a full basis is needed to represent all
such f meaning that w has an exponential dimension
d. But then the regret bound in (Kakade et al., 2009)
is exponential in |F|, since it is linear in ||w||, i.e., pro-
portional to v/d. Whilst the norm issue can possibly
be resolved, the algorithm also assumes that, given any
w € R?, we can project it onto the set of those w for
which ¢(-,w) is a nondecreasing submodular function.
Given the results in (Seshadri & Vondrék, 2010), this

too seems to be non-trivial.
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