
Supplementary material for “Online Submodular Minimization for
Combinatorial Structures”

Here, we provide details of proofs in the main paper.

1. Proof of Lemma 1

Lemma 1. Let gt be a subgradient of ft (ob-
tained by the greedy algorithm). Then ‖gt‖ ≤
βmaxA⊆E |ft(A)| − ft(∅), where β = 1 if ft is non-
decreasing, and β = 3 otherwise.

Proof. Since t is fixed, we will drop the subscript in
this proof. Essential for the proof is that g ∈ Pf , in
fact, it lies in the base polytope (Fujishige, 2005). This
means that

g · χA ≤ f(A) (1)

for all A ⊆ E. Assume first that f is nonnegative and
nondecreasing. Then Equation (1) immediately leads
to a bound on ‖g‖, by bounding the `2 norm by the `1
norm:

‖g‖2 ≤ ‖g‖1 = g · χE ≤ f(E). (2)

This proves the lemma for nondecreasing functions.

For arbitrary submodular functions, we use the con-
struction of g in slightly more detail, but the basic
arguments are the same. For ease of notation, let
γ = maxA⊆E |f(A)|. We first recall how g was con-
structed, given x ≥ 0. We denote the components of x
by xi, 1 ≤ i ≤ m. We find a permutation π such that
xπ(1) ≥ xπ(2) ≥ . . . ≥ xπ(m). This ordering induces a
maximal chain of sets, ∅ = A0 ⊂ A1 ⊂ . . . ⊂ Am with
A0 = ∅ and Ai = Ai−1 ∪ {eπ(i)}. Setting

gπ(i) = f(Ai)− f(Ai−1) (3)

yields g, with g · χAi
= f(Ai) − f(∅). Let g+ =

max{g, 0} be the element-wise maximum.

Claim 1. ‖g+‖1 =
∑M
i=1 g

+
i ≤ γ − f(∅).

Consider the subset E+ of elements ek with gk ≥ 0,
and let Bj be the set of the j first such elements, where
we use the ordering induced by x, restricted to E+.
We call this restriction π+: {1, . . . |E+|} → E+. The
jth element in E+, eπ+(j), also occurs at some point
π(i(j)) in the full sequence, so that eπ+(j) = eπ(i(j)).
Since the nonnegative elements are a subsequence, we
know that i(j) ≥ j and thus Bj ⊆ Ai(j). By the

definition of gj and diminishing marginal costs (sub-
modularity), it holds for all eπ′(j) ∈ E+ that

gπ′(j) = f(Ai(j)−1 ∪ {ej})− f(Ai(j)−1) (4)
≤ f(Bj−1 ∪ {ej})− f(Bj) =: g′j . (5)

The definition of the g′j implies that
∑
j g
′
j + f(∅) =

f(Bj) ≤ γ. In consequence,

‖g+‖1 =
|E+|∑
j=1

gπ′(j) ≤
|E+|∑
j=1

g′j ≤ γ − f(∅). (6)

This proves the claim.

We next use this result to bound the sum of the ab-
solute values of the negative entries. By definition of
g, we know that

∑k
i=1 gi = f(Ak)−f(∅), in particular

also for k = m. Since −γ ≤ f(Ak) ≤ γ, it follows that

−γ − f(∅) ≤
∑
i:gi<0

gi +
∑
i:gi≥0

gi ≤ γ − f(∅). (7)

Using the claim, we get that∑
i:gi<0

gi ≥ −γ − f(∅)−
∑
i:gi≥0

gi ≥ −2γ, (8)

and thus
∑
i:gi<0 |gi| ≤ 2γ. In total, this shows that

‖g‖1 =
∑
i:gi<0

|gi|+
∑
i:gi≥0

|gi| ≤ 3γ − f(∅) ≤ 4γ. (9)

With ‖g‖2 ≤ ‖g‖1, the lemma follows.

2. Detailed proof of Theorem 2

First, we re-state the theorem.

Theorem 2. For an approximation f̂ that satisfies
(C1) and (C2), M = maxt ft(E), and η = T−1/2,
Algorithm 2 achieves an expected α-regret E[Rα(T)] ≤
3αmM/

√
T = O(αm/

√
T).

Proof. Let

St = argmin
S∈S

∑t−1

τ=1
f̂τ (S) + αr(S);

Ŝt = argmin
S∈S

∑t−1

τ=1
f̂τ (S); S∗t = argmin

S∈S

∑t

τ=1
fτ (S).

Online Submodular Minimization for Combinatorial Structures

First, we show a relation for
∑T
t=1 f̂t(St+1) and later

relate it to the actual cost
∑T
t=1 f̂t(St). The first in-

equality is∑T

t=1
f̂t(Ŝt+1) ≤

∑T

t=1
f̂t(ŜT+1). (10)

It holds trivially for T = 1. The case T + 1 follows by
induction and the optimality of ŜT+1:∑T+1

t=1
f̂t(Ŝt+1) ≤

∑T

t=1
f̂t(ŜT+1) + f̂T+1(ŜT+2)

≤
∑T

t=1
f̂t(ŜT+2) + f̂T+1(ŜT+2)

=
∑T+1

t=1
f̂t(ŜT+2).

We now replace f̂1 in Equation (10) by f̂1 + αr:∑T

t=1
f̂t(St+1) + αr(S1) ≤

∑T

t=1
f̂t(ST+1) + αr(ST+1)

≤
∑T

t=1
f̂t(ŜT+1) + αr(ŜT+1).

Rearranging the terms yields∑T

t=1
f̂t(St+1) ≤

∑T

t=1
f̂t(ŜT+1) + α(r(ŜT+1)− r(S1)).

(11)

To transfer this result to the series of St, we use that
f̂t(St) ≤ f̂t(St+1) + (f̂t(St)− f̂t(St+1)):

T∑
t=1

f̂t(St) ≤
T∑
t=1

f̂t(ŜT+1)

+
T∑
t=1

(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).
(12)

Condition (C1) implies that∑T

t=1
f̂t(ŜT+1) ≤

∑T

t=1
f̂t(S∗T) ≤ α

∑T

t=1
ft(S∗T),

and that
∑T
t=1 ft(St) ≤

∑T
t=1 f̂t(St). Together with

Equation (12), this yields∑T

t=1
ft(St)− α

∑T

t=1
ft(S∗T)

≤
∑T

t=1
(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).

(13)

It remains to bound the two terms on the right hand
side, and these bounds depend on r ∈ [0,M/η]E .

We first address the random perturbation r in
[0,M/η]E . The last term can be bounded as

αE[r(ŜT+1)− r(S1)] ≤ αmM/η. (14)

To bound the expected sum of differences of the func-
tion values, we use a technique by Hazan & Kale
(2009). For the analysis, one can assume that r is re-
sampled in each round. We first bound P (St 6= St+1).
A simple union bound holds:

P (St 6= St+1) ≤
∑m

i=1
P (ei ∈ St and ei /∈ St+1)

+
∑m

i=1
P (ei /∈ St and ei ∈ St+1).

(15)

To bound the right hand side, we fix i and look at
P (ei ∈ St and ei /∈ St+1). Denote the components of
r by rj and define r′ : 2E → R as r′(S) =

∑
ej∈S,j 6=i rj ,

so r′(ej) = r(ej) = rj for all j 6= i, but r′(ei) = 0; and
define Φ′t : 2E → R as Φ′t(S) =

∑t−1
τ=1 f̂τ + αr′(S).

Now let

S1 = argmin
S∈S,ei∈S

Φ′t(S); S2 = argmin
S∈S,ei /∈S

Φ′t(S).

The event ei ∈ St only happens if Φ′t(S
1) + αri <

Φ′t(S
2) and St = S1. On the other hand, to have

ei /∈ St+1, it must be that Φ′t(S
1)+αri ≥ Φ′t(S

2)−αM ,
since otherwise∑t+1

τ=1
f̂t(S1) + αr(S1) = Φ′t(S

1) + αri + f̂t(S1)

< Φ′t(S
2)

< Φ′t(B) + f̂t(B)

for all B ∈ S with ei /∈ B. Here, we used that f̂t(S) ≤
αft(S) ≤ αM for all S ⊆ E. Let v = α−1(Φ′(S2) −
Φ′(S1)), then ei ∈ St and ei /∈ St+1 only if ri ∈ [v −
M,v]. The number ri is in this range with probability
at most η since it is chosen uniformly at random from
[0,M/η], so P (ei ∈ St and ei /∈ St+1) ≤ η. The bound
on P (ei /∈ St and ei ∈ St+1) follows by an analogous
argumentation. Together, those results bound (15):

P (St 6= St+1) ≤
∑m

i=1
P (ei ∈ St and ei /∈ St+1)

+
∑m

i=1
P (ei /∈ St and ei ∈ St+1)

≤ 2mη. (16)

Equation 16 helps to bound the sum of function values,
using f̂(C) ≤ αM for all C:∑T

t=1
E
[
f̂t(St)− f̂t(St+1)

]
≤
∑T

t=1
P (St 6= St+1) max

B∈S
f̂(B)

≤ 2αmMTη. (17)

Combining Inequalities (13), (14) and (17) results in

E
[∑T

t=1
ft(St)

]
− α

∑T

t=1
ft(S∗T)

≤ αMm/η + 2αmMTη.

Online Submodular Minimization for Combinatorial Structures

The final regret bound follows for η = T−1/2.

3. Proof of Lemma 2

Lemma 2. Let f̂ be randomly chosen between f̂− and
f̂+ with equal probabilities. Then f(S) ≤ E[f̂(S)] ≤
(|V |/2)f(S) for all minimal (s, t)-cuts S.

Proof. First, we bound f̂−(S). Let ∆−(S) be the set
of head nodes of edges in S, i.e., at most all nodes on
the t side of the cut.

f̂−(S) =
∑

v∈∆−(S)
f(S ∩ E−v)

≤ |∆−(S)| max
v∈∆−(S)

f(S ∩ E−v)

≤ |∆−(S)|f(S).

Analogously, it follows that f̂+(S) ≤ |∆+(S)|f(S),
|∆+(S)| being the number of tail nodes of edges in
S. We combine these bounds to

E[f̂(S)] = (f̂−(S) + f̂+(S))/2

≤ f(S)(|∆+(S)|+ |∆−(S)|)/2
≤ f(S)|V |/2.

4. Proof of Lemma 3

Let S∗ = argminS∈S
∑
t ft(S), and Ŝ∗ =

argminS∈S
∑
t f̂

2
t (S). We play St as prescribed by al-

gorithm A.

Lemma 3. Let R̂A be the regret of an online algorithm
A when used with linear cost functions with a range
like f̂2

t . Using A with f̂2
t when observing ft leads to

an αg-regret of Rαg
(T) ≤ αgR̂A/ν.

Proof. Since we use f̂2
t in A, the regret R̂A bounds∑

t(f̂
2
t (St) − f̂2

t (Ŝ∗)). Therefore, we relate the actual
regret,

∑
t(ft(St)− αgft(S∗)), to the regret of A. We

use that f̂2(S) ≤ f2(S) ≤ α2
g f̂

2(S). We have that

∑
t
(ft(St)− αgft(S∗)) =

∑
t

(f2
t (St)− α2

gf
2
t (S∗))

(ft(St) + αgft(S∗))

≤
∑

t
(f2
t (St)− α2

gf
2
t (S∗))/(αgν)

≤
∑

t
α2
g(f̂

2
t (St)− f̂2

t (S∗))/(αgν)

≤
∑

t
αg(f̂2

t (St)− f̂2
t (Ŝ∗))/(ν)

= αg
∑

t
R̂A/ν,

since Ŝ∗ = argminS∈S
∑
t f̂

2
t (S) is optimal for f̂2.

5. Multiple labels for label costs in
Algorithm 3

Here, we outline how to simulate label costs when one
edge can have more than one label. This simulation
applies to the spanning tree example.

Let k be the maximum number of labels any edge can
have. We assign k “slots” to each edge. Each label
` ∈ π(e) occupies 1 ≤ γe(`) ≤ k slots, such that∑
`∈π(e) γe(`) = k. Define k copies Gi = (V,Ei) of

G. Edge e is contained in Ei(L) if i of its slots are
filled by labels in L. Then we use

g(L) =
∑k

i=1
r(Ei(L)).

This sum is still submodular, and maximum only if
E(L) contains a tree of full edges. The approximation
factor increases moderately to O(log(nk)).

6. Problems when applying the
algorithms in (Kakade et al., 2009)
to the submodular-cost setting

Kakade et al. (2009) show online approximation algo-
rithms that use an offline approximation algorithm as
a black box. Their method generalizes online gradi-
ent descent (Zinkevich, 2003) to use the approxima-
tion algorithm in an approximate projection. Their
cost function is of the form c : 2E × Rd → R,
c(S,w) = 〈φ(S), w〉 and must be linear in w. That
means, it is the dot product between some feature vec-
tor of S and a weight vector. (In the paper, they leave
nonlinear costs as an open problem.)

To use this framework, we must express any non-
decreasing submodular f via a cost vector wf as
c(S,wf) = f(S). The set of non-decreasing submod-
ular functions on E is equivalent to a convex cone in
R2|E| . This set has a non-empty relative interior (e.g.,
f(S) = log(1 + |S|)). As a result, simple linear alge-
bra shows that a full basis is needed to represent all
such f meaning that w has an exponential dimension
d. But then the regret bound in (Kakade et al., 2009)
is exponential in |E|, since it is linear in ‖w‖, i.e., pro-
portional to

√
d. Whilst the norm issue can possibly

be resolved, the algorithm also assumes that, given any
w ∈ Rd, we can project it onto the set of those w for
which c(·, w) is a nondecreasing submodular function.
Given the results in (Seshadri & Vondrák, 2010), this
too seems to be non-trivial.

Online Submodular Minimization for Combinatorial Structures

References

Fujishige, S. Submodular Functions and Optimization.
Number 58 in Annals of Discrete Mathematics. El-
sevier Science, 2nd edition, 2005.

Hazan, E. and Kale, S. Online submodular minimiza-
tion. In Proc. of the Ann. Conf. on Neural Info.
Processing Systems (NIPS), 2009.

Kakade, S., Kalai, A. T., and Ligett, K. Playing games
with approximation algorithms. SIAM Journal on
Computing, 39(3):1088–1106, 2009.

Seshadri, C. and Vondrák, J. Is submodularity
testable? In arXiv 1008.0831v1, 2010.

Zinkevich, M. Online convex programming and in-
finitesimal gradient ascent. In Proc. of the Int. Conf.
on Machine Learning (ICML), 2003.

