Supplementary material for "Online Submodular Minimization for Combinatorial Structures"

Here, we provide details of proofs in the main paper.

1. Proof of Lemma 1

Lemma 1. Let g_t be a subgradient of f_t (obtained by the greedy algorithm). Then $||g_t|| \leq \beta \max_{A \subseteq E} |f_t(A)| - f_t(\emptyset)$, where $\beta = 1$ if f_t is non-decreasing, and $\beta = 3$ otherwise.

Proof. Since t is fixed, we will drop the subscript in this proof. Essential for the proof is that $g \in P_f$, in fact, it lies in the base polytope (Fujishige, 2005). This means that

$$g \cdot \chi_A \le f(A) \tag{1}$$

for all $A \subseteq E$. Assume first that f is nonnegative and nondecreasing. Then Equation (1) immediately leads to a bound on ||g||, by bounding the ℓ_2 norm by the ℓ_1 norm:

$$\|g\|_{2} \le \|g\|_{1} = g \cdot \chi_{E} \le f(E).$$
(2)

This proves the lemma for nondecreasing functions.

For arbitrary submodular functions, we use the construction of g in slightly more detail, but the basic arguments are the same. For ease of notation, let $\gamma = \max_{A \subseteq E} |f(A)|$. We first recall how g was constructed, given $x \ge 0$. We denote the components of xby $x_i, 1 \le i \le m$. We find a permutation π such that $x_{\pi(1)} \ge x_{\pi(2)} \ge \ldots \ge x_{\pi(m)}$. This ordering induces a maximal chain of sets, $\emptyset = A_0 \subset A_1 \subset \ldots \subset A_m$ with $A_0 = \emptyset$ and $A_i = A_{i-1} \cup \{e_{\pi(i)}\}$. Setting

$$g_{\pi(i)} = f(A_i) - f(A_{i-1}) \tag{3}$$

yields g, with $g \cdot \chi_{A_i} = f(A_i) - f(\emptyset)$. Let $g^+ = \max\{g, 0\}$ be the element-wise maximum.

Claim 1.
$$||g^+||_1 = \sum_{i=1}^M g_i^+ \le \gamma - f(\emptyset).$$

Consider the subset E^+ of elements e_k with $g_k \ge 0$, and let B_j be the set of the *j* first such elements, where we use the ordering induced by *x*, restricted to E^+ . We call this restriction π^+ : $\{1, \ldots |E^+|\} \to E^+$. The *j*th element in E^+ , $e_{\pi^+(j)}$, also occurs at some point $\pi(i(j))$ in the full sequence, so that $e_{\pi^+(j)} = e_{\pi(i(j))}$. Since the nonnegative elements are a subsequence, we know that $i(j) \ge j$ and thus $B_j \subseteq A_{i(j)}$. By the definition of g_j and diminishing marginal costs (submodularity), it holds for all $e_{\pi'(j)} \in E^+$ that

$$g_{\pi'(j)} = f(A_{i(j)-1} \cup \{e_j\}) - f(A_{i(j)-1}) \qquad (4)$$

$$\leq f(B_{j-1} \cup \{e_j\}) - f(B_j) =: g'_j.$$
(5)

The definition of the g'_j implies that $\sum_j g'_j + f(\emptyset) = f(B_j) \leq \gamma$. In consequence,

$$||g^+||_1 = \sum_{j=1}^{|E^+|} g_{\pi'(j)} \le \sum_{j=1}^{|E^+|} g'_j \le \gamma - f(\emptyset).$$
(6)

This proves the claim.

We next use this result to bound the sum of the absolute values of the negative entries. By definition of g, we know that $\sum_{i=1}^{k} g_i = f(A_k) - f(\emptyset)$, in particular also for k = m. Since $-\gamma \leq f(A_k) \leq \gamma$, it follows that

$$-\gamma - f(\emptyset) \le \sum_{i:g_i < 0} g_i + \sum_{i:g_i \ge 0} g_i \le \gamma - f(\emptyset).$$
(7)

Using the claim, we get that

$$\sum_{i:g_i<0} g_i \ge -\gamma - f(\emptyset) - \sum_{i:g_i\ge0} g_i \ge -2\gamma, \qquad (8)$$

and thus $\sum_{i:q_i < 0} |g_i| \leq 2\gamma$. In total, this shows that

$$\|g\|_{1} = \sum_{i:g_{i} < 0} |g_{i}| + \sum_{i:g_{i} \ge 0} |g_{i}| \le 3\gamma - f(\emptyset) \le 4\gamma.$$
(9)

With $||g||_2 \leq ||g||_1$, the lemma follows.

2. Detailed proof of Theorem 2

First, we re-state the theorem.

Theorem 2. For an approximation \hat{f} that satisfies (C1) and (C2), $M = \max_t f_t(E)$, and $\eta = T^{-1/2}$, Algorithm 2 achieves an expected α -regret $\mathbb{E}[R_{\alpha}(T)] \leq 3\alpha m M/\sqrt{T} = O(\alpha m/\sqrt{T})$.

Proof. Let

$$\begin{split} S_t &= \operatorname*{argmin}_{S \in \mathcal{S}} \sum_{\tau=1}^{t-1} \hat{f}_{\tau}(S) + \alpha r(S); \\ \widehat{S}_t &= \operatorname*{argmin}_{S \in \mathcal{S}} \sum_{\tau=1}^{t-1} \hat{f}_{\tau}(S); \quad S_t^* = \operatorname*{argmin}_{S \in \mathcal{S}} \sum_{\tau=1}^{t} f_{\tau}(S) \end{split}$$

First, we show a relation for $\sum_{t=1}^{T} \hat{f}_t(S_{t+1})$ and later relate it to the actual cost $\sum_{t=1}^{T} \hat{f}_t(S_t)$. The first inequality is

$$\sum_{t=1}^{T} \hat{f}_t(\hat{S}_{t+1}) \le \sum_{t=1}^{T} \hat{f}_t(\hat{S}_{T+1}).$$
(10)

It holds trivially for T = 1. The case T + 1 follows by induction and the optimality of \hat{S}_{T+1} :

$$\sum_{t=1}^{T+1} \hat{f}_t(\widehat{S}_{t+1}) \leq \sum_{t=1}^{T} \hat{f}_t(\widehat{S}_{T+1}) + \hat{f}_{T+1}(\widehat{S}_{T+2})$$
$$\leq \sum_{t=1}^{T} \hat{f}_t(\widehat{S}_{T+2}) + \hat{f}_{T+1}(\widehat{S}_{T+2})$$
$$= \sum_{t=1}^{T+1} \hat{f}_t(\widehat{S}_{T+2}).$$

We now replace \hat{f}_1 in Equation (10) by $\hat{f}_1 + \alpha r$:

$$\sum_{t=1}^{T} \hat{f}_t(S_{t+1}) + \alpha r(S_1) \leq \sum_{t=1}^{T} \hat{f}_t(S_{T+1}) + \alpha r(S_{T+1})$$
$$\leq \sum_{t=1}^{T} \hat{f}_t(\widehat{S}_{T+1}) + \alpha r(\widehat{S}_{T+1}).$$

Rearranging the terms yields

$$\sum_{t=1}^{T} \hat{f}_t(S_{t+1}) \le \sum_{t=1}^{T} \hat{f}_t(\widehat{S}_{T+1}) + \alpha(r(\widehat{S}_{T+1}) - r(S_1))$$
(11)

To transfer this result to the series of S_t , we use that $\hat{f}_t(S_t) \leq \hat{f}_t(S_{t+1}) + (\hat{f}_t(S_t) - \hat{f}_t(S_{t+1}))$:

$$\sum_{t=1}^{T} \hat{f}_t(S_t) \leq \sum_{t=1}^{T} \hat{f}_t(\widehat{S}_{T+1}) + \sum_{t=1}^{T} (\hat{f}_t(S_t) - \hat{f}_t(S_{t+1})) + \alpha(r(\widehat{S}_{T+1}) - r(S_1)).$$
(12)

Condition (C1) implies that

$$\sum_{t=1}^{T} \hat{f}_t(\hat{S}_{T+1}) \le \sum_{t=1}^{T} \hat{f}_t(S_T^*) \le \alpha \sum_{t=1}^{T} f_t(S_T^*),$$

and that $\sum_{t=1}^{T} f_t(S_t) \leq \sum_{t=1}^{T} \hat{f}_t(S_t)$. Together with Equation (12), this yields

$$\sum_{t=1}^{T} f_t(S_t) - \alpha \sum_{t=1}^{T} f_t(S_T^*)$$

$$\leq \sum_{t=1}^{T} (\hat{f}_t(S_t) - \hat{f}_t(S_{t+1})) + \alpha (r(\hat{S}_{T+1}) - r(S_1)).$$
(13)

It remains to bound the two terms on the right hand side, and these bounds depend on $r \in [0, M/\eta]^E$.

We first address the random perturbation r in $[0, M/\eta]^E$. The last term can be bounded as

$$\alpha \mathbb{E}[r(\widehat{S}_{T+1}) - r(S_1)] \le \alpha m M / \eta.$$
(14)

To bound the expected sum of differences of the function values, we use a technique by Hazan & Kale (2009). For the analysis, one can assume that r is resampled in each round. We first bound $P(S_t \neq S_{t+1})$. A simple union bound holds:

$$P(S_{t} \neq S_{t+1}) \leq \sum_{i=1}^{m} P(e_{i} \in S_{t} \text{ and } e_{i} \notin S_{t+1}) + \sum_{i=1}^{m} P(e_{i} \notin S_{t} \text{ and } e_{i} \in S_{t+1}).$$
(15)

To bound the right hand side, we fix *i* and look at $P(e_i \in S_t \text{ and } e_i \notin S_{t+1})$. Denote the components of r by r_j and define $r': 2^E \to \mathbb{R}$ as $r'(S) = \sum_{e_j \in S, j \neq i} r_j$, so $r'(e_j) = r(e_j) = r_j$ for all $j \neq i$, but $r'(e_i) = 0$; and define $\Phi'_t: 2^E \to \mathbb{R}$ as $\Phi'_t(S) = \sum_{\tau=1}^{t-1} \hat{f}_\tau + \alpha r'(S)$. Now let

$$S^1 = \operatorname*{argmin}_{S \in \mathcal{S}, e_i \in S} \Phi_t'(S); \qquad S^2 = \operatorname*{argmin}_{S \in \mathcal{S}, e_i \notin S} \Phi_t'(S).$$

The event $e_i \in S_t$ only happens if $\Phi'_t(S^1) + \alpha r_i < \Phi'_t(S^2)$ and $S_t = S^1$. On the other hand, to have $e_i \notin S_{t+1}$, it must be that $\Phi'_t(S^1) + \alpha r_i \ge \Phi'_t(S^2) - \alpha M$, since otherwise

$$\sum_{\tau=1}^{t+1} \hat{f}_t(S^1) + \alpha r(S^1) = \Phi'_t(S^1) + \alpha r_i + \hat{f}_t(S^1)$$

< $\Phi'_t(S^2)$
< $\Phi'_t(B) + \hat{f}_t(B)$

for all $B \in S$ with $e_i \notin B$. Here, we used that $\hat{f}_t(S) \leq \alpha f_t(S) \leq \alpha M$ for all $S \subseteq E$. Let $v = \alpha^{-1}(\Phi'(S^2) - \Phi'(S^1))$, then $e_i \in S_t$ and $e_i \notin S_{t+1}$ only if $r_i \in [v - M, v]$. The number r_i is in this range with probability at most η since it is chosen uniformly at random from $[0, M/\eta]$, so $P(e_i \in S_t \text{ and } e_i \notin S_{t+1}) \leq \eta$. The bound on $P(e_i \notin S_t \text{ and } e_i \in S_{t+1})$ follows by an analogous argumentation. Together, those results bound (15):

$$P(S_t \neq S_{t+1}) \leq \sum_{i=1}^{m} P(e_i \in S_t \text{ and } e_i \notin S_{t+1}) + \sum_{i=1}^{m} P(e_i \notin S_t \text{ and } e_i \in S_{t+1}) \leq 2m\eta.$$
(16)

Equation 16 helps to bound the sum of function values, using $\hat{f}(C) \leq \alpha M$ for all C:

$$\sum_{t=1}^{T} \mathbb{E} \left[\hat{f}_t(S_t) - \hat{f}_t(S_{t+1}) \right]$$

$$\leq \sum_{t=1}^{T} P(S_t \neq S_{t+1}) \max_{B \in \mathcal{S}} \hat{f}(B)$$

$$\leq 2\alpha m M T \eta. \tag{17}$$

Combining Inequalities (13), (14) and (17) results in

$$\mathbb{E}\left[\sum_{t=1}^{T} f_t(S_t)\right] - \alpha \sum_{t=1}^{T} f_t(S_T^*) \\ \leq \alpha M m / \eta + 2\alpha m M T \eta.$$

The final regret bound follows for $\eta = T^{-1/2}$.

3. Proof of Lemma 2

Lemma 2. Let \hat{f} be randomly chosen between \hat{f}^- and \hat{f}^+ with equal probabilities. Then $f(S) \leq \mathbb{E}[\hat{f}(S)] \leq (|V|/2)f(S)$ for all minimal (s,t)-cuts S.

Proof. First, we bound $\hat{f}^{-}(S)$. Let $\Delta^{-}(S)$ be the set of head nodes of edges in S, i.e., at most all nodes on the t side of the cut.

$$\hat{f}^{-}(S) = \sum_{v \in \Delta^{-}(S)} f(S \cap E_{v}^{-})$$
$$\leq |\Delta^{-}(S)| \max_{v \in \Delta^{-}(S)} f(S \cap E_{v}^{-})$$
$$\leq |\Delta^{-}(S)| f(S).$$

Analogously, it follows that $\hat{f}^+(S) \leq |\Delta^+(S)|f(S),$ $|\Delta^+(S)|$ being the number of tail nodes of edges in S. We combine these bounds to

$$\mathbb{E}[\hat{f}(S)] = (\hat{f}^{-}(S) + \hat{f}^{+}(S))/2 \\ \leq f(S)(|\Delta^{+}(S)| + |\Delta^{-}(S)|)/2 \\ \leq f(S)|V|/2.$$

4. Proof of Lemma 3

Let $S^* = \operatorname{argmin}_{S \in S} \sum_t f_t(S)$, and $\hat{S}^* = \operatorname{argmin}_{S \in S} \sum_t \hat{f}_t^2(S)$. We play S_t as prescribed by algorithm \mathcal{A} .

Lemma 3. Let $\widehat{R}_{\mathcal{A}}$ be the regret of an online algorithm \mathcal{A} when used with linear cost functions with a range like \widehat{f}_t^2 . Using \mathcal{A} with \widehat{f}_t^2 when observing f_t leads to an α_g -regret of $R_{\alpha_g}(T) \leq \alpha_g \widehat{R}_{\mathcal{A}}/\nu$.

Proof. Since we use \hat{f}_t^2 in \mathcal{A} , the regret $\hat{R}_{\mathcal{A}}$ bounds $\sum_t (\hat{f}_t^2(S_t) - \hat{f}_t^2(\hat{S}^*))$. Therefore, we relate the actual regret, $\sum_t (f_t(S_t) - \alpha_g f_t(S^*))$, to the regret of \mathcal{A} . We use that $\hat{f}^2(S) \leq f^2(S) \leq \alpha_g^2 \hat{f}^2(S)$. We have that

$$\sum_{t} (f_t(S_t) - \alpha_g f_t(S^*)) = \sum_{t} \frac{(f_t^2(S_t) - \alpha_g^2 f_t^2(S^*))}{(f_t(S_t) + \alpha_g f_t(S^*))}$$

$$\leq \sum_{t} (f_t^2(S_t) - \alpha_g^2 f_t^2(S^*)) / (\alpha_g \nu)$$

$$\leq \sum_{t} \alpha_g^2 (\hat{f}_t^2(S_t) - \hat{f}_t^2(S^*)) / (\alpha_g \nu)$$

$$\leq \sum_{t} \alpha_g (\hat{f}_t^2(S_t) - \hat{f}_t^2(\hat{S}^*)) / (\nu)$$

$$= \alpha_g \sum_{t} \hat{R}_{\mathcal{A}} / \nu,$$

since $\hat{S}^* = \operatorname{argmin}_{S \in \mathcal{S}} \sum_t \hat{f}_t^2(S)$ is optimal for \hat{f}^2 . \Box

5. Multiple labels for label costs in Algorithm 3

Here, we outline how to simulate label costs when one edge can have more than one label. This simulation applies to the spanning tree example.

Let k be the maximum number of labels any edge can have. We assign k "slots" to each edge. Each label $\ell \in \pi(e)$ occupies $1 \leq \gamma_e(\ell) \leq k$ slots, such that $\sum_{\ell \in \pi(e)} \gamma_e(\ell) = k$. Define k copies $G_i = (V, E_i)$ of G. Edge e is contained in $E_i(L)$ if i of its slots are filled by labels in L. Then we use

$$g(L) = \sum_{i=1}^{k} r(E_i(L)).$$

This sum is still submodular, and maximum only if E(L) contains a tree of full edges. The approximation factor increases moderately to $O(\log(nk))$.

6. Problems when applying the algorithms in (Kakade et al., 2009) to the submodular-cost setting

Kakade et al. (2009) show online approximation algorithms that use an offline approximation algorithm as a black box. Their method generalizes online gradient descent (Zinkevich, 2003) to use the approximation algorithm in an approximate projection. Their cost function is of the form $c : 2^E \times \mathbb{R}^d \to \mathbb{R}$, $c(S, w) = \langle \phi(S), w \rangle$ and must be *linear* in w. That means, it is the dot product between some feature vector of S and a weight vector. (In the paper, they leave nonlinear costs as an open problem.)

To use this framework, we must express any nondecreasing submodular f via a cost vector w^f as $c(S, w^f) = f(S)$. The set of non-decreasing submodular functions on E is equivalent to a convex cone in $\mathbb{R}^{2^{|E|}}$. This set has a non-empty relative interior (e.g., $f(S) = \log(1 + |S|)$. As a result, simple linear algebra shows that a full basis is needed to represent all such f meaning that w has an exponential dimension d. But then the regret bound in (Kakade et al., 2009) is exponential in |E|, since it is linear in ||w||, i.e., proportional to \sqrt{d} . Whilst the norm issue can possibly be resolved, the algorithm also assumes that, given any $w \in \mathbb{R}^d$, we can project it onto the set of those w for which $c(\cdot, w)$ is a nondecreasing submodular function. Given the results in (Seshadri & Vondrák, 2010), this too seems to be non-trivial.

References

- Fujishige, S. Submodular Functions and Optimization. Number 58 in Annals of Discrete Mathematics. Elsevier Science, 2nd edition, 2005.
- Hazan, E. and Kale, S. Online submodular minimization. In Proc. of the Ann. Conf. on Neural Info. Processing Systems (NIPS), 2009.
- Kakade, S., Kalai, A. T., and Ligett, K. Playing games with approximation algorithms. *SIAM Journal on Computing*, 39(3):1088–1106, 2009.
- Seshadri, C. and Vondrák, J. Is submodularity testable? In arXiv 1008.0831v1, 2010.
- Zinkevich, M. Online convex programming and infinitesimal gradient ascent. In Proc. of the Int. Conf. on Machine Learning (ICML), 2003.