A Proofs of $\widetilde{A}_e, \widetilde{A}_e, \widetilde{B}_e, \widetilde{B}_e$ as bounds on $A^{\iota(e)-1}$ and $B^{\iota(e)-1}$

Lemma 4.1. In CF-2g, for any $e \in V$, $\widehat{A}_e \subseteq A^{\iota(e)-1}$, and $\widehat{B}_e \supseteq B^{\iota(e)-1}$.

Proof. For any element e, we write T_e to denote the time at which Alg. 4 line 8 is executed. Consider any element $e' \in V$. If $e' \in \hat{A}_e$, it must be the case that the algorithm set $\hat{A}(e')$ to 1 (line 10) before T_e , which implies $\iota(e') < \iota(e)$, and hence $e' \in A^{\iota(e)-1}$. So $\hat{A}_e \subseteq A^{\iota(e)-1}$.

Similarly, if $e' \notin \widehat{B}_e$, then the algorithm set $\widehat{B}(e')$ to 0 (line 11) before T_e , so $\iota(e') < \iota(e)$. Also, $e' \notin A$ because the execution of line 11 excludes the execution of line 10. Therefore, $e' \notin A^{\iota(e)-1}$, and $e' \notin B^{\iota(e)-1}$. So $\widehat{B}_e \supseteq B^{\iota(e)-1}$.

Lemma 5.1. In CC-2g, $\forall e \in V$, $\widehat{A}_e \subseteq A^{\iota(e)-1} \subseteq \widetilde{A}_e \setminus e$, and $\widehat{B}_e \supseteq B^{\iota(e)-1} \supseteq \widetilde{B}_e \cup e$.

Proof. Clearly, $e \in \tilde{B}_e \cup e$ but $e \notin \tilde{A}_e \setminus e$. By definition, $e \in B^{\iota(e)-1}$ but $e \notin A^{\iota(e)-1}$. CC-2g only modifies $\hat{A}(e)$ and $\hat{B}(e)$ when committing the transaction on e, which occurs after obtaining the bounds in getGuarantee(e), so $e \in \hat{B}_e$ but $e \notin \hat{A}_e$.

Consider any $e' \neq e$. Suppose $e' \in \widehat{A}_e$. This is only possible if we have committed the transaction on e' before the call getGuarantee(e), so it must be the case that $\iota(e') < \iota(e)$. Thus, $e' \in A^{\iota(e)-1}$.

Now suppose $e' \in A^{\iota(e)-1}$. By definition, this implies $\iota(e') < \iota(e)$ and $e' \in A$. Hence, it must be the case that we have already set $\widetilde{A}(e') \leftarrow 1$ (by the ordering imposed by ι on Line 2), but never execute $\widetilde{A}(e') \leftarrow 0$ (since $e' \in A$), so $e' \in \widetilde{A}_e$.

An analogous argument shows $e' \notin \widehat{B}_e \implies e' \notin B^{\iota(e)-1} \implies e' \notin \widetilde{B}_e \cup e$. \Box

Lemma 5.2. In CC-2g, when committing element e, we have $\widehat{A} = A^{\iota(e)-1}$ and $\widehat{B} = B^{\iota(e)-1}$.

Proof. Alg. 8 Line 1 ensures that all elements ordered before e are committed, and that no element ordered after e are committed. This suffices to guarantee that $e' \in \widehat{A} \iff e' \in A^{\iota(e)-1}$ and $e' \in \widehat{B} \iff e' \in B^{\iota(e)-1}$.

B Proof of serial equivalence of CC-2g

Theorem 6.2. *CC*-2*g* is serializable and therefore solves the unconstrained submodular maximization problem $\max_{A \subset V} F(A)$ with approximation $E[F(A_{CC})] \ge \frac{1}{2}F^*$, where A_{CC} is the output of the algorithm, and F^* is the optimal value.

Proof. We will denote by A_{seq}^i , B_{seq}^i the sets generated by Ser-2g, reserving A^i , B^i for sets generated by the CC-2g algorithm. It suffices to show by induction that $A_{seq}^i = A^i$ and $B_{seq}^i = B^i$. For the base case, $A^0 = \emptyset = A_{seq}^0$, and $B^0 = V = B_{seq}^0$. Consider any element e. The CC-2g algorithm includes $e \in A$ iff $u_e < [\Delta_+^{\min}(e)]_+([\Delta_+^{\min}(e)]_+ + [\Delta_-^{\min}(e)]_+)^{-1}$ on Alg. 5 Line 6 or $u_e < [\Delta_+^{exact}(e)]_+([\Delta_+^{exact}(e)]_+)^{-1}$ on Alg. 8 Line 5. In both cases, Corollary 5.3 implies $u_e < [\Delta_+(e)]_+([\Delta_+(e)]_+ + [\Delta_-(e)]_+)^{-1}$. By induction, $A^{\iota(e)-1} = A_{seq}^{\iota(e)-1}$ and $B^{\iota(e)-1} = B_{seq}^{\iota(e)-1}$, so the threshold is exactly that computed by Ser-2g. Hence, the CC-2g algorithm includes $e \in A$ iff Ser-2g includes $e \in A$. (An analogous argument works for the case where e is excluded from B.)

C Proof of bound for CF-2g

We follow the proof outline of [2].

Consider an ordering ι inducted by running CF-2g. For convenience, we will use *i* to flexibly denote the element *e* and its ordering $\iota(e)$.

Let OPT be an optimal solution to the problem. Define $O^i := (OPT \cup A^i) \cap B^i$. Note that O^i coincides with A^i and B^i on elements $1, \ldots, i$, and O^i coincides with OPT on elements $i+1, \ldots, n$. Hence,

$$O^{i} \setminus (i+1) \supseteq A^{i}$$
$$O^{i} \cup (i+1) \subseteq B^{i}.$$

Lemma C.1. For every $1 \le i \le n$, $\Delta_+(i) + \Delta_-(i) \ge 0$.

Proof. This is just Lemma II.1 of [2].

Lemma C.2. Let $\rho_i = \max\{\Delta^{\max}_+(e) - \Delta_+(e), \Delta^{\max}_-(e) - \Delta_-(e)\}$. For every $1 \le i \le n$,

$$E[F(O^{i-1}) - F(O^{i})] \le \frac{1}{2}E[F(A^{i}) - F(A^{i-1}) + F(B^{i}) - F(B^{i-1}) + \rho_{i}].$$

Proof. We follow the proof outline of [2]. First, note that it suffices to prove the inequality conditioned on knowing A^{i-1} , \hat{A}_i and \hat{B}_i , then applying the law of total expectation. Under this conditioning, we also know B^{i-1} , O^{i-1} , $\Delta_+(i)$, $\Delta_+^{\max}(i)$, $\Delta_-(i)$, and $\Delta_-^{\max}(i)$.

We consider the following 6 cases.

Case 1: $0 < \Delta_+(i) \le \Delta_+^{\max}(i), 0 \le \Delta_-^{\max}(i)$. Since both $\Delta_+^{\max}(i) > 0$ and $\Delta_-^{\max}(i) > 0$, the probability of including *i* is just $\Delta_+^{\max}(i)/(\Delta_+^{\max}(i) + \Delta_-^{\max}(i))$, and the probability of excluding *i* is $\Delta_-^{\max}(i)/(\Delta_+^{\max}(i) + \Delta_-^{\max}(i))$.

$$\begin{split} E[F(A^{i}) - F(A^{i-1})|A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}] &= \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (F(A^{i-1} \cup i) - F(A^{i-1})) \\ &= \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \Delta_{+}(i) \\ &\geq \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (\Delta_{+}^{\max}(i) - \rho_{i}) \\ E[F(B^{i}) - F(B^{i-1})|A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}] &= \frac{\Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (F(B^{i-1} \setminus i) - F(B^{i-1})) \\ &= \frac{\Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \Delta_{-}(i) \\ &\geq \frac{\Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (\Delta_{-}^{\max}(i) - \rho_{i}) \end{split}$$

$$\begin{split} & E[F(O^{i-1}) - F(O^{i})|A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}] \\ &= \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (F(O^{i-1}) - F(O^{i-1} \cup i)) \\ &+ \frac{\Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (F(O^{i-1}) - F(O^{i-1} \setminus i)) \\ &= \begin{cases} \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (F(O^{i-1}) - F(O^{i-1} \cup i)) & \text{if } i \notin OPT \\ \frac{\Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (F(O^{i-1}) - F(O^{i-1} \setminus i)) & \text{if } i \notin OPT \end{cases} \\ &\leq \begin{cases} \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (F(B^{i-1} \setminus i) - F(B^{i-1})) & \text{if } i \notin OPT \\ \frac{\Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} (F(A^{i-1} \cup i) - F(A^{i-1}))) & \text{if } i \in OPT \end{cases} \\ &= \begin{cases} \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \Delta_{-}(i) & \text{if } i \notin OPT \\ \frac{\Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \Delta_{+}(i) & \text{if } i \notin OPT \end{cases} \\ &\leq \begin{cases} \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \Delta_{-}^{\max}(i) & \text{if } i \notin OPT \\ \frac{\Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \Delta_{+}^{\max}(i) & \text{if } i \in OPT \end{cases} \\ &\leq \begin{cases} \frac{\Delta_{+}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \Delta_{+}^{\max}(i) & \text{if } i \in OPT \\ \frac{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \Delta_{+}^{\max}(i) & \text{if } i \in OPT \end{cases} \\ &= \frac{\Delta_{+}^{\max}(i) \Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \\ &= \frac{\Delta_{+}^{\max}(i) \Delta_{-}^{\max}(i)}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \end{cases} \end{split}$$

where the first inequality is due to submodularity: $O^{i-1} \setminus i \supseteq A^{i-1}$ and $O^{i-1} \cup i \subseteq B^{i-1}$. Butting the above inequalities together:

Putting the above inequalities together:

$$\begin{split} E\left[F(O^{i-1}) - F(O^{i}) - \frac{1}{2} \left(F(A^{i}) - F(A^{i-1}) + F(B^{i}) - F(B^{i-1}) + \rho_{i}\right) \middle| A^{i-1}, \hat{A}_{i}, \hat{B}_{i}\right] \\ &\leq \frac{1/2}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \left[2\Delta_{+}^{\max}(i)\Delta_{-}^{\max}(i) - \Delta_{-}^{\max}(i)(\Delta_{-}^{\max}(i) - \rho_{i}) - \Delta_{+}^{\max}(i)(\Delta_{+}^{\max}(i) - \rho_{i})\right] - \frac{1}{2}\rho_{i} \\ &= \frac{1/2}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} \left[-(\Delta_{+}^{\max}(i) - \Delta_{-}^{\max}(i))^{2} + \rho_{i}(\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i))\right] - \frac{1}{2}\rho_{i} \\ &\leq \frac{\frac{1}{2}\rho_{i}(\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i))}{\Delta_{+}^{\max}(i) + \Delta_{-}^{\max}(i)} - \frac{1}{2}\rho_{i} \\ &= 0. \end{split}$$

 $\begin{aligned} \text{Case 2: } 0 < \Delta_{+}(i) \leq \Delta_{+}^{\max}(i), \Delta_{-}^{\max}(i) < 0. \text{ In this case, the algorithm always choses to include} \\ i, \text{ so } A^{i} = A^{i-1} \cup i, B^{i} = B^{i-1} \text{ and } O^{i} = O^{i-1} \cup i: \\ E[F(A^{i}) - F(A^{i-1})|A^{i-1}, \hat{A}_{i}, \hat{B}_{i}] = F(A^{i-1} \cup i) - F(A^{i-1}) = \Delta_{+}(i) > 0 \\ E[F(B^{i}) - F(B^{i-1})|A^{i-1}, \hat{A}_{i}, \hat{B}_{i}] = F(B^{i-1}) - F(B^{i-1}) = 0 \\ E[F(O^{i-1}) - F(O^{i})|A^{i-1}, \hat{A}_{i}, \hat{B}_{i}] = F(O^{i-1}) - F(O^{i-1} \cup i) \\ \leq \begin{cases} 0 & \text{if } i \in OPT \\ F(B^{i-1} \setminus i) - F(B^{i-1}) & \text{if } i \notin OPT \end{cases} \\ = \begin{cases} 0 & \text{if } i \in OPT \\ \Delta_{-}(i) & \text{if } i \notin OPT \end{cases} \\ \leq 0 \\ < \frac{1}{2}E[F(A^{i}) - F(A^{i-1}) + F(B^{i}) - F(B^{i-1}) + \rho_{i}|A^{i-1}, \hat{A}_{i}, \hat{B}_{i}] \end{aligned}$

where the first inequality is due to submodularity: $O^{i-1} \cup i \subseteq B^{i-1}$.

Case 3: $\Delta_+(i) \leq 0 < \Delta_+^{\max}(i), 0 < \Delta_-(i) < \Delta_-^{\max}(i)$. Analogous to Case 1. **Case 4:** $\Delta_+(i) \leq 0 < \Delta_+^{\max}(i), \Delta_-(i) \leq 0$. This is not possible, by Lemma C.1. **Case 5:** $\Delta_+(i) \leq \Delta^{\max}_+(i) \leq 0, 0 < \Delta_-(i) \leq \Delta^{\max}_-(i)$. Analogous to Case 2. **Case 6:** $\Delta_+(i) \leq \Delta_+^{\max}(i) \leq 0, \Delta_-(i) \leq 0$. This is not possible, by Lemma C.1.

We will now prove the main theorem.

Theorem 6.1. Let F be a non-negative submodular function. CF-2g solves the unconstrained problem $\max_{A \subset V} F(A)$ with worst-case approximation factor $E[F(A_{CF})] \geq \frac{1}{2}F^* - \frac{1}{4}\sum_{i=1}^{N} E[\rho_i]$, where A_{CF} is the output of the algorithm, F^* is the optimal value, and $\rho_i = \max\{\Delta_+^{\max}(e) - \Delta_+^{\max}(e)\}$ $\Delta_+(e), \Delta_-^{\max}(e) - \Delta_-(e)$ is the maximum discrepancy in the marginal gain due to the bounds.

Proof. Summing up the statement of Lemma C.2 for all *i* gives us a telescoping sum, which reduces to:

$$\begin{split} E[F(O^0) - F(O^n)] &\leq \frac{1}{2} E[F(A^n) - F(A^0) + F(B^n) - F(B^0)] + \frac{1}{2} \sum_{i=1}^n E[\rho_i] \\ &\leq \frac{1}{2} E[F(A^n) + F(B^n)] + \frac{1}{2} \sum_{i=1}^n E[\rho_i]. \end{split}$$

at $O^0 = OPT$ and $O^n = A^n = B^n$, so $E[F(A^n)] > \frac{1}{2} F^* - \frac{1}{4} \sum_{i} E[\rho_i]. \Box$

Note that $O^0 = OPT$ and $O^n = A^n = B^n$, so $E[F(A^n)] \ge \frac{1}{2}F^* - \frac{1}{4}\sum_i E[\rho_i]$.

C.1 Example: max graph cut

Let $C_i = (A^{i-1} \setminus \widehat{A}_i) \cup (\widehat{B}_i \setminus B^{i-1})$ be the set of elements concurrently processed with *i* but ordered after i, and $D_i = B^i \setminus A^i$ be the set of elements ordered after i. Denote $\bar{A}_i = V \setminus (\hat{A}_i \cup C_i \cup D_i) = C_i \cup D_i$ $\{1, \ldots, i\} \setminus \widehat{A}_i$ be the elements up to *i* that are not included in \widehat{A}_i . Let $w_i(S) = \sum_{i \in S, (i, j) \in E} w(i, j)$. For the max graph cut function, it is easy to see that

$$\Delta_{+} \geq -w_{i}(\widehat{A}_{i}) - w_{i}(C_{i}) + w_{i}(D_{i}) + w_{i}(\overline{A}_{i})$$

$$\Delta_{+}^{\max} = -w_{i}(\widehat{A}_{i}) + w_{i}(C_{i}) + w_{i}(D_{i}) + w_{i}(\overline{A}_{i})$$

$$\Delta_{-} \geq +w_{i}(\widehat{A}_{i}) - w_{i}(C_{i}) + w_{i}(D_{i}) - w_{i}(\overline{A}_{i})$$

$$\Delta_{-}^{\max} = +w_{i}(\widehat{A}_{i}) + w_{i}(C_{i}) + w_{i}(D_{i}) - w_{i}(\overline{A}_{i})$$

Thus, we can see that $\rho_i \leq 2w_i(C_i)$.

Suppose we have bounded delay τ , so $|C_i| \leq \tau$. Then $w_i(C_i)$ has a hypergeometric distribution with mean $\frac{\deg(i)}{N}\tau$, and $E[\rho_i] \leq 2\tau \frac{\deg(i)}{N}$. The approximation of the hogwild algorithm is then $E[F(A^n)] \ge \frac{1}{2}F^* - \tau \frac{\#\text{edges}}{2N}$. In sparse graphs, the hogwild algorithm is off by a small additional term, which albeit grows linearly in τ . In a complete graph, $F^* = \frac{1}{2} \# \text{edges}$, so $E[F(A^n)] \ge F^* \left(\frac{1}{2} - \frac{\tau}{N}\right)$, which makes it possible to scale τ linearly with N while retaining the same approximation factor.

C.2 Example: set cover

Consider the simple set cover function, for $\lambda < L/N$:

$$F(A) = \sum_{l=1}^{L} \min(1, |A \cap S_l|) - \lambda |A| = |\{l : A \cap S_l \neq \emptyset\}| - \lambda |A|.$$

We assume that there is some bounded delay τ .

Suppose also that the sets S_l form a partition, so each element e belongs to exactly one set. Let $n_l = |S_l|$ denote the size of S_l . Given any ordering π , let e_l^t be the *t*th element of S_l in the ordering, i.e. $|\{e': \pi(e') \le \pi(e_l^t) \land e' \in S_l\}| = t$.

For any $e \in S_l$, we get

$$\Delta_{+}(e) = -\lambda + 1\{A^{\iota(e)-1} \cap S_{l} = \emptyset\}$$

$$\Delta_{+}^{\max}(e) = -\lambda + 1\{\widehat{A}_{e} \cap S_{l} = \emptyset\}$$

$$\Delta_{-}(e) = +\lambda - 1\{B^{\iota(e)-1} \setminus e \cap S_{l} = \emptyset\}$$

$$\Delta_{-}^{\max}(e) = +\lambda - 1\{\widehat{B}_{e} \setminus e \cap S_{l} = \emptyset\}$$

Let η be the position of the first element of S_l to be accepted, i.e. $\eta = \min\{t : e_l^t \in A \cap S_l\}$. (For convenience, we set $\eta = n_l$ if $A \cap S_l = \emptyset$.) We first show that η is independent of π : for $\eta < n_l$,

$$\begin{split} P(\eta|\pi) &= \frac{\Delta_+^{\max}(e_l^{\eta})}{\Delta_+^{\max}(e_l^{\eta}) + \Delta_-^{\max}(e_l^{\eta})} \prod_{t=1}^{\eta-1} \frac{\Delta_-^{\max}(e_l^t)}{\Delta_+^{\max}(e_l^t) + \Delta_-^{\max}(e_l^t)} \\ &= \frac{1-\lambda}{1-\lambda+\lambda} \prod_{t=1}^{\eta-1} \frac{\lambda}{1-\lambda+\lambda} \\ &= (1-\lambda)\lambda^{\eta-1}, \end{split}$$

and $P(\eta = n_l | \pi) = \lambda^{\eta - 1}$.

Note that, $\Delta_{-}^{\max}(e) - \Delta_{-}(e) = 1$ iff $e = e_l^{n_l}$ is the last element of S_l in the ordering, there are no elements accepted up to $\hat{B}_{e_l^{n_l}} \setminus e_l^{n_l}$, and there is some element e' in $\hat{B}_{e_l^{n_l}} \setminus e_l^{n_l}$ that is rejected and not in $B^{\iota(e_l^{n_l})-1}$. Denote by $m_l \leq \min(\tau, n_l - 1)$ the number of elements before $e_l^{n_l}$ that are inconsistent between $\hat{B}_{e_l^{n_l}}$ and $B^{\iota(e_l^{n_l})-1}$. Then $\mathbb{E}[\Delta_{-}^{\max}(e_l^{n_l}) - \Delta_{-}(e_l^{n_l})] = P(\Delta_{-}^{\max}(e_l^{n_l}) \neq \Delta_{-}(e_l^{n_l}))$ is

$$\lambda^{n_l - 1 - m_l} (1 - \lambda^{m_l}) = \lambda^{n_l - 1} (\lambda^{-m_l} - 1) \leq \lambda^{n_l - 1} (\lambda^{-\min(\tau, n_l - 1)} - 1) \leq 1 - \lambda^{\tau}.$$

If $\lambda = 1$, $\Delta^{\max}_{+}(e) \leq 0$, so no elements before $e_l^{n_l}$ will be accepted, and $\Delta^{\max}_{-}(e_l^{n_l}) = \Delta_{-}(e_l^{n_l})$.

On the other hand, $\Delta^{\max}_{+}(e) - \Delta_{+}(e) = 1$ iff $(A^{\iota(e)-1} \setminus \widehat{A}_{e}) \cap S_{l} \neq \emptyset$, that is, if an element has been accepted in A but not yet observed in \widehat{A}_{e} . Since we assume a bounded delay, only the first τ elements after the first acceptance of an $e \in S_{l}$ may be affected.

$$\begin{split} & \mathbb{E}\left[\sum_{e \in S_{l}} \Delta_{+}^{\max}(e) - \Delta_{+}(e)\right] \\ &= \mathbb{E}[\#\{e : e \in S_{l} \land e_{l}^{\eta} \in A^{\iota(e)-1} \land e_{l}^{\eta} \notin \widehat{A}_{e}\}] \\ &= \mathbb{E}[\#\{e : e \in S_{l} \land e_{l}^{\eta} \in A^{\iota(e)-1} \land e_{l}^{\eta} \notin \widehat{A}_{e}\} \mid \eta = t, \pi(e_{l}^{t}) = k]] \\ &= \sum_{t=1}^{n_{l}} \sum_{k=t}^{N-n+t} P(\eta = t, \pi(e_{l}^{t}) = k) \mathbb{E}[\#\{e : e \in S_{l} \land e_{l}^{\eta} \in A^{\iota(e)-1} \land e_{l}^{\eta} \notin \widehat{A}_{e}\} \mid \eta = t, \pi(e_{l}^{t}) = k] \\ &= \sum_{t=1}^{n_{l}} P(\eta = t) \sum_{k=t}^{N-n+t} P(\pi(e_{l}^{t}) = k) \mathbb{E}[\#\{e : e \in S_{l} \land e_{l}^{\eta} \in A^{\iota(e)-1} \land e_{l}^{\eta} \notin \widehat{A}_{e}\} \mid \eta = t, \pi(e_{l}^{t}) = k] \end{split}$$

Under the assumption that every ordering π is equally likely, and a bounded delay τ , conditioned on $\eta = t, \pi(e_l^t) = k$, the random variable $\#\{e : e \in S_l \land e_l^\eta \in A^{\iota(e)-1} \land e_l^\eta \notin \widehat{A}_e\}$ has hypergeometric distribution with mean $\frac{n_l-t}{N-k}\tau$. Also, $P(\pi(e_l^t) = k) = \frac{n_l}{N} \binom{n-1}{t-1} \binom{N-n}{k-t} / \binom{N-1}{k-1}$, so the above expression becomes

$$\begin{split} & \mathbb{E}\left[\sum_{e \in S_{l}} \Delta_{+}^{\max}(e) - \Delta_{+}(e)\right] \\ &= \sum_{t=1}^{n_{l}} P(\eta = t) \sum_{k=t}^{N-n+t} \frac{n_{l}}{N} \frac{\binom{n-1}{t-1}\binom{N-n}{k-t}}{\binom{N-1}{N-1}} \frac{n-t}{N-k} \tau \\ &= \frac{n_{l}}{N} \tau \sum_{t=1}^{n_{l}} P(\eta = t) \sum_{k=t}^{N-n+t} \frac{\binom{k-1}{t-1}\binom{N-k}{n-t}}{\binom{N-1}{n-1}} \frac{n-t}{N-k} \qquad (symmetry of hypergeometric) \\ &= \frac{n_{l}}{N} \tau \sum_{t=1}^{n_{l}} \frac{P(\eta = t)}{\binom{N-1}{n-1}} \sum_{k=t}^{N-n+t} \binom{k-1}{t-1}\binom{N-k-1}{n-t-1} \\ &= \frac{n_{l}}{N} \tau \sum_{t=1}^{n_{l}} \frac{P(\eta = t)}{\binom{N-1}{n-1}} \binom{N-1}{n-1} \qquad (Lemma E.1, a = N-2, b = n_{l} - 2, j = 1) \\ &= \frac{n_{l}}{N} \tau \sum_{t=1}^{n_{l}} P(\eta = t) \\ &= \frac{n_{l}}{N} \tau. \end{split}$$

Since $\Delta^{\max}_+(e) \ge \Delta_+(e)$ and $\Delta^{\max}_-(e) \ge \Delta^{\max}_-(e)$, we have that $\rho_e \le \Delta^{\max}_+(e) - \Delta_+(e) + \Delta^{\max}_-(e) - \Delta_-(e)$, so

$$\begin{split} \mathbb{E}\left[\sum_{e}\rho_{e}\right] &= \mathbb{E}\left[\sum_{e}\Delta_{+}^{\max}(e) - \Delta_{+}(e) + \Delta_{-}^{\max}(e) - \Delta_{-}(e)\right] \\ &= \sum_{l}\mathbb{E}\left[\sum_{e\in S_{l}}\Delta_{+}^{\max}(e) - \Delta_{+}(e)\right] + \mathbb{E}\left[\sum_{e\in S_{l}}\Delta_{-}^{\max}(e) - \Delta_{-}(e)\right] \\ &\leq \tau \frac{\sum_{l}n_{l}}{N} + L(1 - \lambda^{\tau}) \\ &= \tau + L(1 - \lambda^{\tau}). \end{split}$$

Note that $\mathbb{E}\left[\sum_{e} \rho_{e}\right]$ does not depend on N and is linear in τ . Also, if $\tau = 0$ in the sequential case, we get $\mathbb{E}\left[\sum_{e} \rho_{e}\right] \leq 0$.

D Upper bound on expected number of failed transactions

Let N be the number of elements, i.e. the cardinality of the ground set. Let $C_i = (A^{i-1} \setminus \widehat{A}_i) \cup (\widehat{B}_i \setminus B^{i-1})$. We assume a bounded delay τ , so that $|C_i| \leq \tau$ for all i.

We call element *i* dependent on *i'* if $\exists A, F(A \cup i) - F(A) \neq F(A \cup i' \cup i) - F(A \cup i')$ or $\exists B, F(B \setminus i) - F(B) \neq F(B \cup i' \setminus i) - F(B \cup i')$, i.e. the result of the processing *i'* will affect the computation of Δ 's for *i*. For example, for the graph cut problem, every vertex is dependent on its neighbors; for the separable sums problem, *i* is dependent on $\{i' : \exists S_l, i \in S_l, i' \in S_l\}$.

Let n_i be the number of elements that i is dependent on. Now, we note that if C_i does not contain any elements on which i is dependent, then $\Delta^{\max}_+(i) = \Delta_+(i) = \Delta^{\min}_+(i)$ and $\Delta^{\max}_-(i) = \Delta_-(i) = \Delta^{\min}_-(i)$, so i will not fail. Conversely, if i fails, there must be some element $i' \in C_i$ such that i is dependent on i'.

$$\begin{split} E(\text{number of failed transactions}) &= \sum_{i} P(i \text{ fails}) \\ &\leq \sum_{i} P(\exists i' \in C_i, i \text{ depends on } i') \\ &\leq \sum_{i} E\left[\sum_{i' \in C_i} 1\{i \text{ depends on } i'\}\right] \\ &\leq \sum_{i} \frac{\tau n_i}{N} \end{split}$$

The last inequality follows from the fact that $\sum_{i' \in C_i} 1\{i \text{ depends on } i'\}$ is a hypergeometric random variable and $|C_i| \leq \tau$.

Note that the bound established above is generic to functions F, and additional knowledge of F can lead to better analyses on the algorithm's concurrency.

D.1 Upper bound for max graph cut

By applying the above generic bound, we see that the number of failed transactions for max graph cut is upper bounded by $\frac{\tau}{N} \sum_{i} n_i = \tau \frac{2 \# \text{edges}}{N}$.

D.2 Upper bound for set cover

For the set cover problem, we can provide a tighter bound on the number of failed items. We make the same assumptions as before in the CF-2g analysis, i.e. the sets S_l form a partition of V, there is a bounded delay τ .

Observe that for any $e \in S_l$, $\Delta_{-}^{\min}(e) \neq \Delta_{-}^{\max}(e)$ if $\widehat{B}_e \setminus e \cap S_l \neq \emptyset$ and $\widetilde{B}_e \setminus e \cap S_l = \emptyset$. This is only possible if $e_l^{n_l} \notin \widetilde{B}_e$ and $\widetilde{B}_e \supset \widehat{A}_e \cap S_l = \emptyset$, that is $\pi(e) \ge \pi(e_l^{n_l}) - \tau$ and $\forall e' \in S_l, (\pi(e') < \pi(e_l^{n_l}) - \tau) \implies (e' \notin A)$. The latter condition is achieved with probability $\lambda^{n_l - m_l}$, where

$$\begin{split} m_{l} &= \#\{e': \pi(e') \geq \pi(e_{l}^{n_{l}}) - \tau\}. \text{ Thus,} \\ \mathbb{E}\left[\#\{e: \Delta_{-}^{\min}(e) \neq \Delta_{-}^{\max}(e)\}\right] &= \mathbb{E}[m_{l} \ 1(\forall e' \in S_{l}, (\pi(e') < \pi(e_{l}^{n_{l}}) - \tau) \implies (e' \notin A))] \\ &= \mathbb{E}[\mathbb{E}[m_{l} \ 1(\forall e' \in S_{l}, (\pi(e') < \pi(e_{l}^{n_{l}}) - \tau) \implies (e' \notin A))|u_{1:N}]] \\ &= \mathbb{E}[m_{l} \ \mathbb{E}[1(\forall e' \in S_{l}, (\pi(e') < \pi(e_{l}^{n_{l}}) - \tau) \implies (e' \notin A))|u_{1:N}]] \\ &= \mathbb{E}[m_{l} \lambda^{n_{l} - m_{l}}] \\ &\leq \lambda^{(n_{l} - \tau)_{+}} \mathbb{E}[m_{l}] \\ &= \lambda^{(n_{l} - \tau)_{+}} \mathbb{E}[\mathbb{E}[m_{l}|\pi(e_{l}^{n_{l}}) = k]] \\ &= \lambda^{(n_{l} - \tau)_{+}} \sum_{k=n_{l}}^{N} P(\pi(e_{l}^{n_{l}}) = k) \mathbb{E}[m_{l}|\pi(e_{l}^{n_{l}}) = k]]. \end{split}$$

Conditioned on $\pi(e_l^{n_l}) = k$, m_l is a hypergeometric random variable with mean $\frac{n_l-1}{k-1}\tau$. Also $P(\pi(e_l^{n_l}) = k) = \frac{n_l}{N} {n_l-1 \choose 0} {N-n_l \choose N-k} / {N-1 \choose N-k}$. The above expression is therefore

$$\begin{split} &\mathbb{E}\left[\#\{e:\Delta_{-}^{\min}(e)\neq\Delta_{-}^{\max}(e)\}\right] \\ &=\lambda^{(n_{l}-\tau)_{+}}\sum_{k=n_{l}}^{N}\frac{n_{l}}{N}\frac{\binom{n_{l}-1}{0}\binom{N-n_{l}}{N-k}}{\binom{N-1}{N-k}}\frac{n_{l}-1}{k-1}\tau \\ &=\lambda^{(n_{l}-\tau)_{+}}\frac{n_{l}}{N}\tau\sum_{k=n_{l}}^{N}\frac{\binom{N-k}{0}\binom{k-1}{n_{l}-1}}{\binom{N-1}{n_{l}-1}}\frac{n_{l}-1}{k-1} \qquad (\text{symmetry of hypergeometric}) \\ &=\lambda^{(n_{l}-\tau)_{+}}\frac{n_{l}}{N}\frac{\tau}{\binom{N-1}{n_{l}-1}}\sum_{k=n_{l}}^{N}\binom{N-k}{0}\binom{k-2}{n_{l}-2} \\ &=\lambda^{(n_{l}-\tau)_{+}}\frac{n_{l}}{N}\frac{\tau}{\binom{N-1}{n_{l}-1}}\binom{N-1}{n_{l}-1} \qquad (\text{Lemma E.1, } a=N-2, b=n_{l}-2, j=2, t=n_{l}) \\ &=\lambda^{(n_{l}-\tau)_{+}}\frac{n_{l}}{N}\tau. \end{split}$$

Now we consider any element $e \in S_l$ with $\pi(e) < \pi(e_l^{n_l}) - \tau$ that fails. (Note that $e_l^{n_l} \in \widehat{B}_e$ and \widetilde{B}_e , so $\Delta_-^{\min}(e) = \Delta_-^{\max}(e) = \lambda$.) It must be the case that $\widehat{A}_e \cap S_l = \emptyset$, for otherwise $\Delta_+^{\min}(e) = \Delta_+^{\max}(e) = -\lambda$ and it does not fail. This implies that $\Delta_+^{\max}(e) = 1 - \lambda \ge u_i$. At commit, if $A^{\iota(e)-1} \cap S_l = \emptyset$, we accept e into A. Otherwise, $A^{\iota(e)-1} \cap S_l \neq \emptyset$, which implies that some other element $e' \in S_l$ has been accepted. Thus, we conclude that every element $e \in S_l$ that fails must be within τ of the first accepted element $e_l^{\eta} inS_l$. The expected number of such elements is exactly as we computed in the CF-2ganalysis: $\frac{n_l}{\tau}\tau$.

Hence, the expected number of elements that fails is upper bounded as

$$\begin{split} \mathbb{E}[\# \text{failed transactions}] &\leq \sum_{l} (1 + \lambda^{(n_l - \tau)_+}) \frac{n_l}{N} \tau \\ &\leq \sum_{l} 2 \frac{n_l}{N} \tau \\ &= 2\tau. \end{split}$$

E Lemma

Lemma E.1. $\sum_{k=t}^{a-b+t} {\binom{k-j}{t-j}} {\binom{a-k+j}{b-t+j}} = {\binom{a+1}{b+1}}.$

Proof.

$$\begin{split} &\sum_{k=t}^{a-b+t} \binom{k-j}{t-j} \binom{a-k+j}{b-t+j} \\ &= \sum_{k'=0}^{a-b} \binom{k'+t-j}{t-j} \binom{a-k'-t+j}{b-t+j} \\ &= \sum_{k'=0}^{a-b} \binom{k'+t-j}{k'} \binom{a-k'-t+j}{a-b-k'} & \text{(symmetry of binomial coeff.)} \\ &= (-1)^{a-b} \sum_{k'=0}^{a-b} \binom{-t+j-1}{k'} \binom{-b+t-j-1}{a-b-k'} & \text{(upper negation)} \\ &= (-1)^{a-b} \binom{-b-2}{a-b} & \text{(Chu-Vandermonde's identity)} \\ &= \binom{a+1}{a-b} & \text{(upper negation)} \\ &= \binom{a+1}{b+1} & \text{(symmetry of binomial coeff.)} \end{split}$$

F Parallel algorithms for separable sums

For some functions F, we can maintain sketches / statistics to aid the computation of Δ_+^{\max} , Δ_-^{\max} , Δ_+^{\min} , Δ_-^{\min} , Δ_-^{\min} . In particular, we consider functions of the form $F(X) = \sum_{l=1}^{L} g\left(\sum_{i \in X \cup S_l} w_l(i)\right) - \lambda \sum_{i \in X} v(i)$, where $S_l \subseteq V$ are (possibly overlapping) groups of elements in the ground set, g is a non-decreasing concave scalar function, and $w_l(i)$ and v(i) are non-negative scalar weights. An example of such functions is set cover $F(A) = \sum_{l=1}^{L} \min(1, |A \cup S_l|) - \lambda |A|$. It is easy to see that $F(X \cup e) - F(X) = \sum_{l:e \in S_l} \left[g\left(w_l(e) + \sum_{i \in X \cup S_l} w_l(i) \right) - g\left(\sum_{i \in X \cup S_l} w_l(i) \right) \right] - \lambda v(e)$. Define

$$\widehat{\alpha}_{l} = \sum_{j \in \widehat{A} \cup S_{l}} w_{l}(j), \qquad \widehat{\alpha}_{l,e} = \sum_{j \in \widehat{A}_{e} \cup S_{l}} w_{l}(j), \qquad \alpha_{l}^{\iota(e)-1} = \sum_{j \in A^{\iota(e)-1} \cup S_{l}} w_{l}(j).$$
$$\widehat{\beta}_{l} = \sum_{j \in \widehat{B} \cup S_{l}} w_{l}(j), \qquad \widehat{\beta}_{l,e} = \sum_{j \in \widehat{B}_{e} \cup S_{l}} w_{l}(j), \qquad \beta_{l}^{\iota(e)-1} = \sum_{j \in B^{\iota(e)-1} \cup S_{l}} w_{l}(j).$$

F.1 CF-2g for separable sums F

Algorithm 9 updates $\widehat{\alpha}_l$ and $\widehat{\beta}_l$, and computes $\Delta^{\max}_+(e)$ and $\Delta^{\max}_-(e)$ using $\widehat{\alpha}_{l,e}$ and $\widehat{\beta}_{l,e}$. Following arguments analogous to that of Lemma 4.1, we can show:

Lemma F.1. For each l and $e \in V$, $\widehat{\alpha}_{l,e} \leq \alpha_l^{\iota(e)-1}$ and $\widehat{\beta}_{l,e} \geq \beta_l^{\iota(e)-1}$.

Corollary F.2. Concavity of g implies that Δ 's computed by Algorithm 9 satisfy

$$\Delta^{\max}_{+}(e) \geq \sum_{S_l \ni e} \left[g(\alpha_l^{\iota(e)-1} + w_l(e)) - g(\alpha_l^{\iota(e)-1}) \right] - \lambda v(e) = \Delta_{+}(e),$$

$$\Delta_{-}^{\max}(e) \geq \sum_{S_l \ni e} \left[g(\beta_l^{\iota(e)-1} - w_l(e)) - g(\beta_l^{\iota(e)-1}) \right] + \lambda v(e) = \Delta_{-}(e),$$

The analysis of Section 6.1 follows immediately from the above.

Algorithm 9: CF-2g for separable sums

```
1 for e \in V do \widehat{A}(e) = 0
 3 for l = 1, \ldots, L do \widehat{\alpha}_l = 0, \, \widehat{\beta}_l = \sum_{e \in S_l} w_l(e)
 4
 5 for p \in \{1, \ldots, P\} do in parallel
             while ∃ element to process do
 6
                    e = next element to process
 7
                    \Delta^{\max}_{+}(e) = -\lambda v(e) + \sum_{S_l \ni e} g(\widehat{\alpha}_l + w_l(e)) - g(\widehat{\alpha}_l)
 8
                    \Delta^{\max}_{-}(e) = +\lambda v(e) + \sum_{S_l \ni e} g(\widehat{\beta}_l - w_l(e)) - g(\widehat{\beta}_l)
 9
                    Draw u_e \sim Unif(0,1)
10
                    if u_e < \frac{[\Delta_+^{\max}(e)]_+}{[\Delta_+^{\min}(e)]_+ + [\Delta_-^{\max}(e)]_+} then
11
                            \widehat{A}(e) \leftarrow 1
12
                           for l: e \in S_l do

\[ \widehat{\alpha}_l \leftarrow \widehat{\alpha}_l + w_l(e) \]
13
14
                    else
15
                            for l : e \in S_l do
16
                              \widehat{\beta}_l \leftarrow \widehat{\beta}_l - w_l(e)
17
```

F.2 CC-2g for separable sums F

Analogous to the CF-2g algorithm, we maintain $\widehat{\alpha}_l$, $\widehat{\beta}_l$ and additionally $\widetilde{\alpha}_l = \sum_{j \in \widetilde{A} \cup S_l} w_l(j)$ and $\widetilde{\beta}_l = \sum_{j \in \widetilde{B} \cup S_l} w_l(j)$. Following the arguments of Lemma 5.1 and Corollary 5.3, we can show the following.

Lemma F.3. $\widehat{\alpha}_{l,e} \leq \alpha^{\iota(e)-1} \leq \widetilde{\alpha}_{l,e} - w_l(e) \text{ and } \widehat{\beta}_{l,e} \geq \beta^{\iota(e)-1} \geq \widetilde{\beta}_{l,e} + w_l(e)$

Corollary F.4. Concavity of g implies that the Δ 's computed by Algorithm 10 satisfy:

$$\begin{split} \Delta^{\max}_{+}(e) &= -\lambda v(e) + \sum_{S_l \ni e} \left[g(\widehat{\alpha}_{l,e} + w_l(e)) - g(\widehat{\alpha}_{l,e}) \right] \\ &\geq -\lambda v(e) + \sum_{S_l \ni e} \left[g(\widehat{\alpha}_l^{\iota(e)-1} + w_l(e)) - g(\widehat{\alpha}_l^{\iota(e)-1}) \right] &= \Delta_+(e) \\ &\geq -\lambda v(e) + \sum_{S_l \ni e} \left[g(\widetilde{\alpha}_{l,e}) - g(\widetilde{\alpha}_{l,e} - w_l(e)) \right] &= \Delta^{\min}_+(e), \\ \Delta^{\max}_{-}(e) &= \lambda v(e) + \sum_{S_l \ni e} \left[g(\widehat{\beta}_{l,e} - w_l(e)) - g(\widehat{\beta}_{l,e}) \right] \\ &\geq \lambda v(e) + \sum_{S_l \ni e} \left[g(\widehat{\beta}_l^{\iota(e)-1} - w_l(e)) - g(\widehat{\beta}_l^{\iota(e)-1}) \right] &= \Delta_-(e) \\ &\geq \lambda v(e) + \sum_{S_l \ni e} \left[g(\widetilde{\beta}_l^{\iota(e)-1} - w_l(e)) - g(\widetilde{\beta}_l^{\iota(e)-1}) \right] &= \Delta^{\min}_-(e). \end{split}$$

The analysis of Section 6.3 and 6.2 follows immediately from the above.

Algorithm 10: CC-2g for separable sums

1 for $e \in V$ do $\widehat{A}(e) = \widetilde{A}(e) = 0$, $\widehat{B}(e) = \widetilde{B}(e) = 1$ **3** for l = 1, ..., L do $\mathbf{4} \quad | \quad \widehat{\alpha}_l = \widetilde{\alpha}_l = \mathbf{0}$ 5 $\left[\begin{array}{c} \widehat{\beta}_l = \widetilde{\beta}_l = \sum_{e \in S_l} w_l(e) \end{array} \right]$ 6 for $i = 1, \ldots, |V|$ do processed(i) = false**s** $\iota = 0$ 9 for $p \in \{1, \dots, P\}$ do in parallel while \exists element to process do 10 e = next element to process 11 $(\widehat{\alpha}_{\cdot,e}, \widetilde{\alpha}_{\cdot,e}, \widehat{\beta}_{\cdot,e}, \widetilde{\beta}_{\cdot,e}) = \text{getGuarantee}(e)$ 12 $(\text{result}, u_e) = \text{propose}(e, \widehat{\alpha}_{\cdot, e}, \widetilde{\alpha}_{\cdot, e}, \widehat{\beta}_{\cdot, e}, \widetilde{\beta}_{\cdot, e})$ 13 14 $\operatorname{commit}(e, i, u_e, \operatorname{result})$

Algorithm 11: CC-2g getGuarantee(e) for separable sums

 Algorithm 12: CC-2g propose $(e, \hat{\alpha}_{\cdot,e}, \tilde{\alpha}_{\cdot,e}, \hat{\beta}_{\cdot,e}, \hat{\beta}_{\cdot,e})$ for separable sums

 $\begin{array}{l} & \overline{\Delta_{+}^{\min}(e) = -\lambda v(e) + \sum_{S_l \ni e} g(\widetilde{\alpha}_l) - g(\widetilde{\alpha}_l - w_l(e))} \\ & \Delta_{+}^{\max}(e) = -\lambda v(e) + \sum_{S_l \ni e} g(\widehat{\alpha}_l + w_l(e)) - g(\widehat{\alpha}_l) \\ & 3 \quad \Delta_{-}^{\min}(e) = +\lambda v(e) + \sum_{S_l \ni e} g(\widetilde{\beta}_l) - g(\widetilde{\beta}_l + w_l(e)) \\ & 4 \quad \Delta_{-}^{\max}(e) = +\lambda v(e) + \sum_{S_l \ni e} g(\widehat{\beta}_l - w_l(e)) - g(\widehat{\beta}_l) \\ & 5 \quad \text{Draw} \quad u_e \sim Unif(0, 1) \\ & 6 \quad \text{if} \quad u_e < \frac{[\Delta_{+}^{\min}(e)]_+}{[\Delta_{+}^{\min}(e)]_+ + [\Delta_{-}^{\min}(e)]_+} \text{ then } \text{ result} \leftarrow 1 \\ & 7 \\ & 8 \quad \text{else if} \quad u_e > \frac{[\Delta_{+}^{\max}(e)]_+}{[\Delta_{+}^{\max}(e)]_+ + [\Delta_{-}^{\min}(e)]_+} \text{ then } \text{ result} \leftarrow -1 \\ & 9 \\ & 10 \quad \text{else } \text{ result} \leftarrow \text{FAIL} \\ & 12 \quad \text{return} (\text{result}, u_e) \end{array}$

Algorithm 13: CC-2g commit $(e, i, u_e, result)$ for separable sums

1 wait until $\forall j < i$, processed(j) = true2 if result = FAIL then $\Delta^{\text{exact}}_{+}(e) = -\lambda v(e) + \sum_{S_l \ni e} g(\widehat{\alpha}_l + w_l(e)) - g(\widehat{\alpha}_l)$ 3 $\Delta^{\text{exact}}_{-}(e) = +\lambda v(e) + \sum_{S_l \ni e}^{\cdot} g(\widehat{\beta}_l - w_l(e)) - g(\widehat{\beta}_l)$ 4 $\mathbf{if} \ u_e < \frac{[\Delta_+^{exact}(e)]_+}{[\Delta_+^{exact}(e)]_+ + [\Delta_-^{exact}(e)]_+} \ \mathbf{then} \ \mathrm{result} \leftarrow 1$ 5 6 else result $\leftarrow -1$ 7 8 9 if result = 1 then $\widehat{A}(e) \leftarrow 1$ 10 $\widetilde{B}(e) \leftarrow 1$ 11 for $l : e \in S_l$ do 12 $\widehat{\alpha}_l \leftarrow \widehat{\alpha}_l + w_l(e)$ 13 $\widetilde{\beta}_l \leftarrow \widetilde{\beta}_l + w_l(e)$ 14 15 else $\widetilde{A}(e) \leftarrow 0; \widehat{B}(e) \leftarrow 0$ 16 for $\hat{l}: e \in S_l$ do 17 $\widetilde{\alpha}_l \leftarrow \widetilde{\alpha}_l - w_l(e)$ 18 $\widehat{\beta}_l \leftarrow \widehat{\beta}_l - w_l(e)$ 19 20 processed(i) = true

G Full experiment results

Figure 5: Experimental results on Erdos-Renyi and ZigZag synthetic graphs.

Figure 6: Set cover on 4 real graphs.

Figure 7: Max graph cut on 4 real graphs.

Figure 8: Experimental results for ring graph on set cover problem.

H Illustrative examples

The following examples illustrate how (i) the simple (uni-directional) greedy algorithm may fail for non-monotone submodular functions, and (ii) where the coordination-free double greedy algorithm can run into trouble.

H.1 Greedy and non-monotone functions

For illustration, consider the following toy example of a non-monotone submodular function. We are given a ground set $V = \{v_0, v_1, v_2, \ldots, v_k\}$ of k + 1 elements, and a universe $U = \{u_1, \ldots, u_k\}$. Each element v_i in V covers elements $Cov(v_i) \subseteq U$ of the universe. In addition, each element in V has a cost $c(v_i)$. We are aiming to maximize the submodular function

$$F(S) = \left| \bigcup_{v \in S} \operatorname{Cov}(v) \right| - \sum_{v \in S} c(v).$$
(3)

Let the costs and coverings be as follows:

$$Cov(v_0) = U$$
 $c(v_0) = k - 1$ (4)

$$\operatorname{Cov}(v_i) = u_i \qquad c(v_i) = \epsilon < 1/k^2 \quad \text{for all } i > 0.$$
(5)

Then the optimal solution is $S^* = V \setminus v_0$ with $F(S^*) = k - k\epsilon$.

The greedy algorithm of Nemhauser et al. [8] always adds the element with the largest marginal gain. Since $F(v_0) = 1$ and $F(v_i) = 1 - \epsilon$ for all i > 0, the algorithm would pick v_0 first. After that, any additional element only has a negative marginal gain, $F(\{v_0, v_i\}) - F(v_0) = -\epsilon$. Hence, the algorithm would end up with a solution $F(v_0) = 1$ or worse, which means an approximation factor of only approximately 1/k.

For the double greedy algorithm, the scenario would be the following. If v_0 happens to be the first element, then it is picked with probability

$$P(v_0) = \frac{[F(v_0) - F(\emptyset)]_+}{[F(v_0) - F(\emptyset)]_+ + [F(V \setminus v_0) - F(V)]_-} = \frac{1}{1 + (k-1)} = \frac{1}{k}.$$
 (6)

If v_0 is selected, nothing else will be added afterwards, since $[F(v_0, v_i) - F(v_0)]_+ = 0$. If it does not pick v_0 , then any other element is added with a probability of

$$P(v_i \mid \neg v_0) = \frac{[F(v_i) - F(\emptyset)]_+}{[F(v_i) - F(\emptyset)]_+ + F(V \setminus \{v_0, v_i\}) - F(V \setminus v_0)]_-} = \frac{1 - \epsilon}{1 - \epsilon} = 1.$$
(7)

If v_0 is not the first element, then any element before v_0 is added with probability $p(v_i) = 1 - \epsilon$, and as soon as an element v_i has been picked, v_0 will not be added any more. Hence, with high probability, this algorithm returns the optimal solution. The deterministic version surely does.

H.2 Coordination vs no coordination

The following example illustrates the differences between coordination and no coordination. In this example, let V be split into m disjoint groups G_j of equal size k = |V|/m, and let

$$F(S) = \sum_{j=1}^{m} \min\{1, |S \cap G_j|\} - \frac{|S \cap G_j|}{k}.$$
(8)

A maximizing set S^* contains one element from each group, and $F(S^*) = m - m/k$.

If the sequential double greedy algorithm has not picked an element from a group, it will retain the next element from that group with probability

$$\frac{1-1/k}{1-1/k+1/k} = 1 - 1/k.$$
(9)

Once it has sampled an element from a group G_j , it does not pick any more elements from G_j , and therefore $|S \cap G_j| \leq 1$ for all j and the set S returned by the algorithm. The probability that S

does not contain any element from G_j is k^{-k} —fairly low. Hence, with probability $1 - m/k^k$ the algorithm returns the optimal solution.

Without coordination, the outcome heavily depends on the order of the elements. For simplicity, assume that k is a multiple of the number q of processors (or q is a multiple of k). In the worst case, the elements are sorted by their groups and the members of each group are processed in parallel. With q processors working in parallel, the first q elements from a group G (up to shifts) will be processed with a bound \hat{A} that does not contain any element from G, and will each be selected with probability 1 - 1/k. Hence, in expectation, $|S \cap G_j| = \min\{q, k\}(1 - 1/k)$ for all j.

If q > k, then in expectation k - 1 elements from each group are selected, which corresponds to an approximation factor of

$$\frac{m(1-\frac{k-1}{k})}{m(1-1/k)} = \frac{1}{k-1}.$$
(10)

If k > q, then in expectation we obtain an approximation factor of

$$\frac{m(1 - \frac{q(1-1/k)}{k})}{m(1-1/k)} = 1 - \frac{q}{k} + \frac{1}{k-1}$$
(11)

which decreases linearly in q. If q = k, then the factor is 1/(q-1) instead of 1/2.