
A Proofs of Ãe, Âe, B̃e, B̂e as bounds on Aι(e)−1 and Bι(e)−1

Lemma 4.1. In CF-2g, for any e ∈ V , Âe ⊆ Aι(e)−1, and B̂e ⊇ Bι(e)−1.

Proof. For any element e, we write Te to denote the time at which Alg. 4 line 8 is executed. Consider
any element e′ ∈ V . If e′ ∈ Âe, it must be the case that the algorithm set Â(e′) to 1 (line 10) before
Te, which implies ι(e′) < ι(e), and hence e′ ∈ Aι(e)−1. So Âe ⊆ Aι(e)−1.

Similarly, if e′ 6∈ B̂e, then the algorithm set B̂(e′) to 0 (line 11) before Te, so ι(e′) < ι(e). Also,
e′ 6∈ A because the execution of line 11 excludes the execution of line 10. Therefore, e′ 6∈ Aι(e)−1,
and e′ 6∈ Bι(e)−1. So B̂e ⊇ Bι(e)−1.

Lemma 5.1. In CC-2g, ∀e ∈ V , Âe ⊆ Aι(e)−1 ⊆ Ãe\e, and B̂e ⊇ Bι(e)−1 ⊇ B̃e ∪ e.

Proof. Clearly, e ∈ B̃e ∪ e but e 6∈ Ãe\e. By definition, e ∈ Bι(e)−1 but e 6∈ Aι(e)−1. CC-2g only
modifies Â(e) and B̂(e) when committing the transaction on e, which occurs after obtaining the
bounds in getGuarantee(e), so e ∈ B̂e but e 6∈ Âe.
Consider any e′ 6= e. Suppose e′ ∈ Âe. This is only possible if we have committed the transaction
on e′ before the call getGuarantee(e), so it must be the case that ι(e′) < ι(e). Thus, e′ ∈ Aι(e)−1.

Now suppose e′ ∈ Aι(e)−1. By definition, this implies ι(e′) < ι(e) and e′ ∈ A. Hence, it must be
the case that we have already set Ã(e′) ← 1 (by the ordering imposed by ι on Line 2), but never
execute Ã(e′)← 0 (since e′ ∈ A), so e′ ∈ Ãe.
An analogous argument shows e′ 6∈ B̂e =⇒ e′ 6∈ Bι(e)−1 =⇒ e′ 6∈ B̃e ∪ e.

Lemma 5.2. In CC-2g, when committing element e, we have Â = Aι(e)−1 and B̂ = Bι(e)−1.

Proof. Alg. 8 Line 1 ensures that all elements ordered before e are committed, and that no element
ordered after e are committed. This suffices to guarantee that e′ ∈ Â ⇐⇒ e′ ∈ Aι(e)−1 and
e′ ∈ B̂ ⇐⇒ e′ ∈ Bι(e)−1.

B Proof of serial equivalence of CC-2g

Theorem 6.2. CC-2g is serializable and therefore solves the unconstrained submodular maximization
problem maxA⊂V F (A) with approximation E[F (ACC)] ≥ 1

2F
∗, where ACC is the output of the

algorithm, and F ∗ is the optimal value.

Proof. We will denote byAiseq ,Biseq the sets generated by Ser-2g, reservingAi,Bi for sets generated
by the CC-2g algorithm. It suffices to show by induction that Aiseq = Ai and Biseq = Bi. For
the base case, A0 = ∅ = A0

seq, and B0 = V = B0
seq. Consider any element e. The CC-2g

algorithm includes e ∈ A iff ue < [∆min
+ (e)]+([∆min

+ (e)]+ + [∆max
− (e)]+)−1 on Alg. 5 Line 6

or ue < [∆exact
+ (e)]+([∆exact

+ (e)]+ + [∆exact
− (e)]+)−1 on Alg. 8 Line 5. In both cases, Corollary

5.3 implies ue < [∆+(e)]+([∆+(e)]+ + [∆−(e)]+)−1. By induction, Aι(e)−1 = A
ι(e)−1
seq and

Bι(e)−1 = B
ι(e)−1
seq , so the threshold is exactly that computed by Ser-2g. Hence, the CC-2g algorithm

includes e ∈ A iff Ser-2g includes e ∈ A. (An analogous argument works for the case where e is
excluded from B.)

10

C Proof of bound for CF-2g

We follow the proof outline of [2].

Consider an ordering ι inducted by running CF-2g. For convenience, we will use i to flexibly denote
the element e and its ordering ι(e).

Let OPT be an optimal solution to the problem. Define Oi := (OPT ∪ Ai) ∩ Bi. Note that Oi
coincides with Ai and Bi on elements 1, . . . , i, and Oi coincides with OPT on elements i+1, . . . , n.
Hence,

Oi\(i+ 1) ⊇ Ai

Oi ∪ (i+ 1) ⊆ Bi.

Lemma C.1. For every 1 ≤ i ≤ n, ∆+(i) + ∆−(i) ≥ 0.

Proof. This is just Lemma II.1 of [2].

Lemma C.2. Let ρi = max{∆max
+ (e)−∆+(e),∆max

− (e)−∆−(e)}. For every 1 ≤ i ≤ n,

E[F (Oi−1)− F (Oi)] ≤ 1

2
E[F (Ai)− F (Ai−1) + F (Bi)− F (Bi−1) + ρi].

Proof. We follow the proof outline of [2]. First, note that it suffices to prove the inequality conditioned
on knowing Ai−1, Âi and B̂i, then applying the law of total expectation. Under this conditioning, we
also know Bi−1, Oi−1, ∆+(i), ∆max

+ (i), ∆−(i), and ∆max
− (i).

We consider the following 6 cases.

Case 1: 0 < ∆+(i) ≤ ∆max
+ (i), 0 ≤ ∆max

− (i). Since both ∆max
+ (i) > 0 and ∆max

− (i) > 0, the
probability of including i is just ∆max

+ (i)/(∆max
+ (i) + ∆max

− (i)), and the probability of
excluding i is ∆max

− (i)/(∆max
+ (i) + ∆max

− (i)).

E[F (Ai)− F (Ai−1)|Ai−1, Âi, B̂i] =
∆max

+ (i)

∆max
+ (i) + ∆max

− (i)
(F (Ai−1 ∪ i)− F (Ai−1))

=
∆max

+ (i)

∆max
+ (i) + ∆max

− (i)
∆+(i)

≥ ∆max
+ (i)

∆max
+ (i) + ∆max

− (i)
(∆max

+ (i)− ρi)

E[F (Bi)− F (Bi−1)|Ai−1, Âi, B̂i] =
∆max
− (i)

∆max
+ (i) + ∆max

− (i)
(F (Bi−1\i)− F (Bi−1))

=
∆max
− (i)

∆max
+ (i) + ∆max

− (i)
∆−(i)

≥ ∆max
− (i)

∆max
+ (i) + ∆max

− (i)
(∆max
− (i)− ρi)

11

E[F (Oi−1)− F (Oi)|Ai−1, Âi, B̂i]

=
∆max

+ (i)

∆max
+ (i) + ∆max

− (i)
(F (Oi−1)− F (Oi−1 ∪ i))

+
∆max
− (i)

∆max
+ (i) + ∆max

− (i)
(F (Oi−1)− F (Oi−1\i))

=

∆max
+ (i)

∆max
+ (i)+∆max

− (i) (F (Oi−1)− F (Oi−1 ∪ i)) if i 6∈ OPT
∆max
− (i)

∆max
+ (i)+∆max

− (i) (F (Oi−1)− F (Oi−1\i)) if i ∈ OPT

≤

∆max
+ (i)

∆max
+ (i)+∆max

− (i) (F (Bi−1\i)− F (Bi−1)) if i 6∈ OPT
∆max
− (i)

∆max
+ (i)+∆max

− (i) (F (Ai−1 ∪ i)− F (Ai−1)) if i ∈ OPT

=

∆max
+ (i)

∆max
+ (i)+∆max

− (i)∆−(i) if i 6∈ OPT
∆max
− (i)

∆max
+ (i)+∆max

− (i)∆+(i) if i ∈ OPT

≤

∆max
+ (i)

∆max
+ (i)+∆max

− (i)∆max
− (i) if i 6∈ OPT

∆max
− (i)

∆max
+ (i)+∆max

− (i)∆max
+ (i) if i ∈ OPT

=
∆max

+ (i)∆max
− (i)

∆max
+ (i) + ∆max

− (i)

where the first inequality is due to submodularity: Oi−1\i ⊇ Ai−1 and Oi−1 ∪ i ⊆ Bi−1.

Putting the above inequalities together:

E

[
F (Oi−1)− F (Oi)− 1

2

(
F (Ai)− F (Ai−1) + F (Bi)− F (Bi−1) + ρi

)∣∣∣∣Ai−1, Âi, B̂i

]

≤ 1/2

∆max
+ (i) + ∆max

− (i)

[
2∆max

+ (i)∆max
− (i)−∆max

− (i)(∆max
− (i)− ρi)

−∆max
+ (i)(∆max

+ (i)− ρi)
]
− 1

2
ρi

=
1/2

∆max
+ (i) + ∆max

− (i)

[
− (∆max

+ (i)−∆max
− (i))2 + ρi(∆

max
+ (i) + ∆max

− (i))

]
− 1

2
ρi

≤
1
2ρi(∆

max
+ (i) + ∆max

− (i))

∆max
+ (i) + ∆max

− (i)
− 1

2
ρi

= 0.

Case 2: 0 < ∆+(i) ≤ ∆max
+ (i), ∆max

− (i) < 0. In this case, the algorithm always choses to include
i, so Ai = Ai−1 ∪ i, Bi = Bi−1 and Oi = Oi−1 ∪ i:
E[F (Ai)− F (Ai−1)|Ai−1, Âi, B̂i] = F (Ai−1 ∪ i)− F (Ai−1) = ∆+(i) > 0

E[F (Bi)− F (Bi−1)|Ai−1, Âi, B̂i] = F (Bi−1)− F (Bi−1) = 0

E[F (Oi−1)− F (Oi)|Ai−1, Âi, B̂i] = F (Oi−1)− F (Oi−1 ∪ i)

≤
{

0 if i ∈ OPT
F (Bi−1\i)− F (Bi−1) if i 6∈ OPT

=

{
0 if i ∈ OPT
∆−(i) if i 6∈ OPT

≤ 0

<
1

2
E[F (Ai)− F (Ai−1) + F (Bi)− F (Bi−1) + ρi|Ai−1, Âi, B̂i]

where the first inequality is due to submodularity: Oi−1 ∪ i ⊆ Bi−1.

12

Case 3: ∆+(i) ≤ 0 < ∆max
+ (i), 0 < ∆−(i) < ∆max

− (i). Analogous to Case 1.

Case 4: ∆+(i) ≤ 0 < ∆max
+ (i), ∆−(i) ≤ 0. This is not possible, by Lemma C.1.

Case 5: ∆+(i) ≤ ∆max
+ (i) ≤ 0, 0 < ∆−(i) ≤ ∆max

− (i). Analogous to Case 2.

Case 6: ∆+(i) ≤ ∆max
+ (i) ≤ 0, ∆−(i) ≤ 0. This is not possible, by Lemma C.1.

We will now prove the main theorem.

Theorem 6.1. Let F be a non-negative submodular function. CF-2g solves the unconstrained
problem maxA⊂V F (A) with worst-case approximation factor E[F (ACF)] ≥ 1

2F
∗− 1

4

∑N
i=1E[ρi],

where ACF is the output of the algorithm, F ∗ is the optimal value, and ρi = max{∆max
+ (e) −

∆+(e),∆max
− (e)−∆−(e)} is the maximum discrepancy in the marginal gain due to the bounds.

Proof. Summing up the statement of Lemma C.2 for all i gives us a telescoping sum, which reduces
to:

E[F (O0)− F (On)] ≤ 1

2
E[F (An)− F (A0) + F (Bn)− F (B0)] +

1

2

n∑

i=1

E[ρi]

≤ 1

2
E[F (An) + F (Bn)] +

1

2

n∑

i=1

E[ρi].

Note that O0 = OPT and On = An = Bn, so E[F (An)] ≥ 1
2F
∗ − 1

4

∑
iE[ρi].

C.1 Example: max graph cut

Let Ci = (Ai−1\Âi) ∪ (B̂i\Bi−1) be the set of elements concurrently processed with i but ordered
after i, and Di = Bi\Ai be the set of elements ordered after i. Denote Āi = V \(Âi ∪ Ci ∪Di) =

{1, . . . , i}\Âi be the elements up to i that are not included in Âi. Let wi(S) =
∑
j∈S,(i,j)∈E w(i, j).

For the max graph cut function, it is easy to see that

∆+ ≥ −wi(Âi)− wi(Ci) + wi(Di) + wi(Āi)

∆max
+ = −wi(Âi) + wi(Ci) + wi(Di) + wi(Āi)

∆− ≥ +wi(Âi)− wi(Ci) + wi(Di)− wi(Āi)
∆max
− = +wi(Âi) + wi(Ci) + wi(Di)− wi(Āi)

Thus, we can see that ρi ≤ 2wi(Ci).

Suppose we have bounded delay τ , so |Ci| ≤ τ . Then wi(Ci) has a hypergeometric distribution
with mean deg(i)

N τ , and E[ρi] ≤ 2τ deg(i)
N . The approximation of the hogwild algorithm is then

E[F (An)] ≥ 1
2F
∗−τ #edges

2N . In sparse graphs, the hogwild algorithm is off by a small additional term,
which albeit grows linearly in τ . In a complete graph, F ∗ = 1

2#edges, soE[F (An)] ≥ F ∗
(

1
2 − τ

N

)
,

which makes it possible to scale τ linearly with N while retaining the same approximation factor.

C.2 Example: set cover

Consider the simple set cover function, for λ < L/N :

F (A) =

L∑

l=1

min(1, |A ∩ Sl|)− λ|A| = |{l : A ∩ Sl 6= ∅}| − λ|A|.

We assume that there is some bounded delay τ .

13

Suppose also that the sets Sl form a partition, so each element e belongs to exactly one set. Let
nl = |Sl| denote the size of Sl. Given any ordering π, let etl be the tth element of Sl in the ordering,
i.e. |{e′ : π(e′) ≤ π(etl) ∧ e′ ∈ Sl}| = t.

For any e ∈ Sl, we get

∆+(e) = −λ+ 1{Aι(e)−1 ∩ Sl = ∅}
∆max

+ (e) = −λ+ 1{Âe ∩ Sl = ∅}
∆−(e) = +λ− 1{Bι(e)−1\e ∩ Sl = ∅}

∆max
− (e) = +λ− 1{B̂e\e ∩ Sl = ∅}

Let η be the position of the first element of Sl to be accepted, i.e. η = min{t : etl ∈ A ∩ Sl}. (For
convenience, we set η = nl if A ∩ Sl = ∅.) We first show that η is independent of π: for η < nl,

P (η|π) =
∆max

+ (eηl)

∆max
+ (eηl) + ∆max

− (eηl)

η−1∏

t=1

∆max
− (etl)

∆max
+ (etl) + ∆max

− (etl)

=
1− λ

1− λ+ λ

η−1∏

t=1

λ

1− λ+ λ

= (1− λ)λη−1,

and P (η = nl|π) = λη−1.

Note that, ∆max
− (e)−∆−(e) = 1 iff e = enll is the last element of Sl in the ordering, there are no

elements accepted up to B̂enll \e
nl
l , and there is some element e′ in B̂enll \e

nl
l that is rejected and not

inBι(e
nl
l)−1. Denote byml ≤ min(τ, nl−1) the number of elements before enll that are inconsistent

between B̂enll and Bι(e
nl
l)−1. Then E[∆max

− (enll)−∆−(enll)] = P (∆max
− (enll) 6= ∆−(enll)) is

λnl−1−ml(1− λml) = λnl−1(λ−ml − 1) ≤ λnl−1(λ−min(τ,nl−1) − 1) ≤ 1− λτ .

If λ = 1, ∆max
+ (e) ≤ 0, so no elements before enll will be accepted, and ∆max

− (enll) = ∆−(enll).

On the other hand, ∆max
+ (e)−∆+(e) = 1 iff (Aι(e)−1\Âe)∩ Sl 6= ∅, that is, if an element has been

accepted in A but not yet observed in Âe. Since we assume a bounded delay, only the first τ elements
after the first acceptance of an e ∈ Sl may be affected.

E

[∑

e∈Sl
∆max

+ (e)−∆+(e)

]

= E[#{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe}]
= E[E[#{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe} | η = t, π(etl) = k]]

=

nl∑

t=1

N−n+t∑

k=t

P (η = t, π(etl) = k)E[#{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe} | η = t, π(etl) = k]

=

nl∑

t=1

P (η = t)

N−n+t∑

k=t

P (π(etl) = k)E[#{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe} | η = t, π(etl) = k].

Under the assumption that every ordering π is equally likely, and a bounded delay τ , conditioned
on η = t, π(etl) = k, the random variable #{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe} has
hypergeometric distribution with mean nl−t

N−k τ . Also, P (π(etl) = k) = nl
N

(
n−1
t−1

)(
N−n
k−t

)
/
(
N−1
k−1

)
, so

14

the above expression becomes

E

[∑

e∈Sl
∆max

+ (e)−∆+(e)

]

=

nl∑

t=1

P (η = t)
N−n+t∑

k=t

nl
N

(
n−1
t−1

)(
N−n
k−t

)
(
N−1
k−1

) n− t
N − k τ

=
nl
N
τ

nl∑

t=1

P (η = t)
N−n+t∑

k=t

(
k−1
t−1

)(
N−k
n−t

)
(
N−1
n−1

) n− t
N − k (symmetry of hypergeometric)

=
nl
N
τ

nl∑

t=1

P (η = t)(
N−1
n−1

)
N−n+t∑

k=t

(
k − 1

t− 1

)(
N − k − 1

n− t− 1

)

=
nl
N
τ

nl∑

t=1

P (η = t)(
N−1
n−1

)
(
N − 1

n− 1

)
(Lemma E.1, a = N − 2, b = nl − 2, j = 1)

=
nl
N
τ

nl∑

t=1

P (η = t)

=
nl
N
τ.

Since ∆max
+ (e) ≥ ∆+(e) and ∆max

− (e) ≥ ∆max
− (e), we have that ρe ≤ ∆max

+ (e) − ∆+(e) +
∆max
− (e)−∆−(e), so

E

[∑

e

ρe

]
= E

[∑

e

∆max
+ (e)−∆+(e) + ∆max

− (e)−∆−(e)

]

=
∑

l

E

[∑

e∈Sl
∆max

+ (e)−∆+(e)

]
+ E

[∑

e∈Sl
∆max
− (e)−∆−(e)

]

≤ τ
∑
l nl
N

+ L(1− λτ)

= τ + L(1− λτ).

Note that E [
∑
e ρe] does not depend on N and is linear in τ . Also, if τ = 0 in the sequential case,

we get E [
∑
e ρe] ≤ 0.

15

D Upper bound on expected number of failed transactions

Let N be the number of elements, i.e. the cardinality of the ground set. Let Ci = (Ai−1\Âi) ∪
(B̂i\Bi−1). We assume a bounded delay τ , so that |Ci| ≤ τ for all i.

We call element i dependent on i′ if ∃A,F (A ∪ i) − F (A) 6= F (A ∪ i′ ∪ i) − F (A ∪ i′) or
∃B,F (B\i)− F (B) 6= F (B ∪ i′\i)− F (B ∪ i′), i.e. the result of the processing i′ will affect the
computation of ∆’s for i. For example, for the graph cut problem, every vertex is dependent on its
neighbors; for the separable sums problem, i is dependent on {i′ : ∃Sl, i ∈ Sl, i′ ∈ Sl}.
Let ni be the number of elements that i is dependent on. Now, we note that if Ci does not contain
any elements on which i is dependent, then ∆max

+ (i) = ∆+(i) = ∆min
+ (i) and ∆max

− (i) = ∆−(i) =

∆min
− (i), so i will not fail. Conversely, if i fails, there must be some element i′ ∈ Ci such that i is

dependent on i′.

E(number of failed transactions) =
∑

i

P (i fails)

≤
∑

i

P (∃i′ ∈ Ci, i depends on i′)

≤
∑

i

E

[∑

i′∈Ci
1{i depends on i′}

]

≤
∑

i

τni
N

The last inequality follows from the fact that
∑
i′∈Ci 1{i depends on i′} is a hypergeometric random

variable and |Ci| ≤ τ .

Note that the bound established above is generic to functions F , and additional knowledge of F can
lead to better analyses on the algorithm’s concurrency.

D.1 Upper bound for max graph cut

By applying the above generic bound, we see that the number of failed transactions for max graph
cut is upper bounded by τ

N

∑
i ni = τ 2#edges

N .

D.2 Upper bound for set cover

For the set cover problem, we can provide a tighter bound on the number of failed items. We make
the same assumptions as before in the CF-2g analysis, i.e. the sets Sl form a partition of V , there is a
bounded delay τ .

Observe that for any e ∈ Sl, ∆min
− (e) 6= ∆max

− (e) if B̂e\e ∩ Sl 6= ∅ and B̃e\e ∩ Sl = ∅. This is
only possible if enll 6∈ B̃e and B̃e ⊃ Âe ∩ Sl = ∅, that is π(e) ≥ π(enll)− τ and ∀e′ ∈ Sl, (π(e′) <
π(enll) − τ) =⇒ (e′ 6∈ A). The latter condition is achieved with probability λnl−ml , where

16

ml = #{e′ : π(e′) ≥ π(enll)− τ}. Thus,

E
[
#{e : ∆min

− (e) 6= ∆max
− (e)}

]
= E[ml 1(∀e′ ∈ Sl, (π(e′) < π(enll)− τ) =⇒ (e′ 6∈ A))]

= E[E[ml 1(∀e′ ∈ Sl, (π(e′) < π(enll)− τ) =⇒ (e′ 6∈ A))|u1:N]]

= E[ml E[1(∀e′ ∈ Sl, (π(e′) < π(enll)− τ) =⇒ (e′ 6∈ A))|u1:N]]

= E[mlλ
nl−ml]

≤ λ(nl−τ)+E[ml]

= λ(nl−τ)+E[E[ml|π(enll) = k]]

= λ(nl−τ)+

N∑

k=nl

P (π(enll) = k)E[ml|π(enll) = k]].

Conditioned on π(enll) = k, ml is a hypergeometric random variable with mean nl−1
k−1 τ . Also

P (π(enll) = k) = nl
N

(
nl−1

0

)(
N−nl
N−k

)
/
(
N−1
N−k

)
. The above expression is therefore

E
[
#{e : ∆min

− (e) 6= ∆max
− (e)}

]

= λ(nl−τ)+

N∑

k=nl

nl
N

(
nl−1

0

)(
N−nl
N−k

)
(
N−1
N−k

) nl − 1

k − 1
τ

= λ(nl−τ)+
nl
N
τ

N∑

k=nl

(
N−k

0

)(
k−1
nl−1

)
(
N−1
nl−1

) nl − 1

k − 1
(symmetry of hypergeometric)

= λ(nl−τ)+
nl
N

τ(
N−1
nl−1

)
N∑

k=nl

(
N − k

0

)(
k − 2

nl − 2

)

= λ(nl−τ)+
nl
N

τ(
N−1
nl−1

)
(
N − 1

nl − 1

)
(Lemma E.1, a = N − 2, b = nl − 2, j = 2, t = nl)

= λ(nl−τ)+
nl
N
τ.

Now we consider any element e ∈ Sl with π(e) < π(enll) − τ that fails. (Note that enll ∈ B̂e
and B̃e, so ∆min

− (e) = ∆max
− (e) = λ.) It must be the case that Âe ∩ Sl = ∅, for otherwise

∆min
+ (e) = ∆max

+ (e) = −λ and it does not fail. This implies that ∆max
+ (e) = 1 − λ ≥ ui. At

commit, if Aι(e)−1 ∩ Sl = ∅, we accept e into A. Otherwise, Aι(e)−1 ∩ Sl 6= ∅, which implies that
some other element e′ ∈ Sl has been accepted. Thus, we conclude that every element e ∈ Sl that
fails must be within τ of the first accepted element eηl inSl. The expected number of such elements
is exactly as we computed in the CF-2ganalysis: nlN τ .

Hence, the expected number of elements that fails is upper bounded as

E[#failed transactions] ≤
∑

l

(1 + λ(nl−τ)+)
nl
N
τ

≤
∑

l

2
nl
N
τ

= 2τ.

17

E Lemma

Lemma E.1.
∑a−b+t
k=t

(
k−j
t−j
)(
a−k+j
b−t+j

)
=
(
a+1
b+1

)
.

Proof.

a−b+t∑

k=t

(
k − j
t− j

)(
a− k + j

b− t+ j

)

=
a−b∑

k′=0

(
k′ + t− j
t− j

)(
a− k′ − t+ j

b− t+ j

)

=

a−b∑

k′=0

(
k′ + t− j

k′

)(
a− k′ − t+ j

a− b− k′
)

(symmetry of binomial coeff.)

= (−1)a−b
a−b∑

k′=0

(−t+ j − 1

k′

)(−b+ t− j − 1

a− b− k′
)

(upper negation)

= (−1)a−b
(−b− 2

a− b

)
(Chu-Vandermonde’s identity)

=

(
a+ 1

a− b

)
(upper negation)

=

(
a+ 1

b+ 1

)
(symmetry of binomial coeff.)

18

F Parallel algorithms for separable sums

For some functions F , we can maintain sketches / statistics to aid the computation of ∆max
+ , ∆max

− ,
∆min

+ , ∆min
− . In particular, we consider functions of the form F (X) =

∑L
l=1 g

(∑
i∈X∪Sl wl(i)

)
−

λ
∑
i∈X v(i), where Sl ⊆ V are (possibly overlapping) groups of elements in the ground set, g is

a non-decreasing concave scalar function, and wl(i) and v(i) are non-negative scalar weights. An
example of such functions is set cover F (A) =

∑L
l=1 min(1, |A ∪ Sl|) − λ|A|. It is easy to see

that F (X ∪ e) − F (X) =
∑
l:e∈Sl

[
g
(
wl(e) +

∑
i∈X∪Sl wl(i)

)
− g

(∑
i∈X∪Sl wl(i)

)]
− λv(e).

Define

α̂l =
∑

j∈Â∪Sl

wl(j), α̂l,e =
∑

j∈Âe∪Sl

wl(j), α
ι(e)−1
l =

∑

j∈Aι(e)−1∪Sl

wl(j).

β̂l =
∑

j∈B̂∪Sl

wl(j), β̂l,e =
∑

j∈B̂e∪Sl

wl(j), β
ι(e)−1
l =

∑

j∈Bι(e)−1∪Sl

wl(j).

F.1 CF-2g for separable sums F

Algorithm 9 updates α̂l and β̂l, and computes ∆max
+ (e) and ∆max

− (e) using α̂l,e and β̂l,e. Following
arguments analogous to that of Lemma 4.1, we can show:

Lemma F.1. For each l and e ∈ V , α̂l,e ≤ αι(e)−1
l and β̂l,e ≥ βι(e)−1

l .

Corollary F.2. Concavity of g implies that ∆’s computed by Algorithm 9 satisfy

∆max
+ (e) ≥

∑

Sl3e

[
g(α

ι(e)−1
l + wl(e))− g(α

ι(e)−1
l)

]
− λv(e) = ∆+(e),

∆max
− (e) ≥

∑

Sl3e

[
g(β

ι(e)−1
l − wl(e))− g(β

ι(e)−1
l)

]
+ λv(e) = ∆−(e),

The analysis of Section 6.1 follows immediately from the above.

Algorithm 9: CF-2g for separable sums

1 for e ∈ V do Â(e) = 0
2

3 for l = 1, . . . , L do α̂l = 0, β̂l =
∑

e∈Sl wl(e)

4

5 for p ∈ {1, . . . , P} do in parallel
6 while ∃ element to process do
7 e = next element to process
8 ∆max

+ (e) = −λv(e) +
∑

Sl3e g(α̂l + wl(e))− g(α̂l)

9 ∆max
− (e) = +λv(e) +

∑
Sl3e g(β̂l − wl(e))− g(β̂l)

10 Draw ue ∼ Unif(0, 1)

11 if ue <
[∆max

+ (e)]+

[∆min
+ (e)]++[∆max

− (e)]+
then

12 Â(e)← 1
13 for l : e ∈ Sl do
14 α̂l ← α̂l + wl(e)

15 else
16 for l : e ∈ Sl do
17 β̂l ← β̂l − wl(e)

19

F.2 CC-2g for separable sums F

Analogous to the CF-2g algorithm, we maintain α̂l, β̂l and additionally α̃l =
∑
j∈Ã∪Sl wl(j) and

β̃l =
∑
j∈B̃∪Sl wl(j). Following the arguments of Lemma 5.1 and Corollary 5.3, we can show the

following.

Lemma F.3. α̂l,e ≤ αι(e)−1 ≤ α̃l,e − wl(e) and β̂l,e ≥ βι(e)−1 ≥ β̃l,e + wl(e)

Corollary F.4. Concavity of g implies that the ∆’s computed by Algorithm 10 satisfy:

∆max
+ (e) = −λv(e) +

∑

Sl3e
[g(α̂l,e + wl(e))− g(α̂l,e)]

≥ −λv(e) +
∑

Sl3e

[
g(α̂

ι(e)−1
l + wl(e))− g(α̂

ι(e)−1
l)

]
= ∆+(e)

≥ −λv(e) +
∑

Sl3e
[g(α̃l,e)− g(α̃l,e − wl(e))] = ∆min

+ (e),

∆max
− (e) = λv(e) +

∑

Sl3e

[
g(β̂l,e − wl(e))− g(β̂l,e)

]

≥ λv(e) +
∑

Sl3e

[
g(β̂

ι(e)−1
l − wl(e))− g(β̂

ι(e)−1
l)

]
= ∆−(e)

≥ λv(e) +
∑

Sl3e

[
g(β̃

ι(e)−1
l)− g(β̃

ι(e)−1
l + wl(e))

]
= ∆min

− (e).

The analysis of Section 6.3 and 6.2 follows immediately from the above.

Algorithm 10: CC-2g for separable sums

1 for e ∈ V do Â(e) = Ã(e) = 0, B̂(e) = B̃(e) = 1
2

3 for l = 1, . . . , L do
4 α̂l = α̃l = 0

5 β̂l = β̃l =
∑

e∈Sl wl(e)

6 for i = 1, . . . , |V | do processed(i) = false
7

8 ι = 0
9 for p ∈ {1, . . . , P} do in parallel

10 while ∃ element to process do
11 e = next element to process
12 (α̂·,e, α̃·,e, β̂·,e, β̃·,e) = getGuarantee(e)

13 (result, ue) = propose(e, α̂·,e, α̃·,e, β̂·,e, β̃·,e)
14 commit(e, i, ue, result)

Algorithm 11: CC-2g getGuarantee(e) for separable sums

1 Ã(e)← 1; B̃(e)← 0
2 for l : e ∈ Sl do
3 α̃l ← α̃l + wl(e)

4 β̃l ← β̃l − wl(e)

5 i = ι; ι← ι+ 1

6 α̂·,e = α̂·; β̂·,e = β̂·

7 α̃·,e = α̃·; β̃·,e = β̃·

8 return (α̂·,e, α̃·,e, β̂·,e, β̃·,e)

20

Algorithm 12: CC-2g propose(e, α̂·,e, α̃·,e, β̂·,e, β̃·,e) for separable sums

1 ∆min
+ (e) = −λv(e) +

∑
Sl3e g(α̃l)− g(α̃l − wl(e))

2 ∆max
+ (e) = −λv(e) +

∑
Sl3e g(α̂l + wl(e))− g(α̂l)

3 ∆min
− (e) = +λv(e) +

∑
Sl3e g(β̃l)− g(β̃l + wl(e))

4 ∆max
− (e) = +λv(e) +

∑
Sl3e g(β̂l − wl(e))− g(β̂l)

5 Draw ue ∼ Unif(0, 1)

6 if ue <
[∆min

+ (e)]+

[∆min
+ (e)]++[∆max

− (e)]+
then result← 1

7

8 else if ue >
[∆max

+ (e)]+

[∆max
+ (e)]++[∆min

− (e)]+
then result← −1

9

10 else result← FAIL
11

12 return (result, ue)

Algorithm 13: CC-2g commit(e, i, ue,result) for separable sums
1 wait until ∀j < i, processed(j) = true
2 if result = FAIL then
3 ∆exact

+ (e) = −λv(e) +
∑

Sl3e g(α̂l + wl(e))− g(α̂l)

4 ∆exact
− (e) = +λv(e) +

∑
Sl3e g(β̂l − wl(e))− g(β̂l)

5 if ue <
[∆exact

+ (e)]+

[∆exact
+ (e)]++[∆exact

− (e)]+
then result← 1

6

7 else result← −1
8

9 if result= 1 then
10 Â(e)← 1

11 B̃(e)← 1
12 for l : e ∈ Sl do
13 α̂l ← α̂l + wl(e)

14 β̃l ← β̃l + wl(e)

15 else
16 Ã(e)← 0; B̂(e)← 0
17 for l : e ∈ Sl do
18 α̃l ← α̃l − wl(e)

19 β̂l ← β̂l − wl(e)

20 processed(i) = true

21

G Full experiment results

0 5 10 15
0

50

100

150

200

Runtime on EC2:
Erdos−Renyi Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

100

200

300

400

500

600

700

Runtime on EC2:
Erdos−Renyi Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(b)

0 5 10 15
0

50

100

150

200

Runtime on EC2:
ZigZag Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(c)

0 5 10 15
0

200

400

600

800

Runtime on EC2:
ZigZag Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(d)

0 5 10 15
0

5

10

15

Speed−up on EC2:
Erdos−Renyi Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(e)

0 5 10 15
0

5

10

15

Speed−up on EC2:
Erdos−Renyi Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(f)

0 5 10 15
0

5

10

15

Speed−up on EC2:
ZigZag Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(g)

0 5 10 15
0

5

10

15

Speed−up on EC2:
ZigZag Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(h)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−8

CF−2g decrease in F(A):
Erdos−Renyi Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(i)

0 5 10 15
0

0.5

1

1.5

2
x 10

−7

CF−2g decrease in F(A):
Erdos−Renyi Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(j)

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

−8

CF−2g decrease in F(A):
ZigZag Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(k)

0 5 10 15
0

0.2

0.4

0.6

0.8

1
x 10

−7

CF−2g decrease in F(A):
ZigZag Set Cover

Number of threads
F

ra
c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(l)

0 5 10 15
0

0.5

1

1.5

2
x 10

−5

CC−2g fraction failed txns:
Erdos−Renyi Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f
a
ile

d

(m)

0 5 10 15
0

1

2

3

4
x 10

−6

CC−2g fraction failed txns:
Erdos−Renyi Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f

a
ile

d

(n)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

CC−2g fraction failed txns:
ZigZag Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f
a
ile

d

(o)

0 5 10 15
0

1

2

3

4
x 10

−6

CC−2g fraction failed txns:
ZigZag Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f

a
ile

d

(p)

Figure 5: Experimental results on Erdos-Renyi and ZigZag synthetic graphs.

22

0 5 10 15
0

50

100

150

200

250

Runtime on EC2:
Friendster Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

50

100

150

200

Runtime on EC2:
Arabic−2005 Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(b)

0 5 10 15
0

50

100

150

200

250

300

350

Runtime on EC2:
UK−2005 Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(c)

0 5 10 15
0

100

200

300

400

Runtime on EC2:
IT−2004 Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(d)

0 5 10 15
0

5

10

15

Speed−up on EC2:
Friendster Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(e)

0 5 10 15
0

5

10

15

Speed−up on EC2:
Arabic−2005 Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(f)

0 5 10 15
0

5

10

15

Speed−up on EC2:
UK−2005 Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(g)

0 5 10 15
0

5

10

15

Speed−up on EC2:
IT−2004 Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(h)

0 5 10 15
0

0.5

1

1.5

2

2.5

3
x 10

−6

CF−2g decrease in F(A):
Friendster Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(i)

0 5 10 15
0

1

2

3

4

5

6
x 10

−7

CF−2g decrease in F(A):
Arabic−2005 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(j)

0 5 10 15
0

0.5

1

1.5

2
x 10

−7

CF−2g decrease in F(A):
UK−2005 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(k)

0 5 10 15
0

1

2

3

4
x 10

−7

CF−2g decrease in F(A):
IT−2004 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(l)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

CC−2g fraction failed txns:
Friendster Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f
a
ile

d

(m)

0 5 10 15
0

0.2

0.4

0.6

0.8

1
x 10

−5

CC−2g fraction failed txns:
Arabic−2005 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f
a
ile

d

(n)

0 5 10 15
0

1

2

3

4
x 10

−6

CC−2g fraction failed txns:
UK−2005 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f
a

ile
d

(o)

0 5 10 15
0

1

2

3

4

5

6
x 10

−6

CC−2g fraction failed txns:
IT−2004 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f
a

ile
d

(p)

Figure 6: Set cover on 4 real graphs.

23

0 5 10 15
0

10

20

30

40

50

60

Runtime on EC2:
Friendster Max Graph Cut

Number of threads

R
u

n
ti
m

e
 /

 s

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

20

40

60

80

100

Runtime on EC2:
Arabic−2005 Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(b)

0 5 10 15
0

50

100

150

200

Runtime on EC2:
UK−2005 Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(c)

0 5 10 15
0

50

100

150

200

250

Runtime on EC2:
IT−2004 Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(d)

0 5 10 15
0

5

10

15

Speed−up on EC2:
Friendster Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(e)

0 5 10 15
0

5

10

15

Speed−up on EC2:
Arabic−2005 Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(f)

0 5 10 15
0

5

10

15

Speed−up on EC2:
UK−2005 Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(g)

0 5 10 15
0

5

10

15

Speed−up on EC2:
IT−2004 Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(h)

0 5 10 15
−2

0

2

4

6

8
x 10

−7

CF−2g decrease in F(A):
Friendster Max Graph Cut

Number of threads

F
ra

c
ti
o

n
 o

f
F

(A
)

d
e

c
re

a
s
e

 v
s
 S

e
r−

2
g

Ser−2g

CF−2g

(i)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

CF−2g decrease in F(A):
Arabic−2005 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(j)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

CF−2g decrease in F(A):
UK−2005 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(k)

0 5 10 15
0

0.2

0.4

0.6

0.8

1
x 10

−5

CF−2g decrease in F(A):
IT−2004 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CF−2g

(l)

0 5 10 15
0

1

2

3

4

5
x 10

−5

CC−2g fraction failed txns:
Friendster Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f

a
ile

d

(m)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

CC−2g fraction failed txns:
Arabic−2005 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f
a
ile

d

(n)

0 5 10 15
0

2

4

6

8
x 10

−5

CC−2g fraction failed txns:
UK−2005 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f

a
ile

d

(o)

0 5 10 15
0

1

2

3

4

5

6

7
x 10

−5

CC−2g fraction failed txns:
IT−2004 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f

a
ile

d

(p)

Figure 7: Max graph cut on 4 real graphs.

24

0 5 10 15
0

50

100

150

200

250

300

Runtime on EC2:
Ring Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

5

10

15

Speed−up on EC2:
Ring Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(b)

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

CF−2g decrease in F(A):
Ring Set Cover

Number of threads

F
ra

c
ti
o

n
 o

f
F

(A
)

d
e

c
re

a
s
e

 v
s
 S

e
r−

2
g

Ser−2g

CC−2g

CF−2g

(c)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

CC−2g fraction failed txns:
Ring Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f
tx

n
s
 f
a
ile

d

(d)

0 5 10 15
0

2

4

6

8

10

12

Runtime on EC2:
Ring Max Graph Cut

Number of threads

R
u

n
ti
m

e
 /

 s

Ser−2g

CC−2g

CF−2g

(e)

0 5 10 15
0

5

10

15

Speed−up on EC2:
Ring Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

Ideal

CC−2g

CF−2g

(f)

0 5 10 15
−10

−8

−6

−4

−2

0

2

4
x 10

−7

CF−2g decrease in F(A):
Ring Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f
F

(A
)

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

Ser−2g

CC−2g

CF−2g

(g)

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

CC−2g fraction failed txns:
Ring Max Graph Cut

Number of threads

F
ra

c
ti
o

n
 o

f
tx

n
s
 f

a
ile

d

(h)

Figure 8: Experimental results for ring graph on set cover problem.

25

H Illustrative examples

The following examples illustrate how (i) the simple (uni-directional) greedy algorithm may fail for
non-monotone submodular functions, and (ii) where the coordination-free double greedy algorithm
can run into trouble.

H.1 Greedy and non-monotone functions

For illustration, consider the following toy example of a non-monotone submodular function. We are
given a ground set V = {v0, v1, v2, . . . , vk} of k + 1 elements, and a universe U = {u1, . . . , uk}.
Each element vi in V covers elements Cov(vi) ⊆ U of the universe. In addition, each element in V
has a cost c(vi). We are aiming to maximize the submodular function

F (S) =
∣∣∣
⋃

v∈S
Cov(v)

∣∣∣−
∑

v∈S
c(v). (3)

Let the costs and coverings be as follows:

Cov(v0) = U c(v0) = k − 1 (4)

Cov(vi) = ui c(vi) = ε < 1/k2 for all i > 0. (5)

Then the optimal solution is S∗ = V \ v0 with F (S∗) = k − kε.
The greedy algorithm of Nemhauser et al. [8] always adds the element with the largest marginal
gain. Since F (v0) = 1 and F (vi) = 1− ε for all i > 0, the algorithm would pick v0 first. After that,
any additional element only has a negative marginal gain, F ({v0, vi})− F (v0) = −ε. Hence, the
algorithm would end up with a solution F (v0) = 1 or worse, which means an approximation factor
of only approximately 1/k.

For the double greedy algorithm, the scenario would be the following. If v0 happens to be the first
element, then it is picked with probability

P (v0) =
[F (v0)− F (∅)]+

[F (v0)− F (∅)]+ + [F (V \ v0)− F (V)]−
=

1

1 + (k − 1)
=

1

k
. (6)

If v0 is selected, nothing else will be added afterwards, since [F (v0, vi)− F (v0)]+ = 0. If it does
not pick v0, then any other element is added with a probability of

P (vi | ¬v0) =
[F (vi)− F (∅)]+

[F (vi)− F (∅)]+ + F (V \ {v0, vi})− F (V \ v0)]−
=

1− ε
1− ε = 1. (7)

If v0 is not the first element, then any element before v0 is added with probability p(vi) = 1 − ε,
and as soon as an element vi has been picked, v0 will not be added any more. Hence, with high
probability, this algorithm returns the optimal solution. The deterministic version surely does.

H.2 Coordination vs no coordination

The following example illustrates the differences between coordination and no coordination. In this
example, let V be split into m disjoint groups Gj of equal size k = |V |/m, and let

F (S) =
m∑

j=1

min{1, |S ∩Gj |} −
|S ∩Gj |

k
. (8)

A maximizing set S∗ contains one element from each group, and F (S∗) = m−m/k.

If the sequential double greedy algorithm has not picked an element from a group, it will retain the
next element from that group with probability

1− 1/k

1− 1/k + 1/k
= 1− 1/k. (9)

Once it has sampled an element from a group Gj , it does not pick any more elements from Gj , and
therefore |S ∩ Gj | ≤ 1 for all j and the set S returned by the algorithm. The probability that S

26

does not contain any element from Gj is k−k —fairly low. Hence, with probability 1−m/kk the
algorithm returns the optimal solution.

Without coordination, the outcome heavily depends on the order of the elements. For simplicity,
assume that k is a multiple of the number q of processors (or q is a multiple of k). In the worst case,
the elements are sorted by their groups and the members of each group are processed in parallel. With
q processors working in parallel, the first q elements from a group G (up to shifts) will be processed
with a bound Â that does not contain any element from G, and will each be selected with probability
1− 1/k. Hence, in expectation, |S ∩Gj | = min{q, k}(1− 1/k) for all j.

If q > k, then in expectation k − 1 elements from each group are selected, which corresponds to an
approximation factor of

m(1− k−1
k)

m(1− 1/k)
=

1

k − 1
. (10)

If k > q, then in expectation we obtain an approximation factor of

m(1− q(1−1/k)
k)

m(1− 1/k)
= 1− q

k
+

1

k − 1
(11)

which decreases linearly in q. If q = k, then the factor is 1/(q − 1) instead of 1/2.

27

