A Proofs of $\widetilde{A}_{e}, \widehat{A}_{e}, \widetilde{B}_{e}, \widehat{B}_{e}$ as bounds on $A^{\iota(e)-1}$ and $B^{\iota(e)-1}$

Lemma 4.1. In $C F-2 g$, for any $e \in V, \widehat{A}_{e} \subseteq A^{\iota(e)-1}$, and $\widehat{B}_{e} \supseteq B^{\iota(e)-1}$.
Proof. For any element e, we write T_{e} to denote the time at which Alg. 4 line 8 is executed. Consider any element $e^{\prime} \in V$. If $e^{\prime} \in \widehat{A}_{e}$, it must be the case that the algorithm set $\widehat{A}\left(e^{\prime}\right)$ to 1 (line 10) before T_{e}, which implies $\iota\left(e^{\prime}\right)<\iota(e)$, and hence $e^{\prime} \in A^{\iota(e)-1}$. So $\widehat{A}_{e} \subseteq A^{\iota(e)-1}$.
Similarly, if $e^{\prime} \notin \widehat{B}_{e}$, then the algorithm set $\widehat{B}\left(e^{\prime}\right)$ to 0 (line 11) before T_{e}, so $\iota\left(e^{\prime}\right)<\iota(e)$. Also, $e^{\prime} \notin A$ because the execution of line 11 excludes the execution of line 10 . Therefore, $e^{\prime} \notin A^{\iota(e)-1}$, and $e^{\prime} \notin B^{\iota(e)-1}$. So $\widehat{B}_{e} \supseteq B^{\iota(e)-1}$.

Lemma 5.1. In $C C-2 g, \forall e \in V, \widehat{A}_{e} \subseteq A^{\iota(e)-1} \subseteq \widetilde{A}_{e} \backslash e$, and $\widehat{B}_{e} \supseteq B^{\iota(e)-1} \supseteq \widetilde{B}_{e} \cup e$.
Proof. Clearly, $e \in \widetilde{B}_{e} \cup e$ but $e \notin \widetilde{A}_{e} \backslash e$. By definition, $e \in B^{\iota(e)-1}$ but $e \notin A^{\iota(e)-1}$. CC-2g only modifies $\widehat{A}(e)$ and $\widehat{B}(e)$ when committing the transaction on e, which occurs after obtaining the bounds in getGuarantee (e), so $e \in \widehat{B}_{e}$ but $e \notin \widehat{A}_{e}$.

Consider any $e^{\prime} \neq e$. Suppose $e^{\prime} \in \widehat{A}_{e}$. This is only possible if we have committed the transaction on e^{\prime} before the call getGuarantee (e), so it must be the case that $\iota\left(e^{\prime}\right)<\iota(e)$. Thus, $e^{\prime} \in A^{\iota(e)-1}$.

Now suppose $e^{\prime} \in A^{\iota(e)-1}$. By definition, this implies $\iota\left(e^{\prime}\right)<\iota(e)$ and $e^{\prime} \in A$. Hence, it must be the case that we have already set $\widetilde{A}\left(e^{\prime}\right) \leftarrow 1$ (by the ordering imposed by ι on Line 2), but never execute $\widetilde{A}\left(e^{\prime}\right) \leftarrow 0$ (since $e^{\prime} \in A$), so $e^{\prime} \in \widetilde{A}_{e}$.

An analogous argument shows $e^{\prime} \notin \widehat{B}_{e} \Longrightarrow e^{\prime} \notin B^{\iota(e)-1} \Longrightarrow e^{\prime} \notin \widetilde{B}_{e} \cup e$.

Lemma 5.2. In CC-2g, when committing element e, we have $\widehat{A}=A^{\iota(e)-1}$ and $\widehat{B}=B^{\iota(e)-1}$.
Proof. Alg. 8 Line 1 ensures that all elements ordered before e are committed, and that no element ordered after e are committed. This suffices to guarantee that $e^{\prime} \in \widehat{A} \Longleftrightarrow e^{\prime} \in A^{\iota(e)-1}$ and $e^{\prime} \in \widehat{B} \Longleftrightarrow e^{\prime} \in B^{\iota(e)-1}$.

B Proof of serial equivalence of CC-2g

Theorem 6.2. $C C-2 g$ is serializable and therefore solves the unconstrained submodular maximization problem $\max _{A \subset V} F(A)$ with approximation $E\left[F\left(A_{C C}\right)\right] \geq \frac{1}{2} F^{*}$, where $A_{C C}$ is the output of the algorithm, and F^{*} is the optimal value.

Proof. We will denote by $A_{\text {seq }}^{i}, B_{\text {seq }}^{i}$ the sets generated by Ser-2g, reserving A^{i}, B^{i} for sets generated by the CC- 2 g algorithm. It suffices to show by induction that $A_{\text {seq }}^{i}=A^{i}$ and $B_{\text {seq }}^{i}=B^{i}$. For the base case, $A^{0}=\emptyset=A_{\text {seq }}^{0}$, and $B^{0}=V=B_{\text {seq }}^{0}$. Consider any element e. The CC- 2 g algorithm includes $e \in A$ iff $u_{e}<\left[\Delta_{+}^{\min }(e)\right]_{+}\left(\left[\Delta_{+}^{\min }(e)\right]_{+}+\left[\Delta_{-}^{\max }(e)\right]_{+}\right)^{-1}$ on Alg. 5 Line 6 or $u_{e}<\left[\Delta_{+}^{\text {exact }}(e)\right]_{+}\left(\left[\Delta_{+}^{\text {exact }}(e)\right]_{+}+\left[\Delta_{-}^{\text {exact }}(e)\right]_{+}\right)^{-1}$ on Alg. 8 Line 5. In both cases, Corollary 5.3 implies $u_{e}<\left[\Delta_{+}(e)\right]_{+}\left(\left[\Delta_{+}(e)\right]_{+}+\left[\Delta_{-}(e)\right]_{+}\right)^{-1}$. By induction, $A^{\iota(e)-1}=A_{s e q}^{\iota(e)-1}$ and $B^{\iota(e)-1}=B_{s e q}^{\iota(e)-1}$, so the threshold is exactly that computed by Ser-2g. Hence, the CC-2g algorithm includes $e \in A$ iff Ser-2g includes $e \in A$. (An analogous argument works for the case where e is excluded from B.)

C Proof of bound for CF-2g

We follow the proof outline of [2].
Consider an ordering ι inducted by running CF-2g. For convenience, we will use i to flexibly denote the element e and its ordering $\iota(e)$.
Let $O P T$ be an optimal solution to the problem. Define $O^{i}:=\left(O P T \cup A^{i}\right) \cap B^{i}$. Note that O^{i} coincides with A^{i} and B^{i} on elements $1, \ldots, i$, and O^{i} coincides with $O P T$ on elements $i+1, \ldots, n$. Hence,

$$
\begin{aligned}
O^{i} \backslash(i+1) & \supseteq A^{i} \\
O^{i} \cup(i+1) & \subseteq B^{i}
\end{aligned}
$$

Lemma C.1. For every $1 \leq i \leq n, \Delta_{+}(i)+\Delta_{-}(i) \geq 0$.

Proof. This is just Lemma II. 1 of [2].
Lemma C.2. Let $\rho_{i}=\max \left\{\Delta_{+}^{\max }(e)-\Delta_{+}(e), \Delta_{-}^{\max }(e)-\Delta_{-}(e)\right\}$. For every $1 \leq i \leq n$,

$$
E\left[F\left(O^{i-1}\right)-F\left(O^{i}\right)\right] \leq \frac{1}{2} E\left[F\left(A^{i}\right)-F\left(A^{i-1}\right)+F\left(B^{i}\right)-F\left(B^{i-1}\right)+\rho_{i}\right]
$$

Proof. We follow the proof outline of [2]. First, note that it suffices to prove the inequality conditioned on knowing A^{i-1}, \widehat{A}_{i} and \widehat{B}_{i}, then applying the law of total expectation. Under this conditioning, we also know $B^{i-1}, O^{i-1}, \Delta_{+}(i), \Delta_{+}^{\max }(i), \Delta_{-}(i)$, and $\Delta_{-}^{\max }(i)$.
We consider the following 6 cases.

Case 1: $0<\Delta_{+}(i) \leq \Delta_{+}^{\max }(i), 0 \leq \Delta_{-}^{\max }(i)$. Since both $\Delta_{+}^{\max }(i)>0$ and $\Delta_{-}^{\max }(i)>0$, the probability of including i is just $\Delta_{+}^{\max }(i) /\left(\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)\right)$, and the probability of excluding i is $\Delta_{-}^{\max }(i) /\left(\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)\right)$.

$$
\begin{aligned}
E\left[F\left(A^{i}\right)-F\left(A^{i-1}\right) \mid A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}\right] & =\frac{\Delta_{+}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(F\left(A^{i-1} \cup i\right)-F\left(A^{i-1}\right)\right) \\
& =\frac{\Delta_{+}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)} \Delta_{+}(i) \\
& \geq \frac{\Delta_{+}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(\Delta_{+}^{\max }(i)-\rho_{i}\right) \\
E\left[F\left(B^{i}\right)-F\left(B^{i-1}\right) \mid A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}\right] & =\frac{\Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(F\left(B^{i-1} \backslash i\right)-F\left(B^{i-1}\right)\right) \\
& =\frac{\Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)} \Delta_{-}(i) \\
& \geq \frac{\Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(\Delta_{-}^{\max }(i)-\rho_{i}\right)
\end{aligned}
$$

where the first inequality is due to submodularity: $O^{i-1} \backslash i \supseteq A^{i-1}$ and $O^{i-1} \cup i \subseteq B^{i-1}$.
Putting the above inequalities together:

$$
\begin{aligned}
& E\left[\left.F\left(O^{i-1}\right)-F\left(O^{i}\right)-\frac{1}{2}\left(F\left(A^{i}\right)-F\left(A^{i-1}\right)+F\left(B^{i}\right)-F\left(B^{i-1}\right)+\rho_{i}\right) \right\rvert\, A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}\right] \\
& \leq \frac{1 / 2}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left[2 \Delta_{+}^{\max }(i) \Delta_{-}^{\max }(i)-\Delta_{-}^{\max }(i)\left(\Delta_{-}^{\max }(i)-\rho_{i}\right)\right. \\
& \\
& \left.-\Delta_{+}^{\max }(i)\left(\Delta_{+}^{\max }(i)-\rho_{i}\right)\right]-\frac{1}{2} \rho_{i} \\
& =\frac{1 / 2}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left[-\left(\Delta_{+}^{\max }(i)-\Delta_{-}^{\max }(i)\right)^{2}+\rho_{i}\left(\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)\right)\right]-\frac{1}{2} \rho_{i} \\
& \leq \frac{\frac{1}{2} \rho_{i}\left(\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)\right)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}-\frac{1}{2} \rho_{i} \\
& =0
\end{aligned}
$$

Case 2: $0<\Delta_{+}(i) \leq \Delta_{+}^{\max }(i), \Delta_{-}^{\max }(i)<0$. In this case, the algorithm always choses to include i, so $A^{i}=A^{i-1} \cup i, B^{i}=B^{i-1}$ and $O^{i}=O^{i-1} \cup i$:

$$
\begin{aligned}
& E\left[F\left(A^{i}\right)-F\left(A^{i-1}\right) \mid A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}\right]=F\left(A^{i-1} \cup i\right)-F\left(A^{i-1}\right)=\Delta_{+}(i)>0 \\
& E\left[F\left(B^{i}\right)-F\left(B^{i-1}\right) \mid A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}\right]=F\left(B^{i-1}\right)-F\left(B^{i-1}\right)=0 \\
& E\left[F\left(O^{i-1}\right)-F\left(O^{i}\right) \mid A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}\right]=F\left(O^{i-1}\right)-F\left(O^{i-1} \cup i\right)
\end{aligned}
$$

$$
\leq \begin{cases}0 & \text { if } i \in O P T \\ F\left(B^{i-1} \backslash i\right)-F\left(B^{i-1}\right) & \text { if } i \notin O P T\end{cases}
$$

$$
= \begin{cases}0 & \text { if } i \in O P T \\ \Delta_{-}(i) & \text { if } i \notin O P T\end{cases}
$$

$$
\leq 0
$$

$$
<\frac{1}{2} E\left[F\left(A^{i}\right)-F\left(A^{i-1}\right)+F\left(B^{i}\right)-F\left(B^{i-1}\right)+\rho_{i} \mid A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}\right]
$$

where the first inequality is due to submodularity: $O^{i-1} \cup i \subseteq B^{i-1}$.

$$
\begin{aligned}
& E\left[F\left(O^{i-1}\right)-F\left(O^{i}\right) \mid A^{i-1}, \widehat{A}_{i}, \widehat{B}_{i}\right] \\
& =\frac{\Delta_{+}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(F\left(O^{i-1}\right)-F\left(O^{i-1} \cup i\right)\right) \\
& +\frac{\Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(F\left(O^{i-1}\right)-F\left(O^{i-1} \backslash i\right)\right) \\
& = \begin{cases}\frac{\Delta_{+}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(F\left(O^{i-1}\right)-F\left(O^{i-1} \cup i\right)\right) & \text { if } i \notin O P T \\
\frac{\Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(F\left(O^{i-1}\right)-F\left(O^{i-1} \backslash i\right)\right) & \text { if } i \in O P T\end{cases} \\
& \leq \begin{cases}\frac{\Delta_{+}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta^{\max }(i)}\left(F\left(B^{i-1} \backslash i\right)-F\left(B^{i-1}\right)\right) & \text { if } i \notin O P T \\
\frac{\Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}\left(F\left(A^{i-1} \cup i\right)-F\left(A^{i-1}\right)\right) & \text { if } i \in O P T\end{cases} \\
& = \begin{cases}\frac{\Delta_{+}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{\max }^{\max }(i)} \Delta_{-}(i) & \text { if } i \notin O P T \\
\frac{\Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)} \Delta_{+}(i) & \text { if } i \in O P T\end{cases} \\
& \leq \begin{cases}\frac{\Delta_{+}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{\max }^{\max }(i)} \Delta_{-}^{\max }(i) & \text { if } i \notin O P T \\
\frac{\Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)} \Delta_{+}^{\max }(i) & \text { if } i \in O P T\end{cases} \\
& =\frac{\Delta_{+}^{\max }(i) \Delta_{-}^{\max }(i)}{\Delta_{+}^{\max }(i)+\Delta_{-}^{\max }(i)}
\end{aligned}
$$

Case 3: $\Delta_{+}(i) \leq 0<\Delta_{+}^{\max }(i), 0<\Delta_{-}(i)<\Delta_{-}^{\max }(i)$. Analogous to Case 1.
Case 4: $\Delta_{+}(i) \leq 0<\Delta_{+}^{\max }(i), \Delta_{-}(i) \leq 0$. This is not possible, by Lemma C.1.
Case 5: $\Delta_{+}(i) \leq \Delta_{+}^{\max }(i) \leq 0,0<\Delta_{-}(i) \leq \Delta_{-}^{\max }(i)$. Analogous to Case 2.
Case 6: $\Delta_{+}(i) \leq \Delta_{+}^{\max }(i) \leq 0, \Delta_{-}(i) \leq 0$. This is not possible, by Lemma C.1.

We will now prove the main theorem.
Theorem 6.1. Let F be a non-negative submodular function. $C F-2 g$ solves the unconstrained problem $\max _{A \subset V} F(A)$ with worst-case approximation factor $E\left[F\left(A_{C F}\right)\right] \geq \frac{1}{2} F^{*}-\frac{1}{4} \sum_{i=1}^{N} E\left[\rho_{i}\right]$, where $A_{C F}$ is the output of the algorithm, F^{*} is the optimal value, and $\rho_{i}=\max \left\{\Delta_{+}^{\max }(e)-\right.$ $\left.\Delta_{+}(e), \Delta_{-}^{\max }(e)-\Delta_{-}(e)\right\}$ is the maximum discrepancy in the marginal gain due to the bounds.

Proof. Summing up the statement of Lemma C. 2 for all i gives us a telescoping sum, which reduces to:

$$
\begin{aligned}
E\left[F\left(O^{0}\right)-F\left(O^{n}\right)\right] & \leq \frac{1}{2} E\left[F\left(A^{n}\right)-F\left(A^{0}\right)+F\left(B^{n}\right)-F\left(B^{0}\right)\right]+\frac{1}{2} \sum_{i=1}^{n} E\left[\rho_{i}\right] \\
& \leq \frac{1}{2} E\left[F\left(A^{n}\right)+F\left(B^{n}\right)\right]+\frac{1}{2} \sum_{i=1}^{n} E\left[\rho_{i}\right]
\end{aligned}
$$

Note that $O^{0}=O P T$ and $O^{n}=A^{n}=B^{n}$, so $E\left[F\left(A^{n}\right)\right] \geq \frac{1}{2} F^{*}-\frac{1}{4} \sum_{i} E\left[\rho_{i}\right]$.

C. 1 Example: max graph cut

Let $C_{i}=\left(A^{i-1} \backslash \widehat{A}_{i}\right) \cup\left(\widehat{B}_{i} \backslash B^{i-1}\right)$ be the set of elements concurrently processed with i but ordered after i, and $D_{i}=B^{i} \backslash A^{i}$ be the set of elements ordered after i. Denote $\bar{A}_{i}=V \backslash\left(\widehat{A}_{i} \cup C_{i} \cup D_{i}\right)=$ $\{1, \ldots, i\} \backslash \widehat{A}_{i}$ be the elements up to i that are not included in \widehat{A}_{i}. Let $w_{i}(S)=\sum_{j \in S,(i, j) \in E} w(i, j)$. For the max graph cut function, it is easy to see that

$$
\begin{aligned}
\Delta_{+} & \geq-w_{i}\left(\widehat{A}_{i}\right)-w_{i}\left(C_{i}\right)+w_{i}\left(D_{i}\right)+w_{i}\left(\bar{A}_{i}\right) \\
\Delta_{+}^{\max } & =-w_{i}\left(\widehat{A}_{i}\right)+w_{i}\left(C_{i}\right)+w_{i}\left(D_{i}\right)+w_{i}\left(\bar{A}_{i}\right) \\
\Delta_{-} & \geq+w_{i}\left(\widehat{A}_{i}\right)-w_{i}\left(C_{i}\right)+w_{i}\left(D_{i}\right)-w_{i}\left(\bar{A}_{i}\right) \\
\Delta_{-}^{\max } & =+w_{i}\left(\widehat{A}_{i}\right)+w_{i}\left(C_{i}\right)+w_{i}\left(D_{i}\right)-w_{i}\left(\bar{A}_{i}\right)
\end{aligned}
$$

Thus, we can see that $\rho_{i} \leq 2 w_{i}\left(C_{i}\right)$.
Suppose we have bounded delay τ, so $\left|C_{i}\right| \leq \tau$. Then $w_{i}\left(C_{i}\right)$ has a hypergeometric distribution with mean $\frac{\operatorname{deg}(i)}{N} \tau$, and $E\left[\rho_{i}\right] \leq 2 \tau \frac{\operatorname{deg}(i)}{N}$. The approximation of the hogwild algorithm is then $E\left[F\left(A^{n}\right)\right] \geq \frac{1}{2} F^{*}-\tau \frac{\# \text { edges }}{2 N}$. In sparse graphs, the hogwild algorithm is off by a small additional term, which albeit grows linearly in τ. In a complete graph, $F^{*}=\frac{1}{2} \#$ edges, so $E\left[F\left(A^{n}\right)\right] \geq F^{*}\left(\frac{1}{2}-\frac{\tau}{N}\right)$, which makes it possible to scale τ linearly with N while retaining the same approximation factor.

C. 2 Example: set cover

Consider the simple set cover function, for $\lambda<L / N$:

$$
F(A)=\sum_{l=1}^{L} \min \left(1,\left|A \cap S_{l}\right|\right)-\lambda|A|=\left|\left\{l: A \cap S_{l} \neq \emptyset\right\}\right|-\lambda|A|
$$

We assume that there is some bounded delay τ.

Suppose also that the sets S_{l} form a partition, so each element e belongs to exactly one set. Let $n_{l}=\left|S_{l}\right|$ denote the size of S_{l}. Given any ordering π, let e_{l}^{t} be the t th element of S_{l} in the ordering, i.e. $\left|\left\{e^{\prime}: \pi\left(e^{\prime}\right) \leq \pi\left(e_{l}^{t}\right) \wedge e^{\prime} \in S_{l}\right\}\right|=t$.

For any $e \in S_{l}$, we get

$$
\begin{aligned}
\Delta_{+}(e) & =-\lambda+1\left\{A^{\iota(e)-1} \cap S_{l}=\emptyset\right\} \\
\Delta_{+}^{\max }(e) & =-\lambda+1\left\{\widehat{A}_{e} \cap S_{l}=\emptyset\right\} \\
\Delta_{-}(e) & =+\lambda-1\left\{B^{\iota(e)-1} \backslash e \cap S_{l}=\emptyset\right\} \\
\Delta_{-}^{\max }(e) & =+\lambda-1\left\{\widehat{B}_{e} \backslash e \cap S_{l}=\emptyset\right\}
\end{aligned}
$$

Let η be the position of the first element of S_{l} to be accepted, i.e. $\eta=\min \left\{t: e_{l}^{t} \in A \cap S_{l}\right\}$. (For convenience, we set $\eta=n_{l}$ if $A \cap S_{l}=\emptyset$.) We first show that η is independent of π : for $\eta<n_{l}$,

$$
\begin{aligned}
P(\eta \mid \pi) & =\frac{\Delta_{+}^{\max }\left(e_{l}^{\eta}\right)}{\Delta_{+}^{\max }\left(e_{l}^{\eta}\right)+\Delta_{-}^{\max }\left(e_{l}^{\eta}\right)} \prod_{t=1}^{\eta-1} \frac{\Delta_{-}^{\max }\left(e_{l}^{t}\right)}{\Delta_{+}^{\max }\left(e_{l}^{t}\right)+\Delta_{-}^{\max }\left(e_{l}^{t}\right)} \\
& =\frac{1-\lambda}{1-\lambda+\lambda} \prod_{t=1}^{\eta-1} \frac{\lambda}{1-\lambda+\lambda} \\
& =(1-\lambda) \lambda^{\eta-1}
\end{aligned}
$$

and $P\left(\eta=n_{l} \mid \pi\right)=\lambda^{\eta-1}$.
Note that, $\Delta_{-}^{\max }(e)-\Delta_{-}(e)=1$ iff $e=e_{l}^{n_{l}}$ is the last element of S_{l} in the ordering, there are no elements accepted up to $\widehat{B}_{e_{l}^{n_{l}}} \backslash e_{l}^{n_{l}}$, and there is some element e^{\prime} in $\widehat{B}_{e_{l}^{n_{l}}} \backslash e_{l}^{n_{l}}$ that is rejected and not in $B^{\iota\left(e_{l}^{n_{l}}\right)-1}$. Denote by $m_{l} \leq \min \left(\tau, n_{l}-1\right)$ the number of elements before $e_{l}^{n_{l}}$ that are inconsistent between $\widehat{B}_{e_{l}^{n_{l}}}$ and $B^{\iota\left(e_{l}^{n_{l}}\right)-1}$. Then $\mathbb{E}\left[\Delta_{-}^{\max }\left(e_{l}^{n_{l}}\right)-\Delta_{-}\left(e_{l}^{n_{l}}\right)\right]=P\left(\Delta_{-}^{\max }\left(e_{l}^{n_{l}}\right) \neq \Delta_{-}\left(e_{l}^{n_{l}}\right)\right)$ is

$$
\lambda^{n_{l}-1-m_{l}}\left(1-\lambda^{m_{l}}\right)=\lambda^{n_{l}-1}\left(\lambda^{-m_{l}}-1\right) \leq \lambda^{n_{l}-1}\left(\lambda^{-\min \left(\tau, n_{l}-1\right)}-1\right) \leq 1-\lambda^{\tau}
$$

If $\lambda=1, \Delta_{+}^{\max }(e) \leq 0$, so no elements before $e_{l}^{n_{l}}$ will be accepted, and $\Delta_{-}^{\max }\left(e_{l}^{n_{l}}\right)=\Delta_{-}\left(e_{l}^{n_{l}}\right)$.
On the other hand, $\Delta_{+}^{\max }(e)-\Delta_{+}(e)=1 \operatorname{iff}\left(A^{\iota(e)-1} \backslash \widehat{A}_{e}\right) \cap S_{l} \neq \emptyset$, that is, if an element has been accepted in A but not yet observed in \widehat{A}_{e}. Since we assume a bounded delay, only the first τ elements after the first acceptance of an $e \in S_{l}$ may be affected.

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{e \in S_{l}} \Delta_{+}^{\max }(e)-\Delta_{+}(e)\right] \\
& =\mathbb{E}\left[\#\left\{e: e \in S_{l} \wedge e_{l}^{\eta} \in A^{\iota(e)-1} \wedge e_{l}^{\eta} \notin \widehat{A}_{e}\right\}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\#\left\{e: e \in S_{l} \wedge e_{l}^{\eta} \in A^{\iota(e)-1} \wedge e_{l}^{\eta} \notin \widehat{A}_{e}\right\} \mid \eta=t, \pi\left(e_{l}^{t}\right)=k\right]\right] \\
& =\sum_{t=1}^{n_{l}} \sum_{k=t}^{N-n+t} P\left(\eta=t, \pi\left(e_{l}^{t}\right)=k\right) \mathbb{E}\left[\#\left\{e: e \in S_{l} \wedge e_{l}^{\eta} \in A^{\iota(e)-1} \wedge e_{l}^{\eta} \notin \widehat{A}_{e}\right\} \mid \eta=t, \pi\left(e_{l}^{t}\right)=k\right] \\
& =\sum_{t=1}^{n_{l}} P(\eta=t) \sum_{k=t}^{N-n+t} P\left(\pi\left(e_{l}^{t}\right)=k\right) \mathbb{E}\left[\#\left\{e: e \in S_{l} \wedge e_{l}^{\eta} \in A^{\iota(e)-1} \wedge e_{l}^{\eta} \notin \widehat{A}_{e}\right\} \mid \eta=t, \pi\left(e_{l}^{t}\right)=k\right]
\end{aligned}
$$

Under the assumption that every ordering π is equally likely, and a bounded delay τ, conditioned on $\eta=t, \pi\left(e_{l}^{t}\right)=k$, the random variable $\#\left\{e: e \in S_{l} \wedge e_{l}^{\eta} \in A^{\iota(e)-1} \wedge e_{l}^{\eta} \notin \widehat{A}_{e}\right\}$ has hypergeometric distribution with mean $\frac{n_{l}-t}{N-k} \tau$. Also, $P\left(\pi\left(e_{l}^{t}\right)=k\right)=\frac{n_{l}}{N}\binom{n-1}{t-1}\binom{N-n}{k-t} /\binom{N-1}{k-1}$, so
the above expression becomes

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{e \in S_{l}} \Delta_{+}^{\max }(e)-\Delta_{+}(e)\right] \\
& =\sum_{t=1}^{n_{l}} P(\eta=t) \sum_{k=t}^{N-n+t} \frac{n_{l}}{N} \frac{\binom{n-1}{t-1}\binom{N-n}{k-t}}{\binom{N-1}{k-1}} \frac{n-t}{N-k} \tau \\
& =\frac{n_{l}}{N} \tau \sum_{t=1}^{n_{l}} P(\eta=t) \sum_{k=t}^{N-n+t} \frac{\binom{k-1}{t-1}\binom{N-k}{n-t}}{\binom{N-1}{n-1}} \frac{n-t}{N-k} \quad \quad \quad \text { (symmetry of hypergeometric) } \\
& =\frac{n_{l}}{N} \tau \sum_{t=1}^{n_{l}} \frac{P(\eta=t)}{\binom{N-1}{n-1}} \sum_{k=t}^{N-n+t}\binom{k-1}{t-1}\binom{N-k-1}{n-t-1} \quad \text { (Lemma E.1, } a=N-2, b=n_{l}-2, j=1 \text {) } \\
& =\frac{n_{l}}{N} \tau \sum_{t=1}^{n_{l}} \frac{P(\eta=t)}{\binom{N-1}{n-1}}\binom{N-1}{n-1} \\
& =\frac{n_{l}}{N} \tau \sum_{t=1}^{n_{l}} P(\eta=t) \\
& =\frac{n_{l}}{N} \tau .
\end{aligned}
$$

Since $\Delta_{+}^{\max }(e) \geq \Delta_{+}(e)$ and $\Delta_{-}^{\max }(e) \geq \Delta_{-}^{\max }(e)$, we have that $\rho_{e} \leq \Delta_{+}^{\max }(e)-\Delta_{+}(e)+$ $\Delta_{-}^{\max }(e)-\Delta_{-}(e)$, so

$$
\begin{aligned}
\mathbb{E}\left[\sum_{e} \rho_{e}\right] & =\mathbb{E}\left[\sum_{e} \Delta_{+}^{\max }(e)-\Delta_{+}(e)+\Delta_{-}^{\max }(e)-\Delta_{-}(e)\right] \\
& =\sum_{l} \mathbb{E}\left[\sum_{e \in S_{l}} \Delta_{+}^{\max }(e)-\Delta_{+}(e)\right]+\mathbb{E}\left[\sum_{e \in S_{l}} \Delta_{-}^{\max }(e)-\Delta_{-}(e)\right] \\
& \leq \tau \frac{\sum_{l} n_{l}}{N}+L\left(1-\lambda^{\tau}\right) \\
& =\tau+L\left(1-\lambda^{\tau}\right)
\end{aligned}
$$

Note that $\mathbb{E}\left[\sum_{e} \rho_{e}\right]$ does not depend on N and is linear in τ. Also, if $\tau=0$ in the sequential case, we get $\mathbb{E}\left[\sum_{e} \rho_{e}\right] \leq 0$.

D Upper bound on expected number of failed transactions

Let N be the number of elements, i.e. the cardinality of the ground set. Let $C_{i}=\left(A^{i-1} \backslash \widehat{A}_{i}\right) \cup$ $\left(\widehat{B}_{i} \backslash B^{i-1}\right)$. We assume a bounded delay τ, so that $\left|C_{i}\right| \leq \tau$ for all i.
We call element i dependent on i^{\prime} if $\exists A, F(A \cup i)-F(A) \neq F\left(A \cup i^{\prime} \cup i\right)-F\left(A \cup i^{\prime}\right)$ or $\exists B, F(B \backslash i)-F(B) \neq F\left(B \cup i^{\prime} \backslash i\right)-F\left(B \cup i^{\prime}\right)$, i.e. the result of the processing i^{\prime} will affect the computation of Δ 's for i. For example, for the graph cut problem, every vertex is dependent on its neighbors; for the separable sums problem, i is dependent on $\left\{i^{\prime}: \exists S_{l}, i \in S_{l}, i^{\prime} \in S_{l}\right\}$.
Let n_{i} be the number of elements that i is dependent on. Now, we note that if C_{i} does not contain any elements on which i is dependent, then $\Delta_{+}^{\max }(i)=\Delta_{+}(i)=\Delta_{+}^{\min }(i)$ and $\Delta_{-}^{\max }(i)=\Delta_{-}(i)=$ $\Delta_{-}^{\min }(i)$, so i will not fail. Conversely, if i fails, there must be some element $i^{\prime} \in C_{i}$ such that i is dependent on i^{\prime}.

$$
\begin{aligned}
E(\text { number of failed transactions }) & =\sum_{i} P(i \text { fails }) \\
& \leq \sum_{i} P\left(\exists i^{\prime} \in C_{i}, i \text { depends on } i^{\prime}\right) \\
& \leq \sum_{i} E\left[\sum_{i^{\prime} \in C_{i}} 1\left\{i \text { depends on } i^{\prime}\right\}\right] \\
& \leq \sum_{i} \frac{\tau n_{i}}{N}
\end{aligned}
$$

The last inequality follows from the fact that $\sum_{i^{\prime} \in C_{i}} 1\left\{i\right.$ depends on $\left.i^{\prime}\right\}$ is a hypergeometric random variable and $\left|C_{i}\right| \leq \tau$.
Note that the bound established above is generic to functions F, and additional knowledge of F can lead to better analyses on the algorithm's concurrency.

D. 1 Upper bound for max graph cut

By applying the above generic bound, we see that the number of failed transactions for max graph cut is upper bounded by $\frac{\tau}{N} \sum_{i} n_{i}=\tau \frac{2 \# \text { edges }}{N}$.

D. 2 Upper bound for set cover

For the set cover problem, we can provide a tighter bound on the number of failed items. We make the same assumptions as before in the CF-2g analysis, i.e. the sets S_{l} form a partition of V, there is a bounded delay τ.
Observe that for any $e \in S_{l}, \Delta_{-}^{\min }(e) \neq \Delta_{-}^{\max }(e)$ if $\widehat{B}_{e} \backslash e \cap S_{l} \neq \emptyset$ and $\widetilde{B}_{e} \backslash e \cap S_{l}=\emptyset$. This is only possible if $e_{l}^{n_{l}} \notin \widetilde{B}_{e}$ and $\widetilde{B}_{e} \supset \widehat{A}_{e} \cap S_{l}=\emptyset$, that is $\pi(e) \geq \pi\left(e_{l}^{n_{l}}\right)-\tau$ and $\forall e^{\prime} \in S_{l},\left(\pi\left(e^{\prime}\right)<\right.$ $\left.\pi\left(e_{l}^{n_{l}}\right)-\tau\right) \Longrightarrow\left(e^{\prime} \notin A\right)$. The latter condition is achieved with probability $\lambda^{n_{l}-m_{l}}$, where
$m_{l}=\#\left\{e^{\prime}: \pi\left(e^{\prime}\right) \geq \pi\left(e_{l}^{n_{l}}\right)-\tau\right\}$. Thus,

$$
\begin{aligned}
\mathbb{E}\left[\#\left\{e: \Delta_{-}^{\min }(e) \neq \Delta_{-}^{\max }(e)\right\}\right] & =\mathbb{E}\left[m_{l} 1\left(\forall e^{\prime} \in S_{l},\left(\pi\left(e^{\prime}\right)<\pi\left(e_{l}^{n_{l}}\right)-\tau\right) \Longrightarrow\left(e^{\prime} \notin A\right)\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[m_{l} 1\left(\forall e^{\prime} \in S_{l},\left(\pi\left(e^{\prime}\right)<\pi\left(e_{l}^{n_{l}}\right)-\tau\right) \Longrightarrow\left(e^{\prime} \notin A\right)\right) \mid u_{1: N}\right]\right] \\
& =\mathbb{E}\left[m_{l} \mathbb{E}\left[1\left(\forall e^{\prime} \in S_{l},\left(\pi\left(e^{\prime}\right)<\pi\left(e_{l}^{n_{l}}\right)-\tau\right) \Longrightarrow\left(e^{\prime} \notin A\right)\right) \mid u_{1: N}\right]\right] \\
& =\mathbb{E}\left[m_{l} \lambda^{n_{l}-m_{l}}\right] \\
& \leq \lambda^{\left(n_{l}-\tau\right)+\mathbb{E}\left[m_{l}\right]} \\
& =\lambda^{\left(n_{l}-\tau\right)+} \mathbb{E}\left[\mathbb{E}\left[m_{l} \mid \pi\left(e_{l}^{n_{l}}\right)=k\right]\right] \\
& \left.=\lambda^{\left(n_{l}-\tau\right)+} \sum_{k=n_{l}}^{N} P\left(\pi\left(e_{l}^{n_{l}}\right)=k\right) \mathbb{E}\left[m_{l} \mid \pi\left(e_{l}^{n_{l}}\right)=k\right]\right] .
\end{aligned}
$$

Conditioned on $\pi\left(e_{l}^{n_{l}}\right)=k, m_{l}$ is a hypergeometric random variable with mean $\frac{n_{l}-1}{k-1} \tau$. Also $P\left(\pi\left(e_{l}^{n_{l}}\right)=k\right)=\frac{n_{l}}{N}\binom{n_{l}-1}{0}\binom{N-n_{l}}{N-k} /\binom{N-1}{N-k}$. The above expression is therefore

$$
\mathbb{E}\left[\#\left\{e: \Delta_{-}^{\min }(e) \neq \Delta_{-}^{\max }(e)\right\}\right]
$$

$$
=\lambda^{\left(n_{l}-\tau\right)_{+}} \sum_{k=n_{l}}^{N} \frac{n_{l}}{N} \frac{\binom{n_{l}-1}{0}\binom{N-n_{l}}{N-k}}{\binom{N-1}{N-k}} \frac{n_{l}-1}{k-1} \tau
$$

$$
=\lambda^{\left(n_{l}-\tau\right)_{+}} \frac{n_{l}}{N} \tau \sum_{k=n_{l}}^{N} \frac{\binom{N-k}{0}\binom{k-1}{n_{l}-1}}{\binom{N-1}{n_{l}-1}} \frac{n_{l}-1}{k-1}
$$

(symmetry of hypergeometric)

$$
=\lambda^{\left(n_{l}-\tau\right)+} \frac{n_{l}}{N} \frac{\tau}{\binom{N-1}{n_{l}-1}} \sum_{k=n_{l}}^{N}\binom{N-k}{0}\binom{k-2}{n_{l}-2}
$$

$$
=\lambda^{\left(n_{l}-\tau\right)+} \frac{n_{l}}{N} \frac{\tau}{\binom{N-1}{n_{l}-1}}\binom{N-1}{n_{l}-1} \quad\left(\text { Lemma E.1, } a=N-2, b=n_{l}-2, j=2, t=n_{l}\right)
$$

$$
=\lambda^{\left(n_{l}-\tau\right)+} \frac{n_{l}}{N} \tau
$$

Now we consider any element $e \in S_{l}$ with $\pi(e)<\pi\left(e_{l}^{n_{l}}\right)-\tau$ that fails. (Note that $e_{l}^{n_{l}} \in \widehat{B}_{e}$ and \widetilde{B}_{e}, so $\Delta_{-}^{\min }(e)=\Delta_{-}^{\max }(e)=\lambda$.) It must be the case that $\widehat{A}_{e} \cap S_{l}=\emptyset$, for otherwise $\Delta_{+}^{\min }(e)=\Delta_{+}^{\max }(e)=-\lambda$ and it does not fail. This implies that $\Delta_{+}^{\max }(e)=1-\lambda \geq u_{i}$. At commit, if $A^{\iota(e)-1} \cap S_{l}=\emptyset$, we accept e into A. Otherwise, $A^{\iota(e)-1} \cap S_{l} \neq \emptyset$, which implies that some other element $e^{\prime} \in S_{l}$ has been accepted. Thus, we conclude that every element $e \in S_{l}$ that fails must be within τ of the first accepted element $e_{l}^{\eta} \operatorname{in} S_{l}$. The expected number of such elements is exactly as we computed in the CF-2ganalysis: $\frac{n_{l}}{N} \tau$.
Hence, the expected number of elements that fails is upper bounded as

$$
\begin{aligned}
\mathbb{E}[\# \text { failed transactions }] & \leq \sum_{l}\left(1+\lambda^{\left(n_{l}-\tau\right)_{+}}\right) \frac{n_{l}}{N} \tau \\
& \leq \sum_{l} 2 \frac{n_{l}}{N} \tau \\
& =2 \tau
\end{aligned}
$$

E Lemma

Lemma E.1. $\sum_{k=t}^{a-b+t}\binom{k-j}{t-j}\binom{a-k+j}{b-t+j}=\binom{a+1}{b+1}$.
Proof.

$$
\begin{aligned}
& \sum_{k=t}^{a-b+t}\binom{k-j}{t-j}\binom{a-k+j}{b-t+j} \\
& =\sum_{k^{\prime}=0}^{a-b}\binom{k^{\prime}+t-j}{t-j}\binom{a-k^{\prime}-t+j}{b-t+j} \\
& =\sum_{k^{\prime}=0}^{a-b}\binom{k^{\prime}+t-j}{k^{\prime}}\binom{a-k^{\prime}-t+j}{a-b-k^{\prime}} \quad \text { (symmetry of binomial coeff.) } \\
& =(-1)^{a-b} \sum_{k^{\prime}=0}^{a-b}\binom{-t+j-1}{k^{\prime}}\binom{-b+t-j-1}{a-b-k^{\prime}} \quad \text { (Chu-Vandermonde's identity) } \\
& =(-1)^{a-b}\binom{-b-2}{a-b} \quad \text { (upper negation) } \\
& =\binom{a+1}{a-b} \quad \text { (symmetry of binomial coeff.) } \\
& =\binom{a+1}{b+1} \quad
\end{aligned}
$$

F Parallel algorithms for separable sums

For some functions F, we can maintain sketches / statistics to aid the computation of $\Delta_{+}^{\max }, \Delta_{-}^{\max }$, $\Delta_{+}^{\min }, \Delta_{-}^{\min }$. In particular, we consider functions of the form $F(X)=\sum_{l=1}^{L} g\left(\sum_{i \in X \cup S_{l}} w_{l}(i)\right)-$ $\lambda \sum_{i \in X} v(i)$, where $S_{l} \subseteq V$ are (possibly overlapping) groups of elements in the ground set, g is a non-decreasing concave scalar function, and $w_{l}(i)$ and $v(i)$ are non-negative scalar weights. An example of such functions is set cover $F(A)=\sum_{l=1}^{L} \min \left(1,\left|A \cup S_{l}\right|\right)-\lambda|A|$. It is easy to see that $F(X \cup e)-F(X)=\sum_{l: e \in S_{l}}\left[g\left(w_{l}(e)+\sum_{i \in X \cup S_{l}} w_{l}(i)\right)-g\left(\sum_{i \in X \cup S_{l}} w_{l}(i)\right)\right]-\lambda v(e)$. Define

$$
\begin{array}{llrl}
\widehat{\alpha}_{l} & =\sum_{j \in \widehat{A} \cup S_{l}} w_{l}(j), & \widehat{\alpha}_{l, e} & =\sum_{j \in \widehat{A}_{e} \cup S_{l}} w_{l}(j),
\end{array} \alpha_{l}^{\iota(e)-1}=\sum_{j \in A^{\iota(e)-1} \cup S_{l}} w_{l}(j) .
$$

F. 1 CF-2g for separable sums F

Algorithm 9 updates $\widehat{\alpha}_{l}$ and $\widehat{\beta}_{l}$, and computes $\Delta_{+}^{\max }(e)$ and $\Delta_{-}^{\max }(e)$ using $\widehat{\alpha}_{l, e}$ and $\widehat{\beta}_{l, e}$. Following arguments analogous to that of Lemma 4.1, we can show:

Lemma F.1. For each l and $e \in V, \widehat{\alpha}_{l, e} \leq \alpha_{l}^{\iota(e)-1}$ and $\widehat{\beta}_{l, e} \geq \beta_{l}^{\iota(e)-1}$.
Corollary F.2. Concavity of g implies that Δ 's computed by Algorithm 9 satisfy

$$
\begin{aligned}
\Delta_{+}^{\max }(e) & \geq \sum_{S_{l} \ni e}\left[g\left(\alpha_{l}^{\iota(e)-1}+w_{l}(e)\right)-g\left(\alpha_{l}^{\iota(e)-1}\right)\right]-\lambda v(e)=\Delta_{+}(e) \\
\Delta_{-}^{\max }(e) & \geq \sum_{S_{l} \ni e}\left[g\left(\beta_{l}^{\iota(e)-1}-w_{l}(e)\right)-g\left(\beta_{l}^{\iota(e)-1}\right)\right]+\lambda v(e)=\Delta_{-}(e)
\end{aligned}
$$

The analysis of Section 6.1 follows immediately from the above.

```
Algorithm 9: CF-2g for separable sums
for \(e \in V\) do \(\widehat{A}(e)=0\)
for \(l=1, \ldots, L\) do \(\widehat{\alpha}_{l}=0, \widehat{\beta}_{l}=\sum_{e \in S_{l}} w_{l}(e)\)
for \(p \in\{1, \ldots, P\}\) do in parallel
    while \(\exists\) element to process do
        \(e=\) next element to process
        \(\Delta_{+}^{\max }(e)=-\lambda v(e)+\sum_{S_{l} \ni e} g\left(\widehat{\alpha}_{l}+w_{l}(e)\right)-g\left(\widehat{\alpha}_{l}\right)\)
        \(\Delta_{-}^{\max }(e)=+\lambda v(e)+\sum_{S_{l} \ni e} g\left(\widehat{\beta}_{l}-w_{l}(e)\right)-g\left(\widehat{\beta}_{l}\right)\)
        Draw \(u_{e} \sim \operatorname{Unif}(0,1)\)
        if \(u_{e}<\frac{\left[\Delta_{+}^{\max }(e)\right]_{+}}{\left[\Delta_{+}^{\min }(e)\right]_{+}+\left[\Delta_{-}^{\max }(e)\right]_{+}}\)then
            \(\widehat{A}(e) \leftarrow 1\)
            for \(l: e \in S_{l}\) do
                \(\widehat{\alpha}_{l} \leftarrow \widehat{\alpha}_{l}+w_{l}(e)\)
        else
            for \(l: e \in S_{l}\) do
                \(\widehat{\beta}_{l} \leftarrow \widehat{\beta}_{l}-w_{l}(e)\)
```


F. 2 CC-2g for separable sums F

Analogous to the CF-2g algorithm, we maintain $\widehat{\alpha}_{l}, \widehat{\beta}_{l}$ and additionally $\widetilde{\alpha}_{l}=\sum_{j \in \tilde{A} \cup S_{l}} w_{l}(j)$ and $\widetilde{\beta}_{l}=\sum_{j \in \widetilde{B} \cup S_{l}} w_{l}(j)$. Following the arguments of Lemma 5.1 and Corollary 5.3, we can show the following.

Lemma F.3. $\widehat{\alpha}_{l, e} \leq \alpha^{\iota(e)-1} \leq \widetilde{\alpha}_{l, e}-w_{l}(e)$ and $\widehat{\beta}_{l, e} \geq \beta^{\iota(e)-1} \geq \widetilde{\beta}_{l, e}+w_{l}(e)$
Corollary F.4. Concavity of g implies that the Δ 's computed by Algorithm 10 satisfy:

$$
\begin{array}{rlrl}
\Delta_{+}^{\max }(e) & =-\lambda v(e)+\sum_{S_{l} \ni e}\left[g\left(\widehat{\alpha}_{l, e}+w_{l}(e)\right)-g\left(\widehat{\alpha}_{l, e}\right)\right] & \\
& \geq-\lambda v(e)+\sum_{S_{l} \ni e}\left[g\left(\widehat{\alpha}_{l}^{\iota(e)-1}+w_{l}(e)\right)-g\left(\widehat{\alpha}_{l}^{\iota(e)-1}\right)\right] & & =\Delta_{+}(e) \\
& \geq-\lambda v(e)+\sum_{S_{l} \ni e}\left[g\left(\widetilde{\alpha}_{l, e}\right)-g\left(\widetilde{\alpha}_{l, e}-w_{l}(e)\right)\right] & & =\Delta_{+}^{\min }(e), \\
\Delta_{-}^{\max }(e) & =\lambda v(e)+\sum_{S_{l} \ni e}\left[g\left(\widehat{\beta}_{l, e}-w_{l}(e)\right)-g\left(\widehat{\beta}_{l, e}\right)\right] & & \\
& \geq \lambda v(e)+\sum_{S_{l} \ni e}\left[g\left(\widehat{\beta}_{l}^{\iota(e)-1}-w_{l}(e)\right)-g\left(\widehat{\beta}_{l}^{\iota(e)-1}\right)\right] & & =\Delta_{-}(e) \\
& \geq \lambda v(e)+\sum_{S_{l} \ni e}\left[g\left(\widetilde{\beta}_{l}^{\iota(e)-1}\right)-g\left(\widetilde{\beta}_{l}^{\iota(e)-1}+w_{l}(e)\right)\right] & & =\Delta_{-}^{\min }(e) .
\end{array}
$$

The analysis of Section 6.3 and 6.2 follows immediately from the above.

```
Algorithm 10: CC-2g for separable sums
for \(e \in V\) do \(\widehat{A}(e)=\widetilde{A}(e)=0, \widehat{B}(e)=\widetilde{B}(e)=1\)
for \(l=1, \ldots, L\) do
    \(\widehat{\alpha}_{l}=\widetilde{\alpha}_{l}=0\)
    \(\widehat{\beta}_{l}=\widetilde{\beta}_{l}=\sum_{e \in S_{l}} w_{l}(e)\)
for \(i=1, \ldots,|V|\) do processed \((i)=\) false
\(\iota=0\)
for \(p \in\{1, \ldots, P\}\) do in parallel
    while \(\exists\) element to process do
        \(e=\) next element to process
        \(\left(\widehat{\alpha}_{\cdot, e}, \widetilde{\alpha}_{\cdot, e}, \widehat{\beta}_{\cdot, e}, \widetilde{\beta}_{\cdot, e}\right)=\operatorname{getGuarantee}(e)\)
        \(\left(\operatorname{result}, u_{e}\right)=\operatorname{propose}\left(e, \widehat{\alpha}_{\cdot, e}, \widetilde{\alpha}_{\cdot, e}, \widehat{\beta}_{\cdot, e}, \widetilde{\beta}_{\cdot, e}\right)\)
        commit \(\left(e, i, u_{e}\right.\), result)
```

```
Algorithm 11: CC-2g getGuarantee ( \(e\) ) for separable sums
\(\widetilde{A}(e) \leftarrow 1 ; \widetilde{B}(e) \leftarrow 0\)
for \(l: e \in S_{l}\) do
    \(\widetilde{\alpha}_{l} \leftarrow \widetilde{\alpha}_{l}+w_{l}(e)\)
    \(\widetilde{\beta}_{l} \leftarrow \widetilde{\beta}_{l}-w_{l}(e)\)
\(i=\iota ; \iota \leftarrow \iota+1\)
\(\widehat{\alpha},, e \widehat{\alpha} \cdot ; \widehat{\beta},, e=\widehat{\beta}\).
\(\widetilde{\alpha}_{., e}=\widetilde{\alpha} \cdot ; \widetilde{\beta}_{\cdot, e}=\widetilde{\beta}\).
return \(\left(\widehat{\alpha}_{\cdot, e}, \widetilde{\alpha}_{\cdot, e}, \widehat{\beta}_{\cdot, e}, \widetilde{\beta}_{\cdot, e}\right)\)
```

```
Algorithm 12: CC-2g propose \(\left(e, \widehat{\alpha}_{,, e}, \widetilde{\alpha}_{\cdot, e}, \widehat{\beta}_{\cdot, e}, \widetilde{\beta}_{\cdot, e}\right)\) for separable sums
\(\Delta_{+}^{\min }(e)=-\lambda v(e)+\sum_{S_{l} \ni e} g\left(\widetilde{\alpha}_{l}\right)-g\left(\widetilde{\alpha}_{l}-w_{l}(e)\right)\)
\(\Delta_{+}^{\max }(e)=-\lambda v(e)+\sum_{S_{l} \ni e} g\left(\widehat{\alpha}_{l}+w_{l}(e)\right)-g\left(\widehat{\alpha}_{l}\right)\)
\(\Delta_{-}^{\min }(e)=+\lambda v(e)+\sum_{S_{l} \ni e} g\left(\widetilde{\beta}_{l}\right)-g\left(\widetilde{\beta}_{l}+w_{l}(e)\right)\)
\(\Delta_{-}^{\max }(e)=+\lambda v(e)+\sum_{S_{l} \ni e} g\left(\widehat{\beta}_{l}-w_{l}(e)\right)-g\left(\widehat{\beta}_{l}\right)\)
Draw \(u_{e} \sim \operatorname{Unif}(0,1)\)
if \(u_{e}<\frac{\left[\Delta_{+}^{\min }(e)\right]_{+}}{\left[\Delta_{+}^{\min }(e)\right]_{+}+\left[\Delta_{-}^{\max }(e)\right]_{+}}\)then result \(\leftarrow 1\)
else if \(u_{e}>\frac{\left[\Delta_{+}^{\max }(e)\right]_{+}}{\left[\Delta_{+}^{\max }(e)\right]_{+}+\left[\Delta_{-}^{\min }(e)\right]_{+}}\)then result \(\leftarrow-1\)
else result \(\leftarrow\) FAIL
return (result, \(u_{e}\) )
```

```
Algorithm 13: CC-2g commit ( \(e, i, u_{e}\),result) for separable sums
wait until \(\forall j<i\), \(\operatorname{processed}(j)=\) true
if result \(=\) FAIL then
    \(\Delta_{+}^{\text {exact }}(e)=-\lambda v(e)+\sum_{S_{l} \ni e} g\left(\widehat{\alpha}_{l}+w_{l}(e)\right)-g\left(\widehat{\alpha}_{l}\right)\)
    \(\Delta_{-}^{\text {exact }}(e)=+\lambda v(e)+\sum_{S_{l} \ni e} g\left(\widehat{\beta}_{l}-w_{l}(e)\right)-g\left(\widehat{\beta}_{l}\right)\)
    if \(u_{e}<\frac{\left[\Delta_{+}^{\text {exact }}(e)\right]_{+}}{\left[\Delta_{+}^{\text {exact }}(e)\right]_{+}+\left[\Delta_{-}^{\text {exact }}(e)\right]_{+}}\)then result \(\leftarrow 1\)
    else result \(\leftarrow-1\)
if result \(=1\) then
    \(\widehat{A}(e) \leftarrow 1\)
    \(\widetilde{B}(e) \leftarrow 1\)
    for \(l: e \in S_{l}\) do
        \(\widehat{\alpha}_{l} \leftarrow \widehat{\alpha}_{l}+w_{l}(e)\)
        \(\widetilde{\beta}_{l} \leftarrow \widetilde{\beta}_{l}+w_{l}(e)\)
else
    \(\widetilde{A}(e) \leftarrow 0 ; \widehat{B}(e) \leftarrow 0\)
    for \(l: e \in S_{l}\) do
        \(\widetilde{\alpha}_{l} \leftarrow \widetilde{\alpha}_{l}-w_{l}(e)\)
        \(\widehat{\beta}_{l} \leftarrow \widehat{\beta}_{l}-w_{l}(e)\)
processed \((i)=\) true
```


G Full experiment results

Figure 5: Experimental results on Erdos-Renyi and ZigZag synthetic graphs.

Figure 6: Set cover on 4 real graphs.

Figure 7: Max graph cut on 4 real graphs.

Figure 8: Experimental results for ring graph on set cover problem.

H Illustrative examples

The following examples illustrate how (i) the simple (uni-directional) greedy algorithm may fail for non-monotone submodular functions, and (ii) where the coordination-free double greedy algorithm can run into trouble.

H. 1 Greedy and non-monotone functions

For illustration, consider the following toy example of a non-monotone submodular function. We are given a ground set $V=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\}$ of $k+1$ elements, and a universe $U=\left\{u_{1}, \ldots, u_{k}\right\}$. Each element v_{i} in V covers elements $\operatorname{Cov}\left(v_{i}\right) \subseteq U$ of the universe. In addition, each element in V has a cost $c\left(v_{i}\right)$. We are aiming to maximize the submodular function

$$
\begin{equation*}
F(S)=\left|\bigcup_{v \in S} \operatorname{Cov}(v)\right|-\sum_{v \in S} c(v) . \tag{3}
\end{equation*}
$$

Let the costs and coverings be as follows:

$$
\begin{array}{ll}
\operatorname{Cov}\left(v_{0}\right)=U & c\left(v_{0}\right)=k-1 \\
\operatorname{Cov}\left(v_{i}\right)=u_{i} & c\left(v_{i}\right)=\epsilon<1 / k^{2} \quad \text { for all } i>0 . \tag{5}
\end{array}
$$

Then the optimal solution is $S^{*}=V \backslash v_{0}$ with $F\left(S^{*}\right)=k-k \epsilon$.
The greedy algorithm of Nemhauser et al. [8] always adds the element with the largest marginal gain. Since $F\left(v_{0}\right)=1$ and $F\left(v_{i}\right)=1-\epsilon$ for all $i>0$, the algorithm would pick v_{0} first. After that, any additional element only has a negative marginal gain, $F\left(\left\{v_{0}, v_{i}\right\}\right)-F\left(v_{0}\right)=-\epsilon$. Hence, the algorithm would end up with a solution $F\left(v_{0}\right)=1$ or worse, which means an approximation factor of only approximately $1 / k$.

For the double greedy algorithm, the scenario would be the following. If v_{0} happens to be the first element, then it is picked with probability

$$
\begin{equation*}
P\left(v_{0}\right)=\frac{\left[F\left(v_{0}\right)-F(\emptyset)\right]_{+}}{\left[F\left(v_{0}\right)-F(\emptyset)\right]_{+}+\left[F\left(V \backslash v_{0}\right)-F(V)\right]_{-}}=\frac{1}{1+(k-1)}=\frac{1}{k} . \tag{6}
\end{equation*}
$$

If v_{0} is selected, nothing else will be added afterwards, since $\left[F\left(v_{0}, v_{i}\right)-F\left(v_{0}\right)\right]_{+}=0$. If it does not pick v_{0}, then any other element is added with a probability of

$$
\begin{equation*}
P\left(v_{i} \mid \neg v_{0}\right)=\frac{\left[F\left(v_{i}\right)-F(\emptyset)\right]_{+}}{\left.\left[F\left(v_{i}\right)-F(\emptyset)\right]_{+}+F\left(V \backslash\left\{v_{0}, v_{i}\right\}\right)-F\left(V \backslash v_{0}\right)\right]_{-}}=\frac{1-\epsilon}{1-\epsilon}=1 \tag{7}
\end{equation*}
$$

If v_{0} is not the first element, then any element before v_{0} is added with probability $p\left(v_{i}\right)=1-\epsilon$, and as soon as an element v_{i} has been picked, v_{0} will not be added any more. Hence, with high probability, this algorithm returns the optimal solution. The deterministic version surely does.

H. 2 Coordination vs no coordination

The following example illustrates the differences between coordination and no coordination. In this example, let V be split into m disjoint groups G_{j} of equal size $k=|V| / m$, and let

$$
\begin{equation*}
F(S)=\sum_{j=1}^{m} \min \left\{1,\left|S \cap G_{j}\right|\right\}-\frac{\left|S \cap G_{j}\right|}{k} \tag{8}
\end{equation*}
$$

A maximizing set S^{*} contains one element from each group, and $F\left(S^{*}\right)=m-m / k$.
If the sequential double greedy algorithm has not picked an element from a group, it will retain the next element from that group with probability

$$
\begin{equation*}
\frac{1-1 / k}{1-1 / k+1 / k}=1-1 / k . \tag{9}
\end{equation*}
$$

Once it has sampled an element from a group G_{j}, it does not pick any more elements from G_{j}, and therefore $\left|S \cap G_{j}\right| \leq 1$ for all j and the set S returned by the algorithm. The probability that S
does not contain any element from G_{j} is k^{-k} _fairly low. Hence, with probability $1-m / k^{k}$ the algorithm returns the optimal solution.

Without coordination, the outcome heavily depends on the order of the elements. For simplicity, assume that k is a multiple of the number q of processors (or q is a multiple of k). In the worst case, the elements are sorted by their groups and the members of each group are processed in parallel. With q processors working in parallel, the first q elements from a group G (up to shifts) will be processed with a bound \widehat{A} that does not contain any element from G, and will each be selected with probability $1-1 / k$. Hence, in expectation, $\left|S \cap G_{j}\right|=\min \{q, k\}(1-1 / k)$ for all j.
If $q>k$, then in expectation $k-1$ elements from each group are selected, which corresponds to an approximation factor of

$$
\begin{equation*}
\frac{m\left(1-\frac{k-1}{k}\right)}{m(1-1 / k)}=\frac{1}{k-1} \tag{10}
\end{equation*}
$$

If $k>q$, then in expectation we obtain an approximation factor of

$$
\begin{equation*}
\frac{m\left(1-\frac{q(1-1 / k)}{k}\right)}{m(1-1 / k)}=1-\frac{q}{k}+\frac{1}{k-1} \tag{11}
\end{equation*}
$$

which decreases linearly in q. If $q=k$, then the factor is $1 /(q-1)$ instead of $1 / 2$.

