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1 Introduction

Since the success of Independent Component Analysis (ICA) for solving the Blind Source Separation
(BSS) problem [1, 2], ICA has received considerable attention in numerous areas, such as signal pro-
cessing, statistical modeling, and unsupervised learning. The performance of ICA algorithms depends
significantly on the choice of the contrast function measuring statistical independence of signals and
on the appropriate optimisation technique.

From an independence criterion’s point of view, there exist numerous parametric and nonpara-
metric approaches for designing ICA contrast functions. It has been well known that parametric ICA
methods are rather limited to particular families of sources [3]. For these parametric approaches,
contrast functions are selected according to certain hypothetical distributions (probability density
functions) of the sources by a single fixed nonlinear function. In practical applications, however, the
distributions of the sources are unknown, and even can not be approximated by a single function.
Therefore parametric ICA methods have their fatal weakness in handling many real applications.

It is well known that nonparametric methods have their capability and robustness of estimating
unknown distributions of the sources. Recently there have been many interests in designing nonpara-
metric ICA contrast function. One of the possibilities is to use kernel density estimation to deal with
the unknown source distributions, such as [4, 5]. There also exist other nonparametric ICA meth-
ods, which do not work with the probability density estimator directly, such as [6–8]. Most recently,
the so-called Hilbert-Schmidt Independence Criterion (HSIC) was proposed for measuring statisti-
cal independence between two random variables [9]. In the sequel, an HSIC based ICA contrast has
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shown its superiority over most of the other nonparametric approaches in terms of high quality sep-
arations. Although Jegelka and Gretton [10] have developed a gradient descent based method with a
local quadratic step search strategy to optimise this HSIC based ICA contrast, the question of better
search direction choice, which could provide high order convergence, has not been addressed.

On the other hand, from an optimisation’s point view, since the influential paper of Comon [1],
many efficient ICA algorithms have been developed by researchers from various communities. Recently,
there has been an increasing interest in using geometric optimisation for ICA problems. Using the
geometric optimisation techniques, the first author and his colleagues have developed a big family
of algorithms by means of approximate Newton/Newton-like methods on proper manifold settings
[11–14]. As an aside, a very popular one-unit ICA method [15], the FastICA algorithm, can be just
considered as a special case in this family. One crucial technical insight of these methods is the structure
of the Hessians at a correct separation point. It deduces a sensible and efficient approximation of the
Hessians at an arbitrary point within a neighborhood of a correct separation point and consequently
leads to approximate Newton-like ICA methods which ensure local quadratic convergence.

Besides the gradient-based optimisation techniques above, a family of Jacobi-type algorithms is
also commonly used in the ICA community [16, 1, 17, 18]. Although numerical evidences have shown
the effectiveness and efficiency of these methods, the stability and convergence properties are still
theoretically unknown for general settings. According to recent results in the convergence analysis of
general Jacobi-type algorithms [19–21], it has been shown that the convergence properties of Jacobi-
type methods depend significantly on search directions with respect to the structure of the Hessian of
the cost function being optimised. According to our survey, a Jacobi-type method for optimising the
HSIC based ICA contrast has actually already been proposed in [7], which was however in a completely
different context. Nevertheless the convergence properties have not been addressed yet. Therefore the
motivation of this work is to explore the Hessian structure of the HSIC based ICA contrast to form a
basis for future developments and analysis of both approximate Newton-like methods and Jacobi-type
methods for optimising the HSIC based ICA contrast.

Moreover, a generalisation of HSIC for measuring mutual statistical independence between more
than two random variables has already been proposed by Kankainen in [22]. It led to the so-called
characteristic-function-based ICA contrast function (CFICA) [7], where HSIC can be just considered as
a pairwise case. This contrast function has been tackled by a gradient descent method on the special
orthogonal group with a golden search [8]. However this approach generally suffers with enormous
computational burden. Hence to investigate the feasibility of using either the approximate Newton-
like method or Jacobi-type method for optimising the CFICA with better convergence properties, we
analyse the CFICA contrast in the same fashion as the HSIC based ICA contrast.

The report is organised as follows. In Section 2, we review the HSIC based ICA contrast. Section
3 characterises the critical point condition of HSIC based ICA contrast. It turns out that any correct
separation matrix is a critical point of the HSIC based ICA contrast. Moreover, our analysis shows
that the Hessian of the HSIC based ICA contrast at a correct separation matrix is indeed diagonal.
In Section 4, the CFICA constrast function is analysed in the same fashion as the HSIC based ICA.
It shows that any correct separation matrix fulfills the critical point condition of CFICA, whereas the
Hessian of CFICA at a correct separation matrix is generally not diagonal. Finally, a brief conclusion
and suggestions for future work are given in Section 5.
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2 Problem Setting

We consider the standard noiseless instantaneous whitened linear ICA demixing model [2]

Y = X>W, (1)

where W := [w1, . . . , wn] ∈ Rm×n with m � n is the whitened observation, the orthogonal matrix
X := [x1, . . . , xm] ∈ Rm×m, i.e., X>X = I, is the demixing matrix, and Y ∈ Rm×n is the recovered
signal. Let denote the special orthogonal group SO(m) := {X ∈ Rm×m|X>X = I, detX = 1}.
Without loss of generality, we restrict the demixing matrix X ∈ SO(m).

Originally, HSIC only measures the statistical independence between two random variables, i.e.,
pairwisely. Let u, v ∈ R be two real valued random variables. HSIC can be formulated as follows, see
[9] for details,

HSIC(pu,v,F ,G) = Eu,u′,v,v′ [φ (u, u′)ψ (v, v′)] + Eu,u′ [φ (u, u′)] Ev,v′ [ψ (v, v′)]
− 2Eu,v [Eu′ [φ (u, u′)] Ev′ [ψ (v, v′)]] ,

(2)

where F and G are two Hilbert spaces of functions from a compact subset R ⊃ U to R, φ(·) and
ψ(·) are certain kernel functions, and Eu,u′,v,v′ [·] denotes the expectation over independent identical
pairs u, v and u′, v′. Note that φ and ψ are not necessarily different. We specify the Gaussian kernel
function as a concrete example

φ(t1, t2) = φ(t1 − t2) =
1√
2π

exp
(
− (t1 − t2)2

2h2

)
, where t1, t2 ∈ R. (3)

To simplify the complexity of analysis, we assume h = 1. Moreover in the ICA setting as in (1), assume
that u and v are whitened, then the following results hold true{

Eu[u] = 0
Eu[u2] = 1 and

{
Eu,v[u− v] = 0
Eu,v[(u− v)2] = 2. (4)

Now let us consider ICA problems with m > 2 signals. It has been shown that in the ICA setting,
the mutual independence between all signals can be ensured by the pairwise independences [1]. Hence
recall the instantaneous ICA demixing model as in (1). By summing up all unique pairwise HSICs,
the overall HSIC score over the estimated signals Y ∈ Rm×n can be computed as follows

H : SO(m)→ R, H(X) :=
m∑

1≤i<j≤m

Ek,l

[
φ
(
x>i wkl

)
φ
(
x>j wkl

)]
+ Ek,l

[
φ
(
x>i wkl

)]
Ek,l

[
φ
(
x>j wkl

)]
− 2Ek

[
El

[
φ
(
x>i wkl

)]
El

[
φ
(
x>j wkl

)]]
,

(5)

where wkl = wk −wl ∈ Rm denotes the difference between k-th and l-th sample instances, and Ek,l[·]
represents the empirical expectation over sample indices k and l.
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3 Geometric Analysis of HSIC

3.1 Critical Point Analysis of HSIC

In this section we show that a demixing matrix, which corresponds to correct separations, can be
attained at a certain optimum of HSIC, i.e., the correct demixing matrix fulfills the critical point
condition of HSIC.

Let so(m) := {Ω ∈ Rm×m|Ω = −Ω>} denote the set of all m×m skew-symmetric matrices. Recall
the geodesic of SO(m) emanating from a point X ∈ SO(m) as

γX : R→ SO(m), ε 7→ X exp (εX>Ξ), (6)

where X = [x1, . . . , xm] ∈ SO(m) and Ξ = [ξ1, . . . , ξm] ∈ TXSO(m). Here TXSO(m) denotes the
tangent space of SO(m) at a point X, i.e.,

TXSO(m) :=
{
Ξ ∈ Rm×m|Ξ = XΩ, Ω ∈ so(m)

}
. (7)

Now by the chain rule, the first derivative of H can be computed as follows

d
d ε

(H ◦ γX)(ε)
∣∣∣∣
ε=0

=
m∑

i,j=1,i6=j

Ek,l

[
φ′
(
x>i wkl

)
ξ>i wklφ

(
x>j wkl

)]
+ Ek,l

[
φ′
(
x>i wkl

)
ξ>i wkl

]
Ek,l

[
φ
(
x>j wkl

)]
− 2Ek

[
El

[
φ′
(
x>i wkl

)
ξ>i wkl

]
El

[
φ
(
x>j wkl

)]]
.

(8)

Set the first derivative of H as in (8) equal to zero, one can characterise critical points of the HSIC
based ICA contrast function as in (5). It is obvious that such a critical point condition depends not
only on the statistical characteristics of sources, but also on the properties of kernel functions. It is
hardly possible to characterise all critical points of HSIC in full generality.

Nevertheless, we will show that a correct demixing matrix X∗ ∈ SO(m) is indeed a critical point of
H. Let S := [s1, . . . , sn] = X∗>W ∈ Rm×n denote the recovered statistically independent components,
and let Ω := [ω1, . . . , ωm] = (ωij)m

i,j=1 ∈ so(m). By evaluating the demixing model (1) at a correct
separation matrix X∗ ∈ SO(m), one easily gets{

x∗>i wkl = skli

ξ∗>i wkl = ω>i skl
, (9)

where skl := sk − sl ∈ Rm and skli = e>i skl ∈ R is the i-th entry of skl. Hence the evaluation of (8)
at X∗ can be computed as follows

d
d ε

(H ◦ γX∗)(ε)
∣∣∣∣
ε=0

=
m∑

i,j=1,i6=j

Ek,l

[
φ′ (skli)ω>i sklφ (sklj)

]
+ Ek,l

[
φ′ (skli)ω>i skl

]
Ek,l [φ (sklj)] (10a)

− 2Ek

[
El

[
φ′ (skli)ω>i skl

]
El [φ (sklj)]

]
(10b)

=
m∑

i,j,r=1,i6=j,r

Ek,l [φ′ (skli)ωirsklrφ (sklj)] + Ek,l [φ′ (skli)ωirsklr] Ek,l [φ (sklj)] (10c)

− 2Ek [El [φ′ (skli)ωirsklr] El [φ (sklj)]] (10d)
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The properties of the prewhitened data (4) imply that the second term in (10c) vanishes, and the
above equation (10) can be simplified as

d
d ε

(H ◦ γX∗)(ε)
∣∣∣∣
ε=0

=
m∑

i,j=1,i6=j

ωijEk,l [φ′ (skli)]
(
Ek,l [skljφ (sklj)]− 2Ek [skljEl [φ (sklj)]]

)
. (11)

Finally, applying the symmetry of the kernel function, i.e., Ek,l [φ′ (skli)] = 0, one can conclude that
the first derivative of H as in (8) vanishes at a correct separation point X∗, i.e., any correct separation
matrix is a critical point of the HSIC contrast function H as in (5).

3.2 Exploration of the Structure of the Hessian of HSIC

In this section, we explore the structure of the Hessian of HSIC contrast H as in (5) at a correct
separation X∗. Now take the second derivative of H, one gets

d2

d ε2
(H ◦ γX)(ε)

∣∣∣∣
ε=0

=
m∑

i,j=1,i6=j

Ek,l

[
φ′′
(
x>i wkl

)
ξ>i wklw

>
klξiφ

(
x>j wkl

)]
(12a)

− Ek,l

[
φ′
(
x>i wkl

)
ξ>i ΞX

>wklφ
(
x>j wkl

)]
(12b)

+ Ek,l

[
φ′
(
x>i wkl

)
ξ>i wklw

>
klξjφ

′ (x>j wkl

)]
(12c)

+ Ek,l

[
φ′′
(
x>i wkl

)
ξ>i wklw

>
klξi
]
Ek,l

[
φ
(
x>j wkl

)]
(12d)

− Ek,l

[
φ′
(
x>i wkl

)
ξ>i ΞX

>wkl

]
Ek,l

[
φ
(
x>j wkl

)]
(12e)

+ Ek,l

[
φ′
(
x>i wkl

)
ξ>i wkl

]
Ek,l

[
φ′
(
x>j wkl

)
ξ>j wkl

]
(12f)

− 2Ek

[
El

[
φ′′
(
x>i wkl

)
ξ>i wklw

>
klξi
]
El

[
φ
(
x>j wkl

)]]
(12g)

+ 2Ek

[
El

[
φ′
(
x>i wkl

)
ξ>i ΞX

>wkl

]
El

[
φ
(
x>j wkl

)]]
(12h)

− 2Ek

[
El

[
φ′
(
x>i wkl

)
ξ>i wkl

]
El

[
φ′
(
x>j wkl

)
ξ>j wkl

]]
. (12i)

Let X = X∗. The first term (12a) can be computed as

Ek,l

[
φ′′ (skli)ω>i skls

>
klωiφ (sklj)

]
=

m∑
r,t=1,r,t 6=i

ωirωitEk,l [φ′′ (skli) sklrskltφ (sklj)] . (13)

The properties of the whitened data, (4), imply Ek,l [φ′′ (skli) sklrskltφ (sklj)] = 0 for all r 6= t and
r, t 6= i. Thus one further gets

Ek,l

[
φ′′ (skli)ω>i skls

>
klωiφ (sklj)

]
=

m∑
r=1,r 6=i,j

2ω2
irEk,l[φ′′ (skli)]Ek,l[φ (sklj)]

+ ω2
ijEk,l[φ′′ (skli)]Ek,l

[
s2kljφ (sklj)

]
.

(14)

Hence by applying the exactly same techniques, the remaining terms (12b)-(12i) can be computed as
follows,

(12b) : Ek,l

[
φ′ (skli)ω>i Ωsklφ (sklj)

]
=

m∑
r=1,r 6=i

−ω2
irEk,l [φ′ (skli) skli] Ek,l [φ (sklj)] , (15)
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(12c) : Ek,l

[
φ′ (skli)ω>i skls

>
klωjφ

′ (sklj)
]

= −ω2
ijEk,l [φ′ (skli) skli] Ek,l [φ′ (sklj) sklj ] , (16)

(12d) : Ek,l

[
φ′′ (skli)ω>i skls

>
klωi

]
Ek,l [φ (sklj)] =

m∑
r=1,r 6=i

2ω2
irEk,l [φ′′ (skli)] Ek,l [φ (sklj)] , (17)

(12e) : Ek,l

[
φ′ (skli)ω>i Ωskl

]
Ek,l [φ (sklj)] =

m∑
r=1,r 6=i

−ω2
irEk,l [φ′ (skli) skli] Ek,l [φ (sklj)] , (18)

(12f) : Ek,l

[
φ′ (skli)ω>i skl

]
Ek,l

[
φ′ (sklj)ω>j skl

]
= 0, (19)

(12g) : Ek

[
El

[
φ′′ (skli)ω>i skls

>
klωi

]
El [φ (sklj)]

]
= ω2

ijEk,l [φ′′ (skli)] Ek

[
El

[
s2klj

]
El [φ (sklj)]

]
+

m∑
r=1,r 6=i,j

2ω2
irEk,l [φ′′ (skli)] Ek,l [φ (sklj)] ,

(20)

(12h) : Ek

[
El

[
φ′ (skli)ω>i Ωskl

]
El [φ (sklj)]

]
=

m∑
r=1,r 6=i

−ω2
irEk,l [φ′ (skli) skli] Ek,l [φ (sklj)] , (21)

(12i) : Ek

[
El

[
φ′(skli)ω>i skl

]
El

[
φ′(sklj)ω>j skl

]]
=−ω2

ijEk[El[skli]El[φ′(skli)]]Ek[El[sklj ]El[φ′(sklj)]]. (22)

Now let us substitute the above results (14)–(22) into (12), the first derivative of H evaluated at
X∗ can be computed as

d2

d ε2
(H ◦ γX∗)(ε)

∣∣∣∣
ε=0

=
m∑

i,j=1,i6=j

ω2
ijκij =

m∑
1≤i<j≤m

ω2
ij (κij + κji) , (23)

where

κij = Ek,l[φ′′(skli)]Ek,l[(sklj)2φ(sklj)] + 2Ek,l[φ′′(skli)]Ek,l[φ(sklj)]

− 2Ek,l[φ′′(skli)]Ek

[
El[(sklj)2]El[φ(sklj)]

]
− Ek,l[φ′(skli)skli]Ek,l[φ′(sklj)sklj ]

+ 2Ek [El[skli]El[φ′(skli)]] Ek [El[sklj ]El[φ′(sklj)]] .

(24)

Without loss of generality, let Ω = (ωij)m
i,j=1 ∈ so(m) and let Ω = (ωij)1≤i<j≤m ∈ Rm(m−1)/2 in

a lexicographic order. Obviously, the quadratic form (23) is simply a sum of pure squares, which
indicates that the Hessian of the contrast function H in (5) at the desired critical point X∗ ∈ O(m),
i.e. the symmetric bilinear form HH(X∗) : TX∗O(m)×TX∗O(m)→ R, is indeed diagonal with respect
to the standard basis of Rm(m−1)/2.

4 Geometric Analysis of Characteristic-Function-Based ICA

Now in this section we examine the CFICA contrast function in the same fashion as above. As a
generalisation of HSIC, the CFICA contrast function [7] is defined as follows

F : SO(m)→ R, F (X) :=
m∏

j=1

Ek,l

[
φ
(
x>j wkl

)]
− 2Ek

 m∏
j=1

El

[
φ
(
x>j wkl

)] . (25)
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Take the first derivative of F , we have

d
d ε

(F ◦ γX)(ε)
∣∣∣∣
ε=0

=
m∑

i=1

Ek,l

[
φ′
(
x>i wkl

)
ξ>i wkl

] m∏
j=1,j 6=i

Ek,l

[
φ
(
x>j wkl

)]

− 2
m∑

i=1

Ek

El

[
φ′
(
x>i wkl

)
ξ>i wkl

] m∏
j=1,j 6=i

El

[
φ
(
x>j wkl

)] . (26)

Again, it still seems to be hardly possible to characterise all critical points of F . Nevertheless, by the
same arguments as before, one can still show that at a correct separation point X∗ ∈ SO(m), the
expression in (26) vanishes, i.e., any correct separation matrix is a critical point of the characteristic
contrast F as in (25).

Now take the second derivative of F , one gets

d2

d ε2
(F ◦ γX)(ε)

∣∣∣∣
ε=0

=
m∑

i=1

Ek,l

[
φ′′
(
x>i wkl

)
ξ>i wklw

>
klξi
] m∏

j=1,j 6=i

Ek,l

[
φ
(
x>j wkl

)]
(27a)

−
m∑

i=1

Ek,l

[
φ′
(
x>i wkl

)
ξ>i ΞX

>wkl

] m∏
j=1,j 6=i

Ek,l

[
φ
(
x>j wkl

)]
(27b)

+
m∑

h,i=1,h6=i

{h,i}∏
j

Ek,l

[
φ′
(
x>j wkl

)
ξ>j wkl

] m∏
j=1,j 6=h,i

Ek,l

[
φ
(
x>j wkl

)]
(27c)

− 2
m∑

i=1

Ek

El

[
φ′′
(
x>i wkl

)
ξ>i wklw

>
klξi
] m∏

j=1,j 6=i

El

[
φ
(
x>j wkl

)] (27d)

+ 2
m∑

i=1

Ek

El

[
φ′
(
x>i wkl

)
ξ>i ΞX

>wkl

] m∏
j=1,j 6=i

El

[
φ
(
x>j wkl

)] (27e)

− 2
m∑

h,i=1,h6=i

Ek

{h,i}∏
j

El

[
φ′
(
x>j wkl

)
ξ>j wkl

] m∏
j=1,j 6=h,i

El

[
φ
(
x>j wkl

)] . (27f)

Let X = X∗. The first term (27a) in the right-hand side of (27) is computed as

m∑
i=1

Ek,l

[
φ′′ (skli)ω>i skls

>
klωi

] m∏
j=1,j 6=i

Ek,l [φ (sklj)]

=
m∑

i,r=1,r 6=i

2ω2
irEk,l [φ′′ (skli)]

m∏
j=1,j 6=i

Ek,l [φ (sklj)] .

(28)
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An even more tedious computation evaluates the expression (27d) at X∗ as follows

m∑
i=1

Ek

El

[
φ′′ (skli)ω>i skls

>
klωi

] m∏
j=1,j 6=i

El [φ (sklj)]


=

m∑
i,r=1,r 6=i

ω2
irEk,l [φ′′ (skli)] Ek

[
El

[
s2klr

]
El [φ (sklr)]

] m∏
j=1,j 6=i,r

Ek,l [φ (sklj)]

+
m∑

i,r,t=1,r 6=t,r,t 6=i

ωirωitEk,l [φ′′ (skli)]
{r,t}∏
j=1

Ek [El [sklj ] El [φ (sklj)]]
m∏

j=1,j 6=i,r,t

Ek,l [φ (sklj)] .

(29)

Thus, the second summand on the right-hand side of (29) is clearly not a sum of pure squares.
Following the same reasoning, an even more tedious computation turns out that the Hessian of H
(5) at a correct separation point X∗ ∈ SO(m) is a dense matrix, in general. In other words, let
Ω = (ωij)m

i,j=1 ∈ so(m) and let Ω = (ωij)1≤i<j≤m ∈ Rm(m−1)/2 in a lexicographic order, the Hessian
of H at X∗ ∈ SO(m) is neither diagonal with respect to the standard basis of Rm(m−1)/2, nor enjoys
another simple structure.

5 Conclusions and Future Work

In this work, we rigorously derive the critical conditions of both the HSIC based ICA contrast and
the CFICA contrast. It turns out that any correct separation matrix is indeed a critical point of both
contrast functions. Further analysis shows that the Hessian of the HSIC based contrast is diagonal
at a correct separation point, whereas this does not generally hold true for CFICA. Therefore our
future work will focus on the development and analysis of both approximate Newton-like methods and
Jacobi-type methods for optimising the HSIC based ICA contrast rather that the CFICA contrast.
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