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In this supplement, we provide details on the multi-label
model and also prove some of the theoretical results in the
main paper.

1. Multi-label models

Let L be the set of all labels that a node can take. We
will denote labels a ∈ L by fractional characters.

The multi-label extension of the directed cooperative cut
energy that is defined in the main paper is

Ψg(x) =
∑
a∈L

Fg(
∑

(i,j)∈g

ψa(xi, xj)), (1)

where the pairwise function ψa is defined as (see also [3,
Sec. 5.4.1])

ψa(xi, xj) =

{
θij if xi = a and xi 6= xj

0 otherwise.
(2)

As before, we introduce group variables hg,a, indexed by
edge groups and labels, because we have one function Fg
for each label. If Fg(a) = min{a, T} is the truncation with
one breakpoint, then we can write

Ψg,a(x) = min
hg,a∈{0,1}

hg,a

 ∑
(i,j)∈g

ψa(xi, xj)

 + (1− hg,a)T.

(3)

If the vector h of variables hg,a is fixed, then the entire en-
ergy becomes a sum of pairwise potentials of the form

ψi,j(xi, xj) =

{
0 if xi = xj

θij(a) + θji(b) if xi = a, xj = b,
(4)

where θij(a) is the weight of ψa(xi, xj) under the current
assignment of hg,a. In the above case, θij(a) = θijhg,a.

We will perform expansion moves [1] with such a poten-
tial. For a given assignment x ∈ Ln, an expansion move

with respect to label a is allowed to change any label of x to
a, but can make no other changes. Formally, define the set

X (x, a) = {y ∈ Ln | yi = xi or yi = a for all 1 ≤ i ≤ n}.
(5)

An expansion move with respect to a label a and the current
labeling x finds

y′ ∈ arg min
y∈X (x,a)

E(y). (6)

A stationary point x′ with respect to all labels is one that
for all labels a ∈ L satisfies x′ ∈ arg miny∈X (x,a)E(y).

For pairwise potentials such as 4, expansion moves can
be computed as the minimum cut in a graph. This proves
Lemma 2 in the main paper:

Lemma 2. The multi-label model can be reduced to a non-
submodular pairwise model analogous to the binary model.
If |L| and |G| are constants, then, with the help of |L||G|
auxiliary variables, we can compute an exact expansion
move in polynomial time.

In the sequel, we will denote the vector of all hg,a vari-
ables by h. We re-state Theorem 1 in the main paper in a
bit more detail:

Theorem 1. Let x∗ ∈ arg minE(x) be an optimal MAP
labeling for a cooperative cut energy composed of terms of
the form (1). For a given assignment h ∈ {0, 1}|G||L| of
the group variables, let x(h) be a stationary point of the
expansion moves with respect to all labels. Then

min
h∈{0,1}|G|

E(x(h)) ≤ 2cE(x∗), (7)

where c = maxa,b∈L,g∈G F
′
a(0)/F ′b(

∑
(i,j)∈g θij) is the ra-

tio of the largest and smallest slopes of F .

Proof. For each h, we find a labeling x(h) that is a station-
ary point with respect to all labels. In the end, we will take
the best of the solutions x(h) that we found. This can be
done via a variant of the graph cut algorithm in [1]. To ease
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notation in the proof, we introduce the notation Eh(x,h)
for the energy function that is a function of h (instead of
minimizing over it as in Equation 3. With this notation,
E(x) = minhEh(x,h).

An adaptation of Theorem 6.6 in [1] implies that

Eh(x(h),h) ≤ 2c min
y∈Ln

Eh(y,h). (8)

The constant c arises since the slopes of F (determined by
the assignment of h) scale the pairwise weights θij , and this
leads to label-sensitive pairwise potentials in the framework
of [1]. Let h∗ be the optimal assignment of h for the optimal
solution x∗, i.e., Eh(x∗,h∗) = E(x∗). Since the bound (8)
holds for all assignments h, we get that

min
h∈{0,1}|G|

E(x(h)) (9)

= min
h∈{0,1}|G|

min
h′∈{0,1}|G|

Eh(x(h),h′) (10)

≤ min
h∈{0,1}|G|

Eh(x(h),h) (11)

≤ Eh(x(h∗),h∗) (12)
≤ 2c min

y∈Ln
Eh(y,h∗) = 2cEh(x∗). (13)

2. Arbitrary monotone concave functions

We consider the energy

E(x) =
∑
i

ψi(xi) +
∑
g∈G

Ψg(x), where (14)

Ψg(x) = Fg(
∑

(i,j)∈Eg

ψij(xi, xj)). (15)

We make the following assumptions:

1. the pairwise potentials are of the form ψij(xi, xj) =
θij |xi − xj |+ ≥ 0 or ψij(xi, xj) = θij |xi − xj | ≥ 0;

2. the functions Fg : R+ → R+ are nonnegative, mono-
tone increasing scalar concave functions that satisfy
Fg(λy) ≤ λFg(y) for all y ≥ 0;

3. the energy E is nonnegative.

4. |G| is constant.

We re-state Lemma 1 from the main paper:

Lemma 1. If the energy (14) satisfies (1)-(4), then there is
an FPTAS for minimizing this energy, i.e., there is an algo-
rithm that runs in time polynomial in 1/ε and n and returns
a solution x with E(x) ≤ (1 + ε)E(x∗), where x∗ is the
optimizing MAP assignment.

Proof. We will treat the unary potentials as an additional
edge group (this is the group of terminal edges), and set
k = |G| + 1. Let M be such that the energy functions
takes values between 1/M and M . We create a set of
slopes A = {α = rw | r ∈ R, w ∈ W}, where R =

{20, 21, . . . , 2dlog2Me} and W = {1, 2, . . . d 2(k−1)ε e}. We
will essentially represent Ψg by a piecewise linear function
with pieces

Ψ̂g(x;α) =
∑

(i,j)∈g

αψij(xi, xj) (16)

with slopes α ∈ A.
To see how such a function connects to an approximation

by functions Ψ′(x) = min{β
∑

(i,j)∈g ψij(xi, xj), T}, ob-
serve that fixing h in the algorithm in the main paper corre-
sponds to assigning a “slope”

∑
` β`h` to each edge group.

We find a minimizer for each slope, and, among those min-
imizers, select the one minimizing the actual energy. We
will see that doing the same for the slopes α will suffice.
The pieces (16) can be written in terms of the functions
Ψ′(x) = min{β

∑
(i,j)∈g ψij(xi, xj), T}. To do so, we

sort the slopes in A in increasing order, and number them
α1, α2, . . .. The corresponding βi are then β1 = α1 and
βi = αi − αi−1 (i > 1), so that αj =

∑
i≤j βi. (Those βi

are only needed for the conceptual connection.)
Recall that a particular assignment h in the algorithm in

the main paper corresponds to assigning a slope αg ∈ A to
each group. We hence imitate the algorithm by computing
the minimizers x(a) for all a ∈ AG′

and for

Ê(x;a) =
∑
g∈G′

Ψ̂g(x;αg), (17)

where G′ is the extended set of edge groups that includes
the extra group for the unary potentials. We then evaluate
the energy E at each assignment x(a), and choose the best
among those assignments.

To analyze this strategy, we will take the cut viewpoint
and draw connections to multi-objective optimization to be
able to use ideas from [5]. For the cut viewpoint, we intro-
duce binary variables yij = |xi − xj |. Each assignment x
corresponds to a cut y and vice versa.

We can write the energy as

E(x) =
∑
g∈G′

Fg(
∑

(i,j)∈E

θgijyij), (18)

where θ(g)ij = 0 if (i, j) /∈ G′. Written in this form, the
energy can be viewed as a function combining k linear ob-
jectives θ(g)y =

∑
ij θ

(g)
ij yij into one objective by using a

concave function F (θ(1)y, . . . , θ(k)y) =
∑
g Fg(θ

(g)y).
A theorem in [2] says that the set {x(a) | a ∈ AG′} is

an ε-approximate convex Pareto-optimal front correspond-
ing to the k linear functions θ(g)y for the constraint that



y is the indicator vector of a cut. An approximate con-
vex Pareto-optimal set Cε is a set of solutions such that for
each feasible1 y ∈ [0, 1]E there exists an y′ ∈ Cε such that
θ(g)y′ ≤ θ(g)y for all g ∈ G′.

Lemma 3.2 in [5] states that the convex hull of Cε con-
tains a (1 + ε)-optimal point. Since our energy is concave,
the minimum over the convex hull is attained at a corner
point, and therefore the search over all corner points (i.e.
over the set Cε) will yield a (1 + ε)-approximate solution.

Finally, the cardinality |A| (which determines the num-
ber of optimization problems to solve) is polynomial in 1/ε
and n.

3. Details on experiments
Here, we provide some more details on how the poten-

tials in the experiments were computed.
The unary potentials are computed by fitting a Gaussian

mixture model with 5 components to pixels of seed regions.
We added user scribbles to the MSRC data for the multi-
label experiments to be compatible with the binary label
experiments.

We use an 8-neighbor graph structure and contrast-
dependent Potts pairwise potentials θij = 2.5 +
47.5 exp(−0.5‖Ii − Ij‖2/σ), where σ is the mean of the
color gradients in the image.

As in [4], the edge groups were defined by defining a 3-
dimensional feature vector φ(i, j) = Ii − Ij for each edge
(i, j) using the pixel RGB values Ii. We then cluster the
edges using these features (using k-means), and each cluster
becomes a group g ∈ G. The discount functions F were the
same in the binary and multi-label case:

Ψg(x) = (19)

λmin

 ∑
ij∈Eg

θij(xi − xj)+,
∑
ij∈Eg

αθij(xi − xj)+ + θg


For the multi-label functions, we adapt this function ac-
cording to Section 1 in this supplement and make it label-
dependent.
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