Submodularity

in Machine Learning
- New Directions -




Network Inference

lipstick on a pig our entire economy
is in danger
e to help me
effort to protect the american decent person and a person
economy must not fajl that you do not have to be

scared of as president of
the united states

the most serious
financial crisis since
the great depression

this is something that all of us will
swallow hard and go forward with

i think when you sj
who is the real the wealth around
barack obama good for everybod

fundamentals of
our economy are
strong

president's
job to deal
with more
than one

i am not
president
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with terrorists
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How learn who influences whom?




- Summarizing Documents

How select representative sentences?



MAP inference

Building

Grass

max p(x | z)

How find the MAP labeling in discrete graphical models
efficiently?




What’s common?

¢ Formalization:

Optimize a set function F(S) under constraints
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¢ solve optimization problems with strong guarantees
¢ solve some learning problems



Outline

¢ What is submodularity? many new 3
results! ©
» Optimization Part |
¢ Minimization
Break
¢ Maximization
- Part |l

¢ Learning
¢ Learning for Optimization: new settings




Outline

many new |

. Ty
¢ What is submodularity- results! ©

¢ Optimization - Part|

¢ Minimization: new algorithms, constraints

e Maximization: new algorithms (unconstrained)

e Learning - Partll

e Learning for Optimization: new settings

... and many new applications!



submodularity.org
slides, links, references, workshops, ...



- Example: placing sensors
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Place sensors to monitor temperature



Set functions

o finite groundset V ={1,2,...,n}

o1 =0l /

o set function F:2Y 5 R 5 --’%@%, w?@'
% =1 8 wiln
TP

o willassume F(0)=0 (wlog)

» assume black box that can evaluate F'(A)
forany ACV
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Example: placing sensors

Utility F'(A) of having sensors at subset A of all locations

T_LIJ o‘%@g g :
ST\ @ &
i 88 N | @3 g@@ = =

A={1,2,3}: Very informative A={1,4,5}: Redundant info
High value F(A) Low value F(A)
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Marginal gain
» Given set function F:2"¥ — R

» Marginal gain: Ap(s|A)=F({stUA)— F(A)

New sensor S
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Decreasing gains: submodularity
pIacementA={1,2}
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Equivalent characterizations

¢ Diminishing gains: forallA C B

®
‘*5 +'s

F(AUs)— F(A) > F(BUs)— F(B)

» Union-Intersection: forall A, BCV

F(A) + F(B) “ B) + F(AN B)

14



Questions

How do | prove my problem is
submodular?

Why is submodularity useful?
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place sensors\

in building

&

Node predicts
values of positio

ns

with some radius

/

Example: Set cover

goal: cover floorplan W|th discs
Possible ; | L

Iocatlons\g
@

ACV: F(A) =

“area covered by sensors placed at A”

Formally:
Finite set W, collection of n subsets S; C W
For ACV define — -
F(4) ’ UiGA Sz‘
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Set cover is submodular
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More complex model for sensing

@r h Y.: temperature

at location s

H | BO

X,: sensor value
at location s

X, =Y, + noise

Joint probability distribution

P(Xy, oo X Yoy Y) = P(YpY,) P(Xpyo X | Vg Y,)

n
H_j\ d
Y

Prior Likelihood
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Example: Sensor placement

Utility of having sensors at subset A of all locations

F(A) = H(Y) — H(Y | X,)

el w
Uncertainty Uncertainty
about temperature Y about temperature Y
before sensing after sensing

L uJ @% 11
X &
? L:oo &
2o g 88 i

A={1,2,3}: High value F(A) A={1,4,5}: Low value F(A)



Submodularity of Information Gain

Y Y Xyq, oo, X, discrete RVs
F(A) = I(Y; XA) = H(Y)-H(Y | XA)

e F(A)is NOT always submodular

If X. are all conditionally independent given'Y,
then F(A) is submodular! [Krause & Guestrin "05]

Proof:
“information never hurts”
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Example: costs

breakfast?? + price of items

—

ground set V'

» COst:
g time to reach shop / Market 3

/ Market 2

1S

21




Example: costs

a Y C.OSt: Market 3
time to shop

breakfast?? + price of items

F( T GQ) = cost( T ) + cost(ﬁ,&)

=t,+1 + t, +2

#tishops + #items Market 2

Market 1

submodular?
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| Shared fixed costs

Oile
\\ A | A) =1+t

marginal cost: #new shops + #new items

decreasing =» cost is submodular!

e shops: shared fixed cost
e economies of scale
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Another example: Cut functions

/\

" J

3 v={a,b,c,d,e,f,g,h}

200
Boas

3

Cut function is submodular!
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Why are cut functions submodular?

S Fab(S)
ANB |{ 0

{a} W

{b} W

{a,b} 0

Submodularif w20l

Cut function in subgraph {i,j}

=» Submodular!
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Closedness properties

Fy,....,F,, submodular functions on V and A,...,.A, >0
Then: F(A) = > A F.(A) is submodular

Submodularity closed under nonnegative linear
combinations!

Extremely useful fact:

e F4(A) submodular = Y, P(8) Fy(A) submodular!
e Multicriterion optimization
¢ A basic proof technique! ©
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Other closedness properties

o Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular
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Other closedness properties

e Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular

o Conditioning: F(S) submodular on V, W subset of V
Then F'(S)=F(SUW) issubmodular
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Other closedness properties

o Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular

o Conditioning: F(S) submodular on V, W subset of V
Then F'(S)=F(SUW) issubmodular

o Reflection: F(S) submodular on V

Then F'(S)=F(V\S) is submodular

29



Submodularity ...

discrete convexity ....

V'

[\ ... Or concavity?
2
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Convex aspects

@ convex extension
¢ duality
¢ efficient minimization

But this is only
half of the story...
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Concave aspects

¢ submodularity:

ACB, s¢ B:
F(AUSs) — F(A)
‘ +° s
@ concavity:
a<b s>0:

|V

fla+s) = fla)

F(A) “intuitively”
>

| A

1\
i
Ny
-
N
|
i
=
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Submodularity and concavity

ssuppose ¢g:N—R and F(A)=g(4))

F(A) submodular ifandonlyif ... g isconcave

g(|Al)
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Maximum of submodular functions

o Fy(A), F5(A) submodular.  What about

F(A) =max{ Fi(A), Fx(A)} ?

F(A) = max(Fy(A),F(A))

>
. Al
max(F,F,) not submodular in general!
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Minimum of submodular functions

Well, maybe F(A) = min(F,(A),F,(A)) instead?

Fi(A) | Fy(A)
{} 0 0
{a} 1 0
{b} 0 1
{a,b} |1 1

F({b}) - F({})=0

<

F({a,b}) - F{a})=1

min(F,F,) not submodular in general!
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Two faces of submodular functions

Convex aspects
=2 minimization!

Concave aspects
=>» maximization!
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What to do with submodular functions

N

Learning

/
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What to do with submodular functions

N

Learning

4

Minimization and maximization not the same??
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‘Submodular minimization

-

clustering structured sparsity

HllIl F(S) regularization
S CYa

MAP inference minimum cut
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Submodular minimization

min F'(.5)
SCV

=» submodularity and convexity

40



Set functions and energy functions

any set function
with|V | =n

F:2V 3R

@EE®|>

... i1s a function on
binary vectors!

F:{0,1}" 5> R

I — €A

a
b
C
d

olo|r |~

pseudo-boolean function

41



Submodularity and convexity

extension
> f:[0,1]"

F {O\}”%Rﬁ

f(r) = max x-y
yePr

YA

Lovasz extension

\_ convex Lovasz, 1982/

¢ minimum of fis a minimum of F

¢ submodular minimization as convex minimization:
polynomial time! Grotschel, Lovasz, Schrijver 1981
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Submodularity and convexity

F:{0,1}" - R

extension

> f:10,1]" - R

-

\_

Lovasz extension

convex

Lovasz, 1989

~

@ minimum of fis a minimum of F

e submodular minimization as convex minimization:
polynomial time!
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The submodular polyhedron P

Pr={reR":2(A) < F(A) forall AC V} Example: V = {a,b}
\ A |FA)

(A) =) = 0 o

icA {a} -1

{b} 2

£ Xep) {a,b} |0

2T x({b}) < F{b})
Pe 1
+~——Xx({a,b}) = F({a,b})
2 1] 0] 1 Xa
" ((ad) < Fiiad)




Evaluating the Lovasz extension

Ppr={xeR":2(A) < F(A) forall ACV}

Linear maximization over P, y* 4
X{b}
r) = max - 2
flz) = max -y L/
Exponentially many constraints!!! ®
Computable in O(n log n) time © 2 0 f
[Edmonds ‘70] X{a}

greedy algorithm:

* sort X

* order defines sets S; = {1,...,i}
* y; = F(S;) — F(Si-1)

 Subgradient
 Separation oracle
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Lovasz extension: example

f(x)

- )

VF(b.)--'- e A F(A)

0.8
T F(a,b) 1 {}
0.6- @ | {a}

0.4- {b}

/ {a’b}
0.2 |
ol |

1




Submodular minimization

min F(A)
/ ACV \
minimize convex combinatorial
extension algorithms
o ellipsoid algorithm o Fulkerson prize
[Grétschel et al. "81] lwata, Fujishige, Fleischer ‘01 &
Schrijver 00

¢ subgradient method,

smoothing [stobbe & k 10
& [Stobbe & Krause "10] » state of the art:

¢ duality: minimum norm O(n*T + n’logM)  [iwata’03]

point algorithm O(n® + n°T) (Orlin 09]
[Fujishige & Isotani’11]

T = time for evaluating F 48



The minimum-norm-point algorithm

Example: V = {a,b}
tﬁgﬂ@)@hﬂem dual: minimum norm problem

4 . .|0 «
ariminf (z) 4 5z U = ayg i
%1?}[0715]”2
{ab} |0 Base polytope B-
u({alb})=F {alb}) A

> X A* = {i | u*(i) < 0)

2 L
u* minimizes F:
[-1,1] 1 A* = arg min F(A)
ACV
d Fujishige ‘91, Fujishige & Isotani ‘11

-2 -1 0 1
Xta)

49



The minimum-norm-point algorithm

/
. * . 1 2
1. find (w = argmin 51 ul

2. AT ={i|u() <0} '\
\

can we solve this??

u({a,b})=F({a,b}) , es!
1 X(by Y ©
5 recall: can solve
u* linear optimization over P,
-1,1] 1 similar: Qphmjkzatlon over B,
=» can find u
B 0 f (Frank-Wolfe algorithm)
X{a} Fujishige ‘91, Fujishige & Isotani ‘11
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Empirical comparison

FW —— 7 |
HYBRID ---%-- . Cut functions
[ SFM3 k- i ‘

= 1000 | LBXe o ,,fi;;:VCfmb.";atO”a' from DIMACS

=< | = x S algorithms Challenge

8 = 100 | o

ao | &

(@) 8 I | o

? E 10 €

Q .

Bl . ]

Q| < 1F Minimum norm point-

c . |

o | < algorithm

| x 0.1

Q

=

@)

i 0.01 ' >

\ 4 64 128 256 512 1024

Problem size (log-scale!)

Minimum norm point algorithm: usually orders of magnitude faster

[Fujishige & Isotani '11]
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Applications?

52



Example I: Sparsity

|
|

wideband
signal
samples

Many natural signals sparse in suitable basis.

k<d

large

| wavelet

coefficients

k<<d
large
Gabor (TF)
coefficients

Can exploit for learning/regularization/compressive sensing...

53



Sparse reconstruction
min |y — Mz|* +X\Q(x)

explain y with few columns
of M: few x;

discrete regularization on support S of x

Q) =llzllo =15

relax to convex envelope

Az) = [zl

in nature: sparsity pattern often not random...

54



Structured sparsity

Incorporate tree preference in regularizer?

Set function:

X F(T) < F(S)
if Tis a tree and S not
|S] =|T]

F(S) = U ancestors(s)

seS

55



Structured sparsity

Incorporate tree preference in regularizer?

T

Set function:

F(T) < F(S)

If Tis a tree and S not,

N

7]

= U ancestors(s)

seS

F(T)=3

56



Structured sparsity

Incorporate tree preference in regularizer?

Set function:

F(T) < F(S)
If Tis a tree and S not,
NI

T/ MY\ ‘I I i /\‘

Function F is ...
submodular! ©

F(T)=3

57



Sparsity

min ||y — Mz||* +XQ(z)
x
e explain y with few e prior knowledge: patterns
columns of M: few x; . of nonzeros

discrete regularization on support S of x

e submodular function
Q(z) = [lzllo =S Q(z) = F(S)

relax to convex envelope
=>» Lovasz extension
Qz) = |lz[l i Q(z) = F(|z])

e Optimization: submodular minimization

[Bach 10]
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Further connections: Dictionary Selection

min ||y — Maz||* +2Q(x)
Xr
Where does the dictionary M come from?

Want to learn it from data:  {¥1,...,Yn} C R?

Selecting a dictionary with near-max. variance reduction
< Maximization of approximately submodular function
[Krause & Cevher ‘10; Das & Kempe '11]
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Example: MAP inference

P(x|z) xexp(—F(x;z))
/
labels  pixel
values N min E(X; Z)

xe{0,1}"

60



Example: MAP inference

Recall: equivalence

N fuquggr] %r} b(i)rgaé\{{\f)e(cloE(X; Z))set function A

YY" Eleq:2) = F(A)
®
®
@

if I is submodular (atéractive pl@ﬂ'éht;ibali}z(txéﬂ)
MAP inference = submodula?‘ﬁ'ﬁgirlrjﬁzation!

polynomial-time

OOI—\I
O 0o O

61



Special cases

Minimizing general submodular functions:
poly-time, but not very scalable

Special structure =» faster algorithms

¢ Symmetric functions
¢ Graph cuts
o Concave functions

¢ Sums of functions with bounded support

o ...

62



MAP inference

if each F;; is submodular:
E;;(1,0)+ E;;(0,1) > FE;;(0,0) + E;;(1,1)
@ b @b

then F' is a graph cut function.

MAP inference = Minimum cut: fast ©

63



Pairwise is not enough...

Building

color + pairwise color + pairwise +

E(xr) =
ZEZ(%) + ZEij(xiaxj)

Pixels in one tile should
have the same label

[Kohli et al."09] 64



Enforcing label consistency

Pixels in a superpixel should have the same label

E(x) 4
f}/maX --/ \

T >
o000 000 000
o000 @00 Q00
o000 @00 Q00

concave function of cardinality = submodular ©

> 2 arguments: Graph cut ??
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Higher-order functions as graph cuts?

Zi EZ(CI?Z) -+ Zij Ez-j(az?;,a;j) + Zc EC(ZCC)

General strategy:
reduce to pairwise case by adding auxiliary variables

» works well for some particular E.(z.)

[Billionet & Minoux 85, Freedman & Drineas "05, Zivny & Jeavons “10,...]

¢ necessary conditions complex and
not all submodular functions equal such graph cuts [Zivny et al.'09]
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Fast approximate minimization

¢ Not all submodular functions can be optimized as graph cuts
o Even if they can: possibly many extra nodes in the graph ®

Other Opl‘iOﬂS? speech corpus selection [Lin&Bilmes "11]
¢ minimum norm algorithm 10* | | .
minimum norm point algorithm , -
¢ other special cases: =~ O(n%) \
e.g. parametric maxflow 10°
o . iterative e’
[Fujishige & lwata 99] ? approximate algorithm ,«*
o .»* parametric maxflow
) €10 | . O(n?) f
Approximate! © = \ ’
Every submodular function - >
can be approximated by g
] < L I
a series of graph cut © e o

functions [legelka, Lin & Bilmes ‘11]
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Fast approximate minimization

¢ Not all submodular functions can be

optimized as graph cuts

o Even if they can: possibly many extra nodes in the graph ®

Approximate! © o
decompose: )
10
* represent as much as —
possible exactly by a graph ° :
* rest: approximate iteratively £ '°
by changing edge weights
10

solve a series of cut problems

speech corpus selection [Lin&Bilmes "11]

o . . . L4
minimum norm point algorithm , -
L4

zO(n4) '&
\ "
"
"

iterative .*
approximate algorithm ,°

0(n2) \

2

4 .
.*  parametric maxflow

10 10
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Other special cases

¢ Symmetric: F(S)=F(V\S)
¢ Queyranne’s algorithm: O(n3) [Queyranne, 1998]
» Concave of modular: E(S) = Zgi( Zw(S))
7 SES

[Stobbe & Krause 10, Kohli et al, "'09]

¢ Sum of submodular functions, each bounded support

[Kolmogorov "12]
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Submodular minimization

Learni@

Online/
adaptive
optim.
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Submodular minimization

» unconstrained: min F(A) st. ACV
¢ nontrivial algorithms, special case:
: , balanced
polynomial time ot

» constraints: e.g. min F(A) s.t. |A| >k

o limited cases doable: o
odd/even cardinality, inclusion/exclusion of a set

General case: NP hard
* hard to approximate within polynomial factors!
e But: special cases often still work well

[Lower bounds: Goel et al.’09, Iwata & Nagano 09, Jegelka & Bilmes "11]

72



Constraints

minimum...
matching path spanning tree

F = ¢

ground set: edges in a graph

' in F'(S
min eesw(e) T— i (S)

73



Recall: MAP and cuts

binary labeling: o = €y
pairwise random field:

FE(x) = Cut(A)

What’s the problem?

minimum cut: prefer

short cut = short object boundary
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MAP and cuts

B Minimum cut B

Minimum cooperative cut
\\ ° ’,v _k\‘i\:\\’

\ ':
implicit criterion: ‘ new criterion:
short cut = boundary may be long if the
short boundary boundary is homogeneous
minimize minimize

sum of edge weights submodular function of edges

F(C) =) w(e) F(C)
ecC /

not a sum of
edge weights!
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Reward co-occurrence of edges

sum of weights:
use few edges

submodular cost function:

m—  use few groups S, of edges

F(C)=)  F(CNS)

25 edges, 1 type
7 edges, 4 types
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Results

Graph cut

Cooperative cut

77



Optimization?

¢ not a standard graph cut

» MAP viewpoint:
global, non-submodular energy function
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¥

Constrained optimization

matching path spanning tree
min F'(.5)
approximate optimization

e ~

convex relaxation minimize surrogate function

approximation bounds dependent on F:
polynomial — constant — FPTAS
O(n) (1+¢€)

[Goel et al."09, Iwata & Nagano ‘09, Goemans et al. ‘09, Jegelka & Bilmes "11, lyer et al. ICML "13,

Kohli et al "13...]
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Efficient constrained optimization

minimize a series of surrogate functions

1. compute linear upper bound ﬁZ(S’) = F(SY)
=D _w'(S)
ecS
2. Solve easy sum-of-weights problem:

S = arg %IEIEIF (S) and repeat.

spanning
tree

cut e efficient
@ * only need to solve sum-of-weights problems '@
* unifying viewpoint of submodular min and max path
matching see Wed best student paper talk @

% [Jegelka & Bilmes "11, lyer et al. ICML "13]
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Submodular min in practice

¢ Does a special algorithm apply?

e symmetric function? graph cut? .... approximately?

o Continuous methods: convexity
¢ minimum norm point algorithm

o Other technigues [not addressed here]
e LP, column generation, ...

o Combinatorial algorithms: relatively high complexity

¢ Constraints: hard
e majorize-minimize or relaxation
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Outline

¢ What is submodularity?

¢ Optimization fﬁ fﬂ - Part|
o Minimize costs @ > d
Break!
¢ Maximize utility
- Part I

¢ Learning

¢ Learning for Optimization: new settings

see you in half an hour ©
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