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Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et
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   +	
  	
  	
  	
  s	
   B	
   +	
  	
  	
  	
  s	
  

F (A [ s)� F (A) � F (B [ s)� F (B)
A ✓ B, s /2 B :

a  b, s > 0 :

|A| 

F(A) “intuitively” 

1

s

⇣
f(a+ s)� f(a)

⌘
� 1

s

⇣
f(b+ s)� f(b)

⌘
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Submodularity	
  and	
  concavity	
  
! suppose	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

g : N ! R F (A) = g(|A|)

g(|A|)

|A|

F (A) submodular	
  	
  	
  	
  	
  	
  if	
  and	
  only	
  if	
  	
  	
  …	
   g is	
  concave	
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Maximum	
  of	
  submodular	
  func9ons	
  
! 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  submodular. 	
  	
  	
  	
  	
  What	
  about	
  	
  
	
  

	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  ?	
  

F1(A), F2(A)

F (A) = max{F1(A), F2(A) }

|A| 

F2(A) 
F1(A) 

F(A) = max(F1(A),F2(A)) 

max(F1,F2)	
  not	
  submodular	
  in	
  general!	
  
34	
  



Minimum	
  of	
  submodular	
  func9ons	
  
	
  Well,	
  maybe	
  F(A)	
  =	
  min(F1(A),F2(A))	
  instead?	
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F1(A)	
   F2(A)	
   F(A)	
  
{} 0	
   0	
   0	
  
{a}	
   1	
   0	
   0	
  
{b}	
   0	
   1	
   0	
  
{a,b}	
   1	
   1	
   1	
  

F({b}) – F({})=0 

F({a,b}) – F({a})=1 
< 

min(F1,F2)	
  not	
  submodular	
  in	
  general!	
  



Two	
  faces	
  of	
  submodular	
  func9ons	
  

! Convex	
  aspects	
  
! Useful	
  for	
  minimiza9on	
  
! Convex	
  extension	
  

! Concave	
  aspects	
  
! Useful	
  for	
  maximiza9on	
  
! Mul9linear	
  extension	
  

! Not	
  closed	
  under	
  	
  
minimum	
  and	
  maximum	
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Convex	
  aspects	
  
èminimiza9on!	
  

Concave	
  aspects	
  
èmaximiza9on!	
  



What	
  to	
  do	
  with	
  submodular	
  func9ons	
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Op9miza9on	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Minimiza9on	
  

Maximiza9on	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Learning	
  
	
  
	
  
	
  
	
  
	
  

Online/	
  
adap9ve	
  
op9m.	
  



What	
  to	
  do	
  with	
  submodular	
  func9ons	
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Op9miza9on	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Minimiza9on	
  

Maximiza9on	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Learning	
  
	
  
	
  
	
  
	
  
	
  

Online/	
  
adap9ve	
  
op9m.	
  

Minimiza9on	
  and	
  maximiza9on	
  not	
  the	
  same??	
  	
  



Submodular	
  minimiza9on	
  

structured	
  sparsity	
  
regulariza9on	
  

clustering	
  

min
S✓V

F (S)

MAP	
  inference	
  
39	
  

minimum	
  cut	
  

t	
  s	
  



Submodular	
  minimiza9on	
  

min
S✓V

F (S)

è	
  	
  submodularity	
  and	
  convexity	
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Set	
  func9ons	
  and	
  energy	
  func9ons	
  
any	
  set	
  func9on	
  

	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
…	
  is	
  a	
  func9on	
  on	
  	
  
	
  	
  binary	
  vectors!	
  

	
  
F : 2V ! R F : {0, 1}n ! R

|V | = n

a	
  

b	
  

d	
  

c	
  

A	
  

1	
  
1	
  
0	
  
0	
  

=̂
a	
  
b	
  
c	
  
d	
  

x = eA
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pseudo-­‐boolean	
  func9on	
  



Submodularity	
  and	
  convexity	
  

	
  
! minimum	
  of	
  f	
  is	
  a	
  minimum	
  of	
  F	
  
! submodular	
  minimiza9on	
  	
  as	
  	
  convex	
  minimiza9on:	
  
polynomial	
  9me! 	
   	
  Grötschel,	
  Lovász,	
  Schrijver	
  1981	
  

F : {0, 1}n ! R

extension	
  
f : [0, 1]n ! R

convex	
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Lovász	
  extension	
  

Lovász,	
  1982	
  

f(x) = max

y2PF

x · y



f(x) = max

y2PF

x · y

Submodularity	
  and	
  convexity	
  

	
  
! minimum	
  of	
  f	
  is	
  a	
  minimum	
  of	
  F	
  
! submodular	
  minimiza9on	
  	
  as	
  	
  convex	
  minimiza9on:	
  
polynomial	
  9me!	
  

F : {0, 1}n ! R
extension	
  
f : [0, 1]n ! R

convex	
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Lovász	
  extension	
  

Lovász,	
  1982	
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The	
  submodular	
  polyhedron	
  PF	
  
Example:	
  V	
  =	
  {a,b}	
  

x({a}) ≤ F({a}) 

x({b}) ≤ F({b}) 

x({a,b}) ≤ F({a,b}) 
PF 

-­‐1	
   x{a} 

x{b} 

0	
   1	
  

1	
  

2	
  

-2 

A	
   F(A)	
  
{} 0	
  
{a}	
   -­‐1	
  
{b}	
   2	
  
{a,b}	
   0	
  

PF = {x 2 Rn
: x(A)  F (A) for all A ✓ V }

x(A) =
X

i2A

xi



Evalua9ng	
  the	
  Lovász	
  extension	
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-­‐1	
  
x{a} 

x{b} 

0	
   1	
  

1	
  
2	
  

-2 

Linear	
  maximiza9on	
  over	
  PF	
  
	
  
	
  
	
  
	
  

Exponen9ally	
  many	
  constraints!!!	
  L	
  
Computable	
  in	
  O(n	
  log	
  n)	
  9me	
  J	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
   	
  [Edmonds	
  ‘70]	
  

y*	
  

	
  
•  Subgradient	
  
•  Separa9on	
  oracle	
  

x	
  

PF = {x 2 Rn
: x(A)  F (A) for all A ✓ V }

f(x) = max

y2PF

x · y

greedy	
  algorithm:	
  
•  sort	
  x	
  
•  order	
  defines	
  sets	
  
•  	
  	
  

Si = {1, . . . , i}
yi = F (Si)� F (Si�1)



Lovász	
  extension:	
  example	
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0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

A	
   F(A)	
  
{} 0	
  
{a}	
   1	
  
{b}	
   .8	
  
{a,b}	
   .2	
  

F(a)	
  
F(b)	
  

F(a,b)	
  

F({})	
  



Submodular	
  minimiza9on	
  

combinatorial	
  
algorithms	
  

	
  

! Fulkerson	
  prize	
  
Iwata,	
  Fujishige,	
  Fleischer	
  ‘01	
  &	
  
Schrijver	
  ’00	
  
	
  

! state	
  of	
  the	
  art:	
  
O(n4T	
  +	
  n5logM)	
  	
  	
  	
  	
  	
  	
  [Iwata	
  ’03]	
  
O(n6	
  +	
  n5T) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Orlin	
  ’09]	
  

min
A✓V

F (A)

minimize	
  convex	
  
extension	
  

	
  

! ellipsoid	
  algorithm	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Grötschel	
  et	
  al.	
  `81]	
  

! subgradient	
  method,	
  
smoothing	
  [Stobbe	
  &	
  Krause	
  `10]	
  

! duality:	
  minimum	
  norm	
  
point	
  algorithm	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Fujishige	
  &	
  Isotani	
  ’11]	
  

T	
  =	
  9me	
  for	
  evalua9ng	
  F	
   48	
  



-­‐1	
  
x{a} 

x{b} 

0	
   1	
  

1	
  

2	
  

-­‐2	
  

min
x

f(x) + 1
2kxk

2min
x2[0,1]n

f(x)

regularized	
  problem	
  Lovász	
  extension	
  

A⇤ = arg min
A✓V

F (A)

minimizes	
  F:	
  

A⇤ = {i | u⇤(i)  0}

Fujishige	
  ‘91,	
  Fujishige	
  &	
  Isotani	
  ‘11	
  	
  

[-­‐1,1]	
  

u({a,b})=F({a,b}) 

u* 

Base polytope BF 

Example:	
  V	
  =	
  {a,b}	
  
A	
   F(A)	
  
{} 0	
  
{a}	
   -­‐1	
  
{b}	
   2	
  
{a,b}	
   0	
  

min
u2BF

1
2kuk

2

The	
  minimum-­‐norm-­‐point	
  algorithm	
  
dual:	
  minimum	
  norm	
  problem	
  

u⇤ = arg
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1.  find	
  

2.  	
  	
  A⇤ = {i | u⇤(i)  0}

min
u2BF

1
2kuk

2u⇤ = arg

can	
  we	
  solve	
  this??	
  
yes!	
  	
  J 	
  	
  
recall:	
  can	
  solve	
  	
  
linear	
  op9miza9on	
  over	
  PF	
  
similar:	
  op9miza9on	
  over	
  BF	
  
è	
  can	
  find	
  	
  
	
  	
  	
  	
  	
  	
  (Frank-­‐Wolfe	
  algorithm)	
  

u⇤

The	
  minimum-­‐norm-­‐point	
  algorithm	
  

-­‐1	
  
x{a} 

x{b} 

0	
   1	
  

1	
  

2	
  

-2 

[-­‐1,1]	
  

u({a,b})=F({a,b}) 

u* 

Fujishige	
  ‘91,	
  Fujishige	
  &	
  Isotani	
  ‘11	
  
50	
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Empirical	
  comparison	
  

	
  Minimum	
  norm	
  point	
  algorithm:	
  usually	
  orders	
  of	
  magnitude	
  faster	
  

Cut functions  
from DIMACS  
Challenge 

Ru
nn

in
g	
  
9m

e	
  
(s
ec
on

ds
)	
  

Lo
w
er
	
  is
	
  b
e�

er
	
  (l
og
-­‐s
ca
le
!)	
  

Problem	
  size	
  (log-­‐scale!)	
  512	
   1024	
  256	
  128	
  64	
  

Minimum norm point  
algorithm 

[Fujishige	
  &	
  Isotani	
  ’11]	
  

combinatorial	
  
algorithms	
  



Applica9ons?	
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Example	
  I:	
  Sparsity	
  

pixels	
   large	
  
wavelet	
  
coefficients	
  

wideband	
  
signal	
  
samples	
  

large	
  
Gabor	
  (TF)	
  
coefficients	
  

9me	
  

fr
eq

ue
nc
y	
  

Many	
  natural	
  signals	
  sparse	
  in	
  suitable	
  basis.	
  
Can	
  exploit	
  for	
  learning/regulariza9on/compressive	
  sensing...	
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Sparse	
  reconstruc9on	
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min
x

⇥y �Mx⇥2 +�⌦(x)

⌦(x) = kxk0 = |S|

⌦(x) = kxk1

•  explain	
  y	
  with	
  few	
  columns	
  
of	
  M:	
  few	
  xi	
  

discrete	
  regulariza9on	
  on	
  support	
  S	
  of	
  x	
  

relax	
  to	
  convex	
  envelope	
  

in	
  nature:	
  sparsity	
  pa�ern	
  o�en	
  not	
  random…	
  

subset	
  
selec9on:	
  
S	
  =	
  {1,3,4,7}	
  



F (T ) < F (S)S	
  

Structured	
  sparsity	
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x	
  

m3	
  

m2	
  

m4	
  

m5	
  

m7	
  m6	
  

m1	
  m1	
  

m2	
  

m3	
   m4	
   m6	
   m7	
  

Incorporate	
  tree	
  preference	
  in	
  regularizer?	
  

Set	
  func9on:	
  	
  
	
  
if	
  T	
  is	
  a	
  tree	
  and	
  S	
  not	
  
|S|	
  =	
  |T|	
  

F (S) =

�����
⇥

s�S

ancestors(s)

�����



F (T ) < F (S)S	
  

Structured	
  sparsity	
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x	
  

m3	
  

m2	
  

m4	
  

m5	
  

m7	
  m6	
  

m1	
  m1	
  

m2	
  

m3	
  

Incorporate	
  tree	
  preference	
  in	
  regularizer?	
  

Set	
  func9on:	
  	
  
	
  
If	
  T	
  is	
  a	
  tree	
  and	
  S	
  not,	
  
|S|	
  =	
  |T|	
  

F (S) =

�����
⇥

s�S

ancestors(s)

�����

F (T ) = 3

F (S) = 6



x	
  

m3	
  

m2	
  

m4	
  

m5	
  

m7	
  m6	
  

m1	
  

m7	
  m6	
  m4	
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F (T ) = 3

F (S) = 6

Set	
  func9on:	
  	
  
	
  
If	
  T	
  is	
  a	
  tree	
  and	
  S	
  not,	
  
|S|	
  =	
  |T|	
  

F (S) =

�����
⇥

s�S

ancestors(s)

�����

Structured	
  sparsity	
  

Incorporate	
  tree	
  preference	
  in	
  regularizer?	
  

F (T ) < F (S)S	
  

F (S)S	
  

Func9on	
  	
  F	
  	
  is	
  …	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  submodular!	
  	
  J	
  



Sparsity	
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min
x

⇥y �Mx⇥2

•  Op9miza9on:	
  submodular	
  minimiza9on	
  

+�⌦(x)

⌦(x) = kxk0 = |S|
⌦(x) = F (S)

⌦(x) = f(|x|)⌦(x) = kxk1

[Bach`10]	
  

•  explain	
  y	
  with	
  few	
  
columns	
  of	
  M:	
  few	
  xi	
  

•  prior	
  knowledge:	
  pa�erns	
  
of	
  nonzeros	
  

•  submodular	
  func9on	
  

è	
  Lovász	
  extension	
  

discrete	
  regulariza9on	
  on	
  support	
  S	
  of	
  x	
  

relax	
  to	
  convex	
  envelope	
  



Further	
  connec9ons:	
  Dic9onary	
  Selec9on	
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min
x

⇥y �Mx⇥2+�⌦(x)

Where	
  does	
  the	
  dic9onary	
  M	
  come	
  from?	
  

Want	
  to	
  learn	
  it	
  from	
  data:	
   {y1, . . . , yn} ✓ Rd

Selec9ng	
  a	
  dic9onary	
  with	
  near-­‐max.	
  variance	
  reduc9on	
  	
  
ó Maximiza9on	
  of	
  approximately	
  submodular	
  func9on	
  

	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
  [Krause	
  &	
  Cevher	
  ‘10;	
  Das	
  &	
  Kempe	
  ’11]	
  



x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

z1 z2 z3 z4

z5 z6 z7 z8

z9 z10 z11 z12

Example:	
  MAP	
  inference	
  

60	
  

/ exp(�E(x; z))

labels	
   pixel	
  	
  
values	
  

P (x | z)max

x2{0,1}n

min
x2{0,1}n

E(x; z),

label	
  

pixel	
  
x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12



x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

Example:	
  MAP	
  inference	
  

61	
  

/ exp(�E(x; z))P (x | z)max

x2{0,1}n

min
x2{0,1}n

E(x; z),

Recall:	
  	
  equivalence	
  

a	
  
b	
  

d	
  
c	
  

A	
  
1	
  
1	
  
0	
  
0	
  

a	
  
b	
  
c	
  
d	
  

x = eA
func9on	
  on	
  binary	
  vectors	
   set	
  func9on	
  

E(eA; z) F (A)=

if	
  	
  	
  	
  	
  	
  is	
  submodular	
  (a�rac9ve	
  poten9als),	
  then	
  
MAP	
  inference	
  =	
  submodular	
  minimiza9on!	
  
polynomial-­‐9me	
  

F

1	
  

1	
   1	
  

1	
   0	
   0	
  

0	
  0	
  

0	
  0	
  0	
  0	
  



Special	
  cases	
  
	
  

Minimizing	
  general	
  submodular	
  func9ons:	
  	
  
poly-­‐9me,	
  but	
  not	
  very	
  scalable	
  

Special	
  structure	
  	
  	
  	
  faster	
  algorithms	
  
	
  
! Symmetric	
  func9ons	
  
! Graph	
  cuts	
  
! Concave	
  func9ons	
  
! Sums	
  of	
  func9ons	
  with	
  bounded	
  support	
  
! ...	
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s

t

0	
  

1	
   1	
  

1	
   1	
  

0	
   0	
  

0	
  0	
  

0	
  0	
  0	
  

x1 x 2 x 3 x 4

x 5 x 6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

MAP	
  inference	
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min
x2{0,1}n

E(x; z) =
X

i
Ei(xi)+

X
ij
Eij(xi, xj) ⌘ min

A✓V
F (A)

Eij(1, 0) + Eij(0, 1) � Eij(0, 0) + Eij(1, 1)
if	
  each	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  submodular:	
  Eij

MAP	
  inference	
  	
  =	
  	
  Minimum	
  cut:	
   	
  fast	
  	
  J	
  	
  	
  	
  	
  

then	
  	
  	
  	
  	
  	
  is	
  a	
  graph	
  cut	
  func9on.	
  F

a	
   b	
   a	
   b	
  



Pairwise	
  is	
  not	
  enough…	
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Int J Comput Vis (2009) 82: 302–324 303

Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
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and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).
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specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.
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result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented
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image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).
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2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.
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  [Stobbe	
  &	
  Krause	
  `10,	
  Kohli	
  et	
  al,	
  `09]	
  

	
  
! Sum	
  of	
  submodular	
  func9ons,	
  each	
  bounded	
  support	
  	
  

	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Kolmogorov	
  `12]	
  
	
  

Other	
  special	
  cases	
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F (S) = F (V \ S)

F (S) =
X

i

gi
⇣ X

s2S

w(s)
⌘



Submodular	
  minimiza9on	
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Op9miza9on	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Maximiza9on	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Learning	
  
	
  
	
  
	
  
	
  
	
  

Online/	
  
adap9ve	
  
op9m.	
  

unconstrained	
  

constrained	
  



Submodular	
  minimiza9on	
  
! unconstrained:	
  

! nontrivial	
  algorithms,	
  	
  
polynomial	
  9me	
  

! constraints:	
  e.g.	
  
! limited	
  cases	
  doable:	
  
odd/even	
  cardinality,	
  inclusion/exclusion	
  of	
  a	
  set	
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min F (A) s.t. A ✓ V

min F (A) s.t. |A| � k

. . .

General	
  case:	
  	
  NP	
  hard	
  
•  hard	
  to	
  approximate	
  within	
  polynomial	
  factors!	
  
•  But:	
  special	
  cases	
  o�en	
  s9ll	
  work	
  well	
  
[Lower	
  bounds:	
  Goel	
  et	
  al.`09,	
  Iwata	
  &	
  Nagano	
  `09,	
  Jegelka	
  &	
  Bilmes	
  `11]	
  

special	
  case:	
  
balanced	
  
cut	
  



Constraints	
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s

t

s

t

cut	
   matching	
   path	
   spanning	
  tree	
  

min
S�C

F (S)min
S2C

X

e2S

w(e)

ground	
  set:	
  edges	
  in	
  a	
  graph	
  

minimum…	
  



Recall:	
  MAP	
  and	
  cuts	
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binary	
  labeling:	
   x = eA

E(x) = Cut(A)

pairwise	
  random	
  field:	
  

What’s	
  the	
  problem?	
  

minimum	
  cut:	
  prefer	
  
short	
  cut	
  =	
  short	
  object	
  boundary	
  

aim	
  reality	
  



MAP	
  and	
  cuts	
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Minimum	
  cut	
  

F (C) =
X

e2C

w(e)

minimize	
  
sum	
  of	
  edge	
  weights	
  

implicit	
  criterion:	
  
short	
  cut	
  =	
  	
  

short	
  boundary	
  

minimize	
  	
  
submodular	
  func9on	
  of	
  edges	
  

F (C)

new	
  criterion:	
  
boundary	
  may	
  be	
  long	
  if	
  the	
  
boundary	
  is	
  homogeneous	
  

Minimum	
  coopera9ve	
  cut	
  

not	
  a	
  sum	
  of	
  	
  
edge	
  weights!	
  



|C|

co
st

|C|

co
st

|C|

co
st

Reward	
  co-­‐occurrence	
  of	
  edges	
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submodular	
  cost	
  func9on:	
  
use	
  few	
  groups	
  Si	
  of	
  edges	
  

sum	
  of	
  weights:	
  
use	
  few	
  edges	
  

F (C) =
X

i
Fi(C \ Si)

7	
  edges,	
  	
  	
  	
  4	
  types	
  
25	
  edges,	
  	
  1	
  type	
  



Results	
  
Graph	
  cut	
   Coopera9ve	
  cut	
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Op9miza9on?	
  
! not	
  a	
  standard	
  graph	
  cut	
  
! MAP	
  viewpoint:	
  
global,	
  non-­‐submodular	
  energy	
  func9on	
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Constrained	
  op9miza9on	
  

79	
  

s

t

s

t

cut	
   matching	
   path	
   spanning	
  tree	
  

min
S�C

F (S)

convex	
  relaxa9on	
   minimize	
  surrogate	
  func9on	
  

[Goel	
  et	
  al.`09,	
  Iwata	
  &	
  Nagano	
  `09,	
  Goemans	
  et	
  al.	
  `09,	
  Jegelka	
  &	
  Bilmes	
  `11,	
  	
  Iyer	
  et	
  al.	
  ICML	
  `13,	
  	
  
	
  	
  Kohli	
  et	
  al	
  `13...]	
  
	
  

approximate	
  op9miza9on	
  	
  	
  

approxima9on	
  bounds	
  dependent	
  on	
  F:	
  
	
  	
  	
  	
  	
  polynomial	
  	
  	
  –	
  	
  	
  constant	
  	
  	
  –	
  	
  	
  FPTAS	
  
	
   O(n) (1 + ✏)



Efficient	
  constrained	
  op9miza9on	
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s

t

s

t

cut	
  

matching	
  
path	
  

spanning	
  	
  
tree	
  

[Jegelka	
  &	
  Bilmes	
  `11,	
  	
  Iyer	
  et	
  al.	
  ICML	
  `13]	
  

2.	
  Solve	
  easy	
  sum-­‐of-­‐weights	
  problem:	
  
	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  and	
  repeat.	
  Si = argmin
S2C

F̂ i(S)

minimize	
  a	
  series	
  of	
  surrogate	
  func9ons	
  

1.	
  compute	
  linear	
  upper	
  bound	
  	
  	
  
	
  	
  	
  	
  	
  
	
  

F̂ i(S) =
X

e2S

wi(S)

bF i(Si) = F (Si)

•  efficient	
  
•  only	
  need	
  to	
  solve	
  sum-­‐of-­‐weights	
  problems	
  
•  unifying	
  viewpoint	
  of	
  submodular	
  min	
  and	
  max	
  
see	
  Wed	
  best	
  student	
  paper	
  talk	
  



Submodular	
  min	
  in	
  prac9ce	
  
! Does	
  a	
  special	
  algorithm	
  apply?	
  

! symmetric	
  func9on?	
  	
  	
  	
  	
  graph	
  cut?	
  	
  	
  	
  	
  	
  	
  	
  ….	
  approximately?	
  

! Con9nuous	
  methods:	
  convexity	
  
! minimum	
  norm	
  point	
  algorithm	
  
	
  

! Other	
  techniques	
  	
  	
  [not	
  addressed	
  here]	
  
! LP,	
  column	
  genera9on,	
  …	
  

! Combinatorial	
  algorithms:	
  rela9vely	
  high	
  complexity	
  

! Constraints:	
  hard	
  
! majorize-­‐minimize	
  or	
  relaxa9on	
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Outline	
  
! What	
  is	
  submodularity?	
  

! Op9miza9on	
  
! Minimize	
  costs	
  

	
  

! Maximize	
  u9lity	
  

! Learning	
  
! Learning	
  for	
  Op9miza9on:	
  new	
  seXngs	
  

Part	
  I	
  

Part	
  II	
  

Break!	
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see	
  you	
  in	
  half	
  an	
  hour	
  	
  	
  	
  	
  	
  	
  	
  	
  J	
  


