Submodularity in Machine Learning - New Directions -

Andreas Krause Stefanie Jegelka

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Network Inference

How learn who influences whom?

Summarizing Documents

How select representative sentences?

MAP inference

How find the MAP labeling in discrete graphical models *efficiently*?

What's common?

Formalization:

Optimize a set function F(S) under constraints

- but: structure helps!
 ... if F is sobmodular, we can ...
 - solve optimization problems with strong guarantees
 - solve some learning problems

... and many new applications!

submodularity.org

slides, links, references, workshops, ...

Example: placing sensors

Place sensors to monitor temperature

Set functions

- finite ground set $V = \{1, 2, \dots, n\}$
- set function $F: 2^V \to \mathbb{R}$

- will assume $F(\emptyset) = 0$ (w.l.o.g.)
- assume black box that can evaluate F(A) for any $A \subseteq V$

Example: placing sensors

Utility F(A) of having sensors at subset A of all locations

A={1,2,3}: Very informative High value F(A)

A={1,4,5}: Redundant info Low value F(A)

Marginal gain

- Given set function $F: 2^V \to \mathbb{R}$
- Marginal gain: $\Delta_F(s \mid A) = F(\{s\} \cup A) F(A)$

new sensor s

Decreasing gains: submodularity

Equivalent characterizations

 ${\scriptstyle \bullet}$ Union-Intersection: for all $~A,B\subseteq V$

$$F(A) + F(B) \xrightarrow{A \cup B} (A \cup B) + F(A \cap B)$$

Questions

How do I prove my problem is submodular?

Why is submodularity useful?

Example: Set cover

Set cover is submodular

More complex model for sensing

Y_s: temperature at location s

X_s: sensor value at location s

 $X_s = Y_s + noise$

Joint probability distribution $P(X_1,...,X_n,Y_1,...,Y_n) = P(Y_1,...,Y_n) P(X_1,...,X_n | Y_1,...,Y_n)$ Prior Likelihood

Example: Sensor placement

Utility of having sensors at subset A of all locations

$$F(A) = H(\mathbf{Y}) - H(\mathbf{Y} \mid \mathbf{X}_A)$$

Uncertainty about temperature Y **before** sensing Uncertainty about temperature Y after sensing

A={1,2,3}: High value F(A)

A={1,4,5}: Low value F(A)

Submodularity of Information Gain

$$Y_1, ..., Y_m, X_1, ..., X_n \text{ discrete RVs}$$

 $F(A) = I(Y; X_A) = H(Y) - H(Y | X_A)$

F(A) is NOT always submodular

If X_i are all conditionally independent given Y, then F(A) is submodular! [Krause & Guestrin `05]

Proof: "information never hurts"

Example: costs

Example: costs

Shared fixed costs

Another example: Cut functions

V={a,b,c,d,e,f,g,h}

 $F(A) = \sum w_{s,t}$ $s \in A, t \notin A$

Cut function is submodular!

Why are cut functions submodular?

Closedness properties

 $F_1,...,F_m$ submodular functions on V and $\lambda_1,...,\lambda_m > 0$ Then: $F(A) = \sum_i \lambda_i F_i(A)$ is submodular

Submodularity closed under nonnegative linear combinations!

Extremely useful fact:

- $F_{\theta}(A)$ submodular $\Rightarrow \sum_{\theta} P(\theta) F_{\theta}(A)$ submodular!
- Multicriterion optimization
- A basic proof technique! ③

Other closedness properties

• Restriction: F(S) submodular on V, W subset of V Then $F'(S) = F(S \cap W)$ is submodular

Other closedness properties

• **Restriction**: F(S) submodular on V, W subset of V

Then $F'(S) = F(S \cap W)$ is submodular

• Conditioning: F(S) submodular on V, W subset of V Then $F'(S) = F(S \cup W)$ is submodular

Other closedness properties

• Restriction: F(S) submodular on V, W subset of V Then $F'(S) = F(S \cap W)$ is submodular

• Conditioning: F(S) submodular on V, W subset of V Then $F'(S) = F(S \cup W)$ is submodular

Reflection: F(S) submodular on V

Then
$$F'(S) = F(V \setminus S)$$
 is submodular

Submodularity ...

discrete convexity

... or concavity?

Convex aspects

Concave aspects

Submodularity and concavity

• suppose $g: \mathbb{N} \to \mathbb{R}$ and F(A) = g(|A|)

F(A) submodular if and only if ... g is concave

Maximum of submodular functions

• $F_1(A), F_2(A)$ submodular. What about

Minimum of submodular functions

Well, maybe $F(A) = min(F_1(A), F_2(A))$ instead?

	F ₁ (A)	F ₂ (A)
{}	0	0
{a}	1	0
{b}	0	1
{a,b}	1	1

 $F(\{b\}) - F(\{\})=0$ < $F(\{a,b\}) - F(\{a\})=1$

min(F₁, F₂) not submodular in general!

Two faces of submodular functions

What to do with submodular functions

What to do with submodular functions

Minimization and maximization not the same??

Submodular minimization

clustering

 $\min_{S \subseteq V} F(S)$

structured sparsity regularization

MAP inference

minimum cut

Submodular minimization

submodularity and convexity

Set functions and energy functions

any set function with |V| = n

$$F: 2^V \to \mathbb{R}$$

... is a function on binary vectors!

$$F: \{0,1\}^n \to \mathbb{R}$$

$$x = e_A$$

1 a
1 b
0 c
0 d

pseudo-boolean function

Submodularity and convexity

- minimum of f is a minimum of F
- submodular minimization as convex minimization:
 polynomial time!
 Grötschel, Lovász, Schrijver 1981

Submodularity and convexity

- minimum of *f* is a minimum of F
- submodular minimization as convex minimization: polynomial time!

The submodular polyhedron P_F

$$P_{F} = \{x \in \mathbb{R}^{n} : x(A) \leq F(A) \text{ for all } A \subseteq V\}$$

$$x(A) = \sum_{i \in A} x_{i}$$

$$A = F(A)$$

$$\{A = F(A)$$

$$\{A = F(A)$$

$$\{A = -1 \\ \{b\} = 2 \\ \{a,b\} = 0$$

$$\{a,b\} = 0$$

44

Evaluating the Lovász extension

 $P_F = \{ x \in \mathbb{R}^n : x(A) \le F(A) \text{ for all } A \subseteq V \}$

greedy algorithm:

- sort x
- order defines sets $S_i = \{1, \ldots, i\}$
- $y_i = F(S_i) F(S_{i-1})$

- Subgradient
- Separation oracle

Lovász extension: example

Submodular minimization

 $\min_{A \subset V}$

F(A)

minimize convex extension

- ellipsoid algorithm
 [Grötschel et al. `81]
- subgradient method,
 smoothing [Stobbe & Krause `10]
- duality: minimum norm point algorithm

[Fujishige & Isotani '11]

combinatorial algorithms

Fulkerson prize

Iwata, Fujishige, Fleischer '01 & Schrijver '00

• state of the art: $O(n^{4}T + n^{5}logM)$ [Iwata '03] $O(n^{6} + n^{5}T)$ [Orlin '09]

The minimum-norm-point algorithm

The minimum-norm-point algorithm

1. find
$$u^* = \arg\min_{u \in B_F} \frac{1}{2} ||u||^2$$

2. $A^* = \{i \mid u^*(i) \le 0\}$
can we solve this??

yes! ☺
 recall: can solve
 linear optimization over P_F
 similar: optimization over B_F
 → can find u*
 (Frank-Wolfe algorithm)

Fujishige '91, Fujishige & Isotani '11

Empirical comparison

Minimum norm point algorithm: usually orders of magnitude faster

[Fujishige & Isotani '11]

Applications?

Example I: Sparsity

Many natural signals sparse in suitable basis. Can exploit for learning/regularization/compressive sensing...

Sparse reconstruction

$$\min_{x} \|y - Mx\|^2 + \lambda \Omega(x)$$

 explain y with few columns of M: few x_i

discrete regularization on support S of x

$$\Omega(x) = \|x\|_0 = |S|$$

relax to convex envelope

$$\Omega(x) = \|x\|_1$$

in nature: sparsity pattern often not random...

Structured sparsity

Set function: $F(\mathbf{T}) < F(\mathbf{S})$ if *T* is a tree and *S* not |S| = |T|

$$F(S) = \left| \bigcup_{s \in S} \operatorname{ancestors}(s) \right|$$

Structured sparsity

Structured sparsity

Sparsity $\min \|y - Mx\|^2 + \lambda \Omega(x)$ \boldsymbol{x} explain y with few prior knowledge: patterns columns of M: few x_i of nonzeros discrete regularization on support S of x submodular function $\Omega(x) = ||x||_0 = |S|$ $\Omega(x) = F(S)$ relax to convex envelope Lovász extension $\Omega(x) = \|x\|_1$ $\Omega(x) = f(|x|)$ **Optimization:** submodular minimization

[Bach`10]

Further connections: Dictionary Selection

$$\min_{x} \|y - Mx\|^2 + \lambda \Omega(x)$$

Where does the dictionary M come from?

Want to learn it from data:
$$\{y_1,\ldots,y_n\}\subseteq \mathbb{R}^d$$

Selecting a dictionary with near-max. variance reduction Maximization of approximately submodular function [Krause & Cevher '10; Das & Kempe '11]

Example: MAP inference

$$\max_{\mathbf{x}\in\{0,1\}^n} \begin{array}{c|c} P(\mathbf{x} \mid \mathbf{z}) \propto \exp(-E(\mathbf{x}; \mathbf{z})) \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Example: MAP inference

Special cases

Minimizing general submodular functions:

poly-time, but not very scalable

- Symmetric functions
- Graph cuts
- Concave functions
- Sums of functions with bounded support

• ...

MAP inference

$$\min_{\mathbf{x}\in\{0,1\}^n} E(\mathbf{x};\mathbf{z}) = \sum_i E_i(x_i) + \sum_{ij} E_{ij}(x_i,x_j) \equiv \min_{A\subseteq V} F(A)$$

if each E_{ij} is submodular: $E_{ij}(1,0) + E_{ij}(0,1) \geq E_{ij}(0,0) + E_{ij}(1,1)$

then F is a graph cut function.

MAP inference = Minimum cut: fast

Pairwise is not enough...

color + pairwise

E(x) = $\sum_{i} E_i(x_i) + \sum_{ij} E_{ij}(x_i, x_j)$

color + pairwise +

Pixels in one tile should have the same label

[Kohli et al.`09]

Enforcing label consistency

Pixels in a superpixel should have the same label

concave function of cardinality \rightarrow submodular \odot

> 2 arguments: Graph cut ??

Higher-order functions as graph cuts?

$$\sum_{i} E_i(x_i) + \sum_{ij} E_{ij}(x_i, x_j) + \sum_{c} E_c(x_c)$$

General strategy: reduce to pairwise case by adding auxiliary variables

• works well for some particular $E_c(x_c)$

[Billionet & Minoux `85, Freedman & Drineas `05, Živný & Jeavons `10,...]

 necessary conditions complex and not all submodular functions equal such graph cuts [Živný et al. '09]

Fast approximate minimization

- Not all submodular functions can be optimized as graph cuts
- Even if they can: possibly many extra nodes in the graph 😕

Other options?

- minimum norm algorithm
- other special cases:
 - e.g. parametric maxflow

[Fujishige & Iwata`99]

Approximate! Every submodular function can be approximated by a series of graph cut functions [Jegelka, Lin & Bilmes `11] 10^4 minimum norm point algorithm $\approx O(n^4)$ 10^2 iterative approximate algorithm 10^{-2} $0(n^2)$ $0(n^2)$ 10^{-2} 10^{-

speech corpus selection [Lin&Bilmes `11]

Fast approximate minimization

- Not all submodular functions can be optimized as graph cuts
- Even if they can: possibly many extra nodes in the graph 😕

Approximate! 🙂

decompose:

- represent as much as possible exactly by a graph
- rest: approximate iteratively by changing edge weights

solve a series of cut problems

 10^4 minimum norm point algorithm $\approx O(n^4)$ 10^2 iterative approximate algorithm 10^4 $0(n^2)$ 10^{-2}

speech corpus selection [Lin&Bilmes `11]

Other special cases

- Symmetric: $F(S) = F(V \setminus S)$
 - Queyranne's algorithm: O(n³) [Queyranne, 1998]
- Concave of modular:

$$F(S) = \sum_{i} g_{i} \left(\sum_{s \in S} w(s) \right)$$

[Stobbe & Krause `10, Kohli et al, `09]

Sum of submodular functions, each bounded support
 [Kolmogorov `12]

Submodular minimization

Submodular minimization

- unconstrained: $\min F(A)$ s.t. $A \subseteq V$
 - nontrivial algorithms, polynomial time

special case: balanced cut

- constraints: e.g. $\min F(A)$ s.t. $|A| \ge k$
 - limited cases doable:
 odd/even cardinality, inclusion/exclusion of a set

General case: NP hard

- hard to approximate within polynomial factors!
- But: special cases often still work well

[Lower bounds: Goel et al. `09, Iwata & Nagano `09, Jegelka & Bilmes `11]

Constraints

minimum...

ground set: edges in a graph

Recall: MAP and cuts

binary labeling: $x = e_A$ pairwise random field: $E(x) = \operatorname{Cut}(A)$

What's the problem?

minimum cut: prefer
short cut = short object boundary
MAP and cuts

Minimum cut

Minimum cooperative cut

implicit criterion: short cut = short boundary

minimize sum of edge weights

$$F(C) = \sum_{e \in C} w(e)$$

new criterion: boundary may be long if the boundary is homogeneous

minimize submodular function of edges

Reward co-occurrence of edges

sum of weights: use few edges

submodular cost function: use few groups S_i of edges

$$F(C) = \sum_{i} F_i(C \cap S_i)$$

25 edges, 1 type7 edges, 4 types

Results

Graph cut Cooperative cut

Optimization?

- not a standard graph cut
- MAP viewpoint:

global, non-submodular energy function

Constrained optimization

[Goel et al.`09, Iwata & Nagano `09, Goemans et al. `09, Jegelka & Bilmes `11, Iyer et al. ICML `13, Kohli et al `13...]

Efficient constrained optimization

minimize a series of surrogate functions

1. compute linear upper bound $\widehat{F}^{i}(S^{i}) = F(S^{i})$ $\widehat{F}^{i}(S) = \sum_{e \in S} w^{i}(S)$ 2. Solve easy sum-of-weights problem: $S^{i} = \arg\min_{S \in \mathcal{C}} \widehat{F}^{i}(S)$ and repeat.

only need to solve sum-of-weights problems

see Wed best student paper talk

unifying viewpoint of submodular min and max

spanning tree

[Jegelka & Bilmes `11, Iyer et al. ICML `13]

cut

efficient

matching

Submodular min in practice

- Does a special algorithm apply?
 - symmetric function? graph cut? approximately?
- Continuous methods: convexity
 - minimum norm point algorithm
- Other techniques [not addressed here]
 - LP, column generation, ...
- Combinatorial algorithms: relatively high complexity
- Constraints: hard
 - majorize-minimize or relaxation

Outline

