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Network	  Inference	  

How	  learn	  who	  influences	  whom?	  

2	  



Summarizing	  Documents	  

How	  select	  representa9ve	  sentences?	  
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MAP	  inference	  
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How	  find	  the	  MAP	  labeling	  in	  discrete	  graphical	  models	  	  
efficiently?	  

max

x

p(x | z)
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Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et
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What’s	  common?	  
! Formaliza9on:	  

	  Op9mize	  a	  set	  func9on	  F(S)	  	  under	  constraints	  
	  
	  
! generally	  very	  hard	  
	  

! but:	  structure	  helps!	  	  	  	  	  	  
…	  if	  F	  is	  submodular,	  we	  can	  …	  
! solve	  op9miza9on	  problems	  with	  strong	  guarantees	  
! solve	  some	  learning	  problems	  
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Outline	  
! What	  is	  submodularity?	  

! Op9miza9on	  
! Minimiza9on	  

	  

! Maximiza9on	  

! Learning	  
! Learning	  for	  Op9miza9on:	  new	  seXngs	  

Part	  I	  

Part	  II	  

Break	  

6	  

many	  new	  
results!	  J	  



Outline	  
! What	  is	  submodularity?	  

! Op9miza9on	  
! Minimiza9on:	  new	  algorithms,	  constraints	  

	  

! Maximiza9on:	  new	  algorithms	  (unconstrained)	  

! Learning	  
! Learning	  for	  Op9miza9on:	  new	  seXngs	  

Part	  I	  

Part	  II	  

…	  and	  many	  new	  applica9ons!	  

many	  new	  
results!	  J	  
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submodularity.org	  
slides,	  links,	  references,	  workshops,	  …	  



Example:	  placing	  sensors	  

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

Place	  sensors	  to	  monitor	  temperature	  
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Set	  func9ons	  
! finite	  ground	  set	  
! set	  func9on	  	  	  
	  
	  
! will	  assume	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (w.l.o.g.)	  

! assume	  black	  box	  that	  can	  evaluate	  
for	  any	  	  

V = {1, 2, . . . , n}
F : 2V ! R

F (;) = 0

F (A)
A ✓ V

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE
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U9lity	  	  	  	  	  	  	  	  	  	  	  	  of	  having	  sensors	  at	  subset	  	  	  	  	  of	  all	  loca9ons	  F (A)

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1 

X2 

X3 

A={1,2,3}:	  Very	  informa9ve	  
High	  value	  F(A)	  

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X4 

X5 
X1 

A={1,4,5}:	  Redundant	  info	  
Low	  value	  F(A)	  

A

Example:	  placing	  sensors	  
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Marginal	  gain	  
! Given	  set	  func9on	   	   	  	  

! Marginal	  gain:	  
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F : 2V ! R

�F (s | A) = F ({s} [A)� F (A)

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1 
X2 

Xs	  	  	  

new	  sensor	  s	  



B	  

Decreasing	  gains:	  submodularity	  

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1	  
X2	  

X3	  

X4	  
X5	  

placement	  B	  =	  {1,…,5}	  

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1 
X2 

placement	  A	  =	  {1,2}	  

Adding	  s	  helps	  a	  lot!	   Adding	  s	  doesn’t	  help	  much	  Xs	  	  	  

new	  sensor	  s	  
A	   +	  	  	  	  	  	  s	  +	  	  	  	  	  	  s	  

Big	  gain	   small	  gain	  

F (A [ s)� F (A) � F (B [ s)� F (B)
A ✓ B

�(s | A) � �(s | B)
13	  



A B

Equivalent	  characteriza9ons	  
! Diminishing	  gains:	  	  for	  all	  

! Union-‐Intersec9on:	  for	  all	  	  
	  

A	   B	  +	  	  	  	  s	   +	  	  	  	  s	  

F (A [ s)� F (A) � F (B [ s)� F (B)

A ✓ B

A,B ✓ V
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A BA [B

A \BF (A) + F (B) � F (A [B) + F (A \B)



Ques9ons	  
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How	  do	  I	  prove	  my	  problem	  is	  
submodular?	  

Why	  is	  submodularity	  useful?	  



Example:	  Set	  cover	  
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Node	  predicts	  
values	  of	  posi9ons	  
with	  some	  radius	  

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

goal: cover floorplan with discs place sensors 
in building Possible 

locations  
 V

	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  	  
“area	  covered	  by	  sensors	  placed	  at	  A”	  
A ✓ V F (A) =

Formally:	  	  
Finite	  set	  	  	  	  	  ,	  collec9on	  of	  n	  subsets	  
For	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  define	   F (A) =

��
[

i2A
Si

��
Si ✓ WW

A ✓ V



Set	  cover	  is	  submodular	  
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SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

S1 S2 

S1 S2 

S3 

S4 S’ 

S’ 

A={s1,s2} 

B = {s1,s2,s3,s4} 

F(A U {s’}) – F(A) 

F(B U {s’}) – F(B) 

≥ 
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More	  complex	  model	  for	  sensing	  

Joint	  probability	  distribu9on	  	  
P(X1,…,Xn,Y1,…,Yn)	  	  =	  P(Y1,…,Yn)	  P(X1,…,Xn	  |	  Y1,…,Yn)	  

Ys:	  temperature	  
at	  loca9on	  s	  

Xs:	  sensor	  value	  
at	  loca9on	  s	  

Xs	  =	  Ys	  +	  noise	  

Prior	   Likelihood	  

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

Y1	   Y2	   Y3	  

Y6	  

Y5	  Y4	  

X1	  

X4	  

X3	  

X6	  
X5	  

X2	  



Example:	  Sensor	  placement	  
U9lity	  of	  having	  sensors	  at	  subset	  A	  of	  all	  loca9ons	  
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SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X1 

X2 

X3 

A={1,2,3}:	  High	  value	  F(A)	  

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIE T

STO RAGE

CONF ERENCE

OF FICEOF FICE

X4 

X5 
X1 

A={1,4,5}:	  Low	  value	  F(A)	  

F (A) = H(Y) � H(Y | XA)

Uncertainty	  
about	  temperature	  Y	  
before	  sensing	  

Uncertainty	  
about	  temperature	  Y	  
a7er	  sensing	  



Submodularity	  of	  Informa9on	  Gain	  

	  Y1,…,Ym,	  X1,	  …,	  Xn	  discrete	  RVs	  
	  F(A)	  =	  I(Y;	  XA)	  =	  H(Y)-‐H(Y	  |	  XA)	  

! F(A)	  is	  	  NOT	  always	  submodular	  

	  If	  Xi	  are	  all	  condi9onally	  independent	  given	  Y,	  
then	  F(A)	  is	  submodular!	  	  	  	  	  	  	  	  	  	   	  [Krause	  &	  Guestrin	  `05]	  

20	  

Y1 

X1 

Y2 

X2 

Y3 

X4 X3 

F(A)	  is	  always	  monotone	  

Proof:	  
“informa9on	  never	  hurts”	  



Example:	  costs	  
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breakfast??	  

cost:	  
9me	  to	  reach	  shop	  
+	  price	  of	  items	  

t1	  
t2	  

t3	  

each	  item	  
1	  $	  

Market	  1	   Market	  2	  

Market	  3	  

ground	  set	  	  	  	  	  V



Example:	  costs	  
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breakfast??	  

cost:	  
9me	  to	  shop	  
+	  price	  of	  items	  

F(	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  =	  	  cost(	  	  	  	  	  	  )	  +	  cost(	  	  	  	  ,	  	  	  	  	  	  	  	  )	  
	  

submodular?	  

=	  	  t1	  +	  1	  	  	  +	  	  	  	  t2	  	  	  	  +	  2	  
	  

=	  	  #shops	  	  +	  	  #items	  Market	  1	   Market	  2	  

Market	  3	  



Shared	  fixed	  costs	  
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A	  

B	  

marginal	  cost:	  	  	  	  	  	  	  	  	  #new	  shops	  	  +	  #new	  items	  

•  shops:	  	  	  	  	  shared	  fixed	  cost	  
•  economies	  of	  scale	  

decreasing	  	  è	  	  cost	  is	  submodular!	  

�(b | A) = 1 + t3

�(b | B) = 1
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Another	  example:	  Cut	  func9ons	  

a c 

d b 

e g 

h f 

V={a,b,c,d,e,f,g,h} 2 

2 

2 

2 
2 2 

1 

1 

3 

3 

3 

3 
3 3 

Cut	  func9on	  is	  submodular!	  

F (A) =
X

s2A,t/2A

ws,t



Why	  are	  cut	  func9ons	  submodular?	  
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a b 

S	   Fab(S)	  
{}	   0	  
{a}	   w	  
{b}	   w	  
{a,b}	   0	  

Submodular	  if	  	  	  

w	  

a c 

d b 

e g 

h f 

2 

2 

2 

2 
2 2 

1 

1 

3 

3 

3 

3 
3 3 

F (S) =
X

(i,j)2E

Fi,j(S \ {i, j})

Restric9on:	  s9ll	  submodular	  

Cut	  func9on	  in	  subgraph	  {i,j}	  
è	  Submodular!	  

w	  ≥	  0!	  
A [B

A

B

A \B

F (A) + F (B)

� F (A \B) + F (A [B)



Closedness	  proper9es	  
	  F1,…,Fm	  submodular	  func9ons	  on	  V	  and	  λ1,…,λm	  >	  0	  
	  Then:	  F(A)	  =	  ∑i	  λi	  Fi(A)	  is	  submodular	  

	  Submodularity	  closed	  under	  nonnega9ve	  linear	  
combina9ons!	  

	  Extremely	  useful	  fact:	  
! Fθ(A)	  submodular	  è	  ∑θ	  P(θ)	  Fθ(A)	  submodular!	  
! Mul9criterion	  op9miza9on	  
! A	  basic	  proof	  technique!	  J	  
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Other	  closedness	  proper9es	  
! Restric9on:	  F(S)	  submodular	  on	  V,	  W	  subset	  of	  V	  

	  Then 	   	   	  	  	   	   	  is	  submodular	  	  
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F 0(S) = F (S \W )

S	  
W	  V	  



Other	  closedness	  proper9es	  
! Restric9on:	  F(S)	  submodular	  on	  V,	  W	  subset	  of	  V	  

	  Then 	   	   	  	  	   	   	  is	  submodular	  	  
	  

! Condi9oning:	  F(S)	  submodular	  on	  V,	  W	  subset	  of	  V	  
	  Then	   	   	   	  	  	   	   	  is	  submodular	  
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F 0(S) = F (S [W )

F 0(S) = F (S \W )

S	  
W	  V	  



Other	  closedness	  proper9es	  
! Restric9on:	  F(S)	  submodular	  on	  V,	  W	  subset	  of	  V	  

	  Then 	   	   	  	  	   	   	  is	  submodular	  	  
	  

! Condi9oning:	  F(S)	  submodular	  on	  V,	  W	  subset	  of	  V	  
	  Then	   	   	   	  	  	   	   	  is	  submodular	  

! Reflec9on:	  F(S)	  submodular	  on	  V	  
	  Then	   	   	   	  	  	   	   	  is	  submodular	  
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F 0(S) = F (S [W )

F 0(S) = F (S \W )

S	  V	  

F 0(S) = F (V \ S)



Submodularity	  …	  

discrete	  convexity	  ….	  

…	  or	  concavity?	  
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Convex	  aspects	  
	  

! convex	  extension	  
! duality	  
! efficient	  minimiza9on	  

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

But	  this	  is	  only	  	  
half	  of	  the	  story…	  
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Concave	  aspects	  
! submodularity:	  

	  

! concavity:	  
A	   +	  	  	  	  s	   B	   +	  	  	  	  s	  

F (A [ s)� F (A) � F (B [ s)� F (B)
A ✓ B, s /2 B :

a  b, s > 0 :

|A| 

F(A) “intuitively” 

1

s

⇣
f(a+ s)� f(a)

⌘
� 1

s

⇣
f(b+ s)� f(b)

⌘
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Submodularity	  and	  concavity	  
! suppose	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  
	  	  	  	  	  	  	  	  	  	  

g : N ! R F (A) = g(|A|)

g(|A|)

|A|

F (A) submodular	  	  	  	  	  	  if	  and	  only	  if	  	  	  …	   g is	  concave	  
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Maximum	  of	  submodular	  func9ons	  
! 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  submodular. 	  	  	  	  	  What	  about	  	  
	  

	   	   	   	   	   	   	  	  	  	  ?	  

F1(A), F2(A)

F (A) = max{F1(A), F2(A) }

|A| 

F2(A) 
F1(A) 

F(A) = max(F1(A),F2(A)) 

max(F1,F2)	  not	  submodular	  in	  general!	  
34	  



Minimum	  of	  submodular	  func9ons	  
	  Well,	  maybe	  F(A)	  =	  min(F1(A),F2(A))	  instead?	  

35	  

F1(A)	   F2(A)	   F(A)	  
{} 0	   0	   0	  
{a}	   1	   0	   0	  
{b}	   0	   1	   0	  
{a,b}	   1	   1	   1	  

F({b}) – F({})=0 

F({a,b}) – F({a})=1 
< 

min(F1,F2)	  not	  submodular	  in	  general!	  



Two	  faces	  of	  submodular	  func9ons	  

! Convex	  aspects	  
! Useful	  for	  minimiza9on	  
! Convex	  extension	  

! Concave	  aspects	  
! Useful	  for	  maximiza9on	  
! Mul9linear	  extension	  

! Not	  closed	  under	  	  
minimum	  and	  maximum	  

36	  

Convex	  aspects	  
èminimiza9on!	  

Concave	  aspects	  
èmaximiza9on!	  



What	  to	  do	  with	  submodular	  func9ons	  
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Op9miza9on	  	  
	  
	  
	  
	  
	  
	  
	  

Minimiza9on	  

Maximiza9on	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Learning	  
	  
	  
	  
	  
	  

Online/	  
adap9ve	  
op9m.	  



What	  to	  do	  with	  submodular	  func9ons	  
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Op9miza9on	  	  
	  
	  
	  
	  
	  
	  
	  

Minimiza9on	  

Maximiza9on	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Learning	  
	  
	  
	  
	  
	  

Online/	  
adap9ve	  
op9m.	  

Minimiza9on	  and	  maximiza9on	  not	  the	  same??	  	  



Submodular	  minimiza9on	  

structured	  sparsity	  
regulariza9on	  

clustering	  

min
S✓V

F (S)

MAP	  inference	  
39	  

minimum	  cut	  

t	  s	  



Submodular	  minimiza9on	  

min
S✓V

F (S)

è	  	  submodularity	  and	  convexity	  
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Set	  func9ons	  and	  energy	  func9ons	  
any	  set	  func9on	  

	  	  	  with	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  
…	  is	  a	  func9on	  on	  	  
	  	  binary	  vectors!	  

	  
F : 2V ! R F : {0, 1}n ! R

|V | = n

a	  

b	  

d	  

c	  

A	  

1	  
1	  
0	  
0	  

=̂
a	  
b	  
c	  
d	  

x = eA

41	  

pseudo-‐boolean	  func9on	  



Submodularity	  and	  convexity	  

	  
! minimum	  of	  f	  is	  a	  minimum	  of	  F	  
! submodular	  minimiza9on	  	  as	  	  convex	  minimiza9on:	  
polynomial	  9me! 	   	  Grötschel,	  Lovász,	  Schrijver	  1981	  

F : {0, 1}n ! R

extension	  
f : [0, 1]n ! R

convex	  

42	  

Lovász	  extension	  

Lovász,	  1982	  

f(x) = max

y2PF

x · y



f(x) = max

y2PF

x · y

Submodularity	  and	  convexity	  

	  
! minimum	  of	  f	  is	  a	  minimum	  of	  F	  
! submodular	  minimiza9on	  	  as	  	  convex	  minimiza9on:	  
polynomial	  9me!	  

F : {0, 1}n ! R
extension	  
f : [0, 1]n ! R

convex	  
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Lovász	  extension	  

Lovász,	  1982	  
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The	  submodular	  polyhedron	  PF	  
Example:	  V	  =	  {a,b}	  

x({a}) ≤ F({a}) 

x({b}) ≤ F({b}) 

x({a,b}) ≤ F({a,b}) 
PF 

-‐1	   x{a} 

x{b} 

0	   1	  

1	  

2	  

-2 

A	   F(A)	  
{} 0	  
{a}	   -‐1	  
{b}	   2	  
{a,b}	   0	  

PF = {x 2 Rn
: x(A)  F (A) for all A ✓ V }

x(A) =
X

i2A

xi



Evalua9ng	  the	  Lovász	  extension	  
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-‐1	  
x{a} 

x{b} 

0	   1	  

1	  
2	  

-2 

Linear	  maximiza9on	  over	  PF	  
	  
	  
	  
	  

Exponen9ally	  many	  constraints!!!	  L	  
Computable	  in	  O(n	  log	  n)	  9me	  J	  
	   	   	   	   	   	   	  	  	   	  [Edmonds	  ‘70]	  

y*	  

	  
•  Subgradient	  
•  Separa9on	  oracle	  

x	  

PF = {x 2 Rn
: x(A)  F (A) for all A ✓ V }

f(x) = max

y2PF

x · y

greedy	  algorithm:	  
•  sort	  x	  
•  order	  defines	  sets	  
•  	  	  

Si = {1, . . . , i}
yi = F (Si)� F (Si�1)



Lovász	  extension:	  example	  
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0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

A	   F(A)	  
{} 0	  
{a}	   1	  
{b}	   .8	  
{a,b}	   .2	  

F(a)	  
F(b)	  

F(a,b)	  

F({})	  



Submodular	  minimiza9on	  

combinatorial	  
algorithms	  

	  

! Fulkerson	  prize	  
Iwata,	  Fujishige,	  Fleischer	  ‘01	  &	  
Schrijver	  ’00	  
	  

! state	  of	  the	  art:	  
O(n4T	  +	  n5logM)	  	  	  	  	  	  	  [Iwata	  ’03]	  
O(n6	  +	  n5T) 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Orlin	  ’09]	  

min
A✓V

F (A)

minimize	  convex	  
extension	  

	  

! ellipsoid	  algorithm	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Grötschel	  et	  al.	  `81]	  

! subgradient	  method,	  
smoothing	  [Stobbe	  &	  Krause	  `10]	  

! duality:	  minimum	  norm	  
point	  algorithm	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Fujishige	  &	  Isotani	  ’11]	  

T	  =	  9me	  for	  evalua9ng	  F	   48	  



-‐1	  
x{a} 

x{b} 

0	   1	  

1	  

2	  

-‐2	  

min
x

f(x) + 1
2kxk

2min
x2[0,1]n

f(x)

regularized	  problem	  Lovász	  extension	  

A⇤ = arg min
A✓V

F (A)

minimizes	  F:	  

A⇤ = {i | u⇤(i)  0}

Fujishige	  ‘91,	  Fujishige	  &	  Isotani	  ‘11	  	  

[-‐1,1]	  

u({a,b})=F({a,b}) 

u* 

Base polytope BF 

Example:	  V	  =	  {a,b}	  
A	   F(A)	  
{} 0	  
{a}	   -‐1	  
{b}	   2	  
{a,b}	   0	  

min
u2BF

1
2kuk

2

The	  minimum-‐norm-‐point	  algorithm	  
dual:	  minimum	  norm	  problem	  

u⇤ = arg
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1.  find	  

2.  	  	  A⇤ = {i | u⇤(i)  0}

min
u2BF

1
2kuk

2u⇤ = arg

can	  we	  solve	  this??	  
yes!	  	  J 	  	  
recall:	  can	  solve	  	  
linear	  op9miza9on	  over	  PF	  
similar:	  op9miza9on	  over	  BF	  
è	  can	  find	  	  
	  	  	  	  	  	  (Frank-‐Wolfe	  algorithm)	  

u⇤

The	  minimum-‐norm-‐point	  algorithm	  

-‐1	  
x{a} 

x{b} 

0	   1	  

1	  

2	  

-2 

[-‐1,1]	  

u({a,b})=F({a,b}) 

u* 

Fujishige	  ‘91,	  Fujishige	  &	  Isotani	  ‘11	  
50	  
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Empirical	  comparison	  

	  Minimum	  norm	  point	  algorithm:	  usually	  orders	  of	  magnitude	  faster	  

Cut functions  
from DIMACS  
Challenge 

Ru
nn

in
g	  
9m

e	  
(s
ec
on

ds
)	  

Lo
w
er
	  is
	  b
e�

er
	  (l
og
-‐s
ca
le
!)	  

Problem	  size	  (log-‐scale!)	  512	   1024	  256	  128	  64	  

Minimum norm point  
algorithm 

[Fujishige	  &	  Isotani	  ’11]	  

combinatorial	  
algorithms	  



Applica9ons?	  
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Example	  I:	  Sparsity	  

pixels	   large	  
wavelet	  
coefficients	  

wideband	  
signal	  
samples	  

large	  
Gabor	  (TF)	  
coefficients	  

9me	  

fr
eq

ue
nc
y	  

Many	  natural	  signals	  sparse	  in	  suitable	  basis.	  
Can	  exploit	  for	  learning/regulariza9on/compressive	  sensing...	  
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Sparse	  reconstruc9on	  
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min
x

⇥y �Mx⇥2 +�⌦(x)

⌦(x) = kxk0 = |S|

⌦(x) = kxk1

•  explain	  y	  with	  few	  columns	  
of	  M:	  few	  xi	  

discrete	  regulariza9on	  on	  support	  S	  of	  x	  

relax	  to	  convex	  envelope	  

in	  nature:	  sparsity	  pa�ern	  o�en	  not	  random…	  

subset	  
selec9on:	  
S	  =	  {1,3,4,7}	  



F (T ) < F (S)S	  

Structured	  sparsity	  
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x	  

m3	  

m2	  

m4	  

m5	  

m7	  m6	  

m1	  m1	  

m2	  

m3	   m4	   m6	   m7	  

Incorporate	  tree	  preference	  in	  regularizer?	  

Set	  func9on:	  	  
	  
if	  T	  is	  a	  tree	  and	  S	  not	  
|S|	  =	  |T|	  

F (S) =

�����
⇥

s�S

ancestors(s)

�����



F (T ) < F (S)S	  

Structured	  sparsity	  
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x	  

m3	  

m2	  

m4	  

m5	  

m7	  m6	  

m1	  m1	  

m2	  

m3	  

Incorporate	  tree	  preference	  in	  regularizer?	  

Set	  func9on:	  	  
	  
If	  T	  is	  a	  tree	  and	  S	  not,	  
|S|	  =	  |T|	  

F (S) =

�����
⇥

s�S

ancestors(s)

�����

F (T ) = 3

F (S) = 6



x	  

m3	  

m2	  

m4	  

m5	  

m7	  m6	  

m1	  

m7	  m6	  m4	  
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F (T ) = 3

F (S) = 6

Set	  func9on:	  	  
	  
If	  T	  is	  a	  tree	  and	  S	  not,	  
|S|	  =	  |T|	  

F (S) =

�����
⇥

s�S

ancestors(s)

�����

Structured	  sparsity	  

Incorporate	  tree	  preference	  in	  regularizer?	  

F (T ) < F (S)S	  

F (S)S	  

Func9on	  	  F	  	  is	  …	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  submodular!	  	  J	  



Sparsity	  
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min
x

⇥y �Mx⇥2

•  Op9miza9on:	  submodular	  minimiza9on	  

+�⌦(x)

⌦(x) = kxk0 = |S|
⌦(x) = F (S)

⌦(x) = f(|x|)⌦(x) = kxk1

[Bach`10]	  

•  explain	  y	  with	  few	  
columns	  of	  M:	  few	  xi	  

•  prior	  knowledge:	  pa�erns	  
of	  nonzeros	  

•  submodular	  func9on	  

è	  Lovász	  extension	  

discrete	  regulariza9on	  on	  support	  S	  of	  x	  

relax	  to	  convex	  envelope	  



Further	  connec9ons:	  Dic9onary	  Selec9on	  
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min
x

⇥y �Mx⇥2+�⌦(x)

Where	  does	  the	  dic9onary	  M	  come	  from?	  

Want	  to	  learn	  it	  from	  data:	   {y1, . . . , yn} ✓ Rd

Selec9ng	  a	  dic9onary	  with	  near-‐max.	  variance	  reduc9on	  	  
ó Maximiza9on	  of	  approximately	  submodular	  func9on	  

	   	   	   	  	  	  	  	  	  	  	   	   	   	   	  [Krause	  &	  Cevher	  ‘10;	  Das	  &	  Kempe	  ’11]	  



x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

z1 z2 z3 z4

z5 z6 z7 z8

z9 z10 z11 z12

Example:	  MAP	  inference	  
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/ exp(�E(x; z))

labels	   pixel	  	  
values	  

P (x | z)max

x2{0,1}n

min
x2{0,1}n

E(x; z),

label	  

pixel	  
x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12



x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

Example:	  MAP	  inference	  
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/ exp(�E(x; z))P (x | z)max

x2{0,1}n

min
x2{0,1}n

E(x; z),

Recall:	  	  equivalence	  

a	  
b	  

d	  
c	  

A	  
1	  
1	  
0	  
0	  

a	  
b	  
c	  
d	  

x = eA
func9on	  on	  binary	  vectors	   set	  func9on	  

E(eA; z) F (A)=

if	  	  	  	  	  	  is	  submodular	  (a�rac9ve	  poten9als),	  then	  
MAP	  inference	  =	  submodular	  minimiza9on!	  
polynomial-‐9me	  

F

1	  

1	   1	  

1	   0	   0	  

0	  0	  

0	  0	  0	  0	  



Special	  cases	  
	  

Minimizing	  general	  submodular	  func9ons:	  	  
poly-‐9me,	  but	  not	  very	  scalable	  

Special	  structure	  	  	  	  faster	  algorithms	  
	  
! Symmetric	  func9ons	  
! Graph	  cuts	  
! Concave	  func9ons	  
! Sums	  of	  func9ons	  with	  bounded	  support	  
! ...	  
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s

t

0	  

1	   1	  

1	   1	  

0	   0	  

0	  0	  

0	  0	  0	  

x1 x 2 x 3 x 4

x 5 x 6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

x1 x 2 x 3 x 4

x 5 x6 x 7 x 8

x 9 x10 x 11 x 12

z 1 z 2 z 3 z 4

z5 z6 z7 z8

z9 z10 z11 z12

MAP	  inference	  
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min
x2{0,1}n

E(x; z) =
X

i
Ei(xi)+

X
ij
Eij(xi, xj) ⌘ min

A✓V
F (A)

Eij(1, 0) + Eij(0, 1) � Eij(0, 0) + Eij(1, 1)
if	  each	  	  	  	  	  	  	  	  	  is	  submodular:	  Eij

MAP	  inference	  	  =	  	  Minimum	  cut:	   	  fast	  	  J	  	  	  	  	  

then	  	  	  	  	  	  is	  a	  graph	  cut	  func9on.	  F

a	   b	   a	   b	  



Pairwise	  is	  not	  enough…	  
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Int J Comput Vis (2009) 82: 302–324 303

Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et

Int J Comput Vis (2009) 82: 302–324 303

Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
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field (CRF). Although their method produced good segmen-
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of extracting accurate boundaries of objects is considerably
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Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented
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do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.
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tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
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>	  2	  arguments:	  	  Graph	  cut	  ??	  

A	  graph	  cut	  is	  a	  submodular	  func9on.	  
	  Can	  each	  submodular	  func9on	  be	  transformed	  into	  a	  cut?	  



	  
	  

! works	  well	  for	  some	  par9cular	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Billionet	  &	  Minoux	  `85,	  Freedman	  &	  Drineas	  `05,	  Živný	  &	  Jeavons	  `10,...]	  

! necessary	  condi9ons	  complex	  and	  	  
not	  all	  submodular	  func9ons	  	  	  equal	  such	  graph	  cuts	  	  	  	  [Živný	  et	  al.‘09]	  
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! Not	  all	  submodular	  func9ons	  can	  be	  op9mized	  as	  graph	  cuts	  
! Even	  if	  they	  can:	  possibly	  many	  extra	  nodes	  in	  the	  graph	  	  L	  

Other	  op9ons?	  
! minimum	  norm	  algorithm	  
! other	  special	  cases:	  

e.g.	  parametric	  maxflow	  
	   	  [Fujishige	  &	  Iwata`99]	  
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Approximate!	  J	  
Every	  submodular	  func9on	  
can	  be	  approximated	  by	  
a	  series	  of	  graph	  cut	  	  
func9ons	  	  	  	  	  [Jegelka,	  Lin	  &	  Bilmes	  `11]	  

Fast	  approximate	  minimiza9on	  
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speech	  corpus	  selec9on	  [Lin&Bilmes	  `11]	  
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speech	  corpus	  selec9on	  [Lin&Bilmes	  `11]	  

decompose:	  
•  represent	  as	  much	  as	  	  

possible	  exactly	  by	  a	  graph	  
•  rest:	  approximate	  itera9vely	  

by	  changing	  edge	  weights	  

solve	  a	  series	  of	  cut	  problems	  



! Symmetric:	  
! Queyranne‘s	  algorithm:	  O(n3)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Queyranne,	  1998]	  

! Concave	  of	  modular:	  
	  

	   	  	  	  	  	  	  	  	  	  	   	   	  	  	  	  	  	  	  	  	  	  	  [Stobbe	  &	  Krause	  `10,	  Kohli	  et	  al,	  `09]	  

	  
! Sum	  of	  submodular	  func9ons,	  each	  bounded	  support	  	  

	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Kolmogorov	  `12]	  
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70	  

F (S) = F (V \ S)

F (S) =
X

i

gi
⇣ X

s2S

w(s)
⌘



Submodular	  minimiza9on	  

71	  

Op9miza9on	  	  
	  
	  
	  
	  
	  
	  
	  

Maximiza9on	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Learning	  
	  
	  
	  
	  
	  

Online/	  
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unconstrained	  
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Submodular	  minimiza9on	  
! unconstrained:	  

! nontrivial	  algorithms,	  	  
polynomial	  9me	  

! constraints:	  e.g.	  
! limited	  cases	  doable:	  
odd/even	  cardinality,	  inclusion/exclusion	  of	  a	  set	  

	  

72	  

min F (A) s.t. A ✓ V

min F (A) s.t. |A| � k

. . .

General	  case:	  	  NP	  hard	  
•  hard	  to	  approximate	  within	  polynomial	  factors!	  
•  But:	  special	  cases	  o�en	  s9ll	  work	  well	  
[Lower	  bounds:	  Goel	  et	  al.`09,	  Iwata	  &	  Nagano	  `09,	  Jegelka	  &	  Bilmes	  `11]	  

special	  case:	  
balanced	  
cut	  
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ground	  set:	  edges	  in	  a	  graph	  

minimum…	  
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binary	  labeling:	   x = eA

E(x) = Cut(A)

pairwise	  random	  field:	  

What’s	  the	  problem?	  

minimum	  cut:	  prefer	  
short	  cut	  =	  short	  object	  boundary	  

aim	  reality	  



MAP	  and	  cuts	  
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Minimum	  cut	  

F (C) =
X

e2C

w(e)

minimize	  
sum	  of	  edge	  weights	  

implicit	  criterion:	  
short	  cut	  =	  	  

short	  boundary	  

minimize	  	  
submodular	  func9on	  of	  edges	  

F (C)

new	  criterion:	  
boundary	  may	  be	  long	  if	  the	  
boundary	  is	  homogeneous	  

Minimum	  coopera9ve	  cut	  

not	  a	  sum	  of	  	  
edge	  weights!	  
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submodular	  cost	  func9on:	  
use	  few	  groups	  Si	  of	  edges	  

sum	  of	  weights:	  
use	  few	  edges	  

F (C) =
X

i
Fi(C \ Si)

7	  edges,	  	  	  	  4	  types	  
25	  edges,	  	  1	  type	  



Results	  
Graph	  cut	   Coopera9ve	  cut	  

77	  



Op9miza9on?	  
! not	  a	  standard	  graph	  cut	  
! MAP	  viewpoint:	  
global,	  non-‐submodular	  energy	  func9on	  
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Constrained	  op9miza9on	  
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s

t

s

t

cut	   matching	   path	   spanning	  tree	  

min
S�C

F (S)

convex	  relaxa9on	   minimize	  surrogate	  func9on	  

[Goel	  et	  al.`09,	  Iwata	  &	  Nagano	  `09,	  Goemans	  et	  al.	  `09,	  Jegelka	  &	  Bilmes	  `11,	  	  Iyer	  et	  al.	  ICML	  `13,	  	  
	  	  Kohli	  et	  al	  `13...]	  
	  

approximate	  op9miza9on	  	  	  

approxima9on	  bounds	  dependent	  on	  F:	  
	  	  	  	  	  polynomial	  	  	  –	  	  	  constant	  	  	  –	  	  	  FPTAS	  
	   O(n) (1 + ✏)



Efficient	  constrained	  op9miza9on	  

80	  

s

t

s

t

cut	  

matching	  
path	  

spanning	  	  
tree	  

[Jegelka	  &	  Bilmes	  `11,	  	  Iyer	  et	  al.	  ICML	  `13]	  

2.	  Solve	  easy	  sum-‐of-‐weights	  problem:	  
	  

	   	   	   	   	   	   	   	   	  	  	  	  	  	  and	  repeat.	  Si = argmin
S2C

F̂ i(S)

minimize	  a	  series	  of	  surrogate	  func9ons	  

1.	  compute	  linear	  upper	  bound	  	  	  
	  	  	  	  	  
	  

F̂ i(S) =
X

e2S

wi(S)

bF i(Si) = F (Si)

•  efficient	  
•  only	  need	  to	  solve	  sum-‐of-‐weights	  problems	  
•  unifying	  viewpoint	  of	  submodular	  min	  and	  max	  
see	  Wed	  best	  student	  paper	  talk	  



Submodular	  min	  in	  prac9ce	  
! Does	  a	  special	  algorithm	  apply?	  

! symmetric	  func9on?	  	  	  	  	  graph	  cut?	  	  	  	  	  	  	  	  ….	  approximately?	  

! Con9nuous	  methods:	  convexity	  
! minimum	  norm	  point	  algorithm	  
	  

! Other	  techniques	  	  	  [not	  addressed	  here]	  
! LP,	  column	  genera9on,	  …	  

! Combinatorial	  algorithms:	  rela9vely	  high	  complexity	  

! Constraints:	  hard	  
! majorize-‐minimize	  or	  relaxa9on	  
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Outline	  
! What	  is	  submodularity?	  

! Op9miza9on	  
! Minimize	  costs	  

	  

! Maximize	  u9lity	  

! Learning	  
! Learning	  for	  Op9miza9on:	  new	  seXngs	  

Part	  I	  

Part	  II	  

Break!	  
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see	  you	  in	  half	  an	  hour	  	  	  	  	  	  	  	  	  J	  


