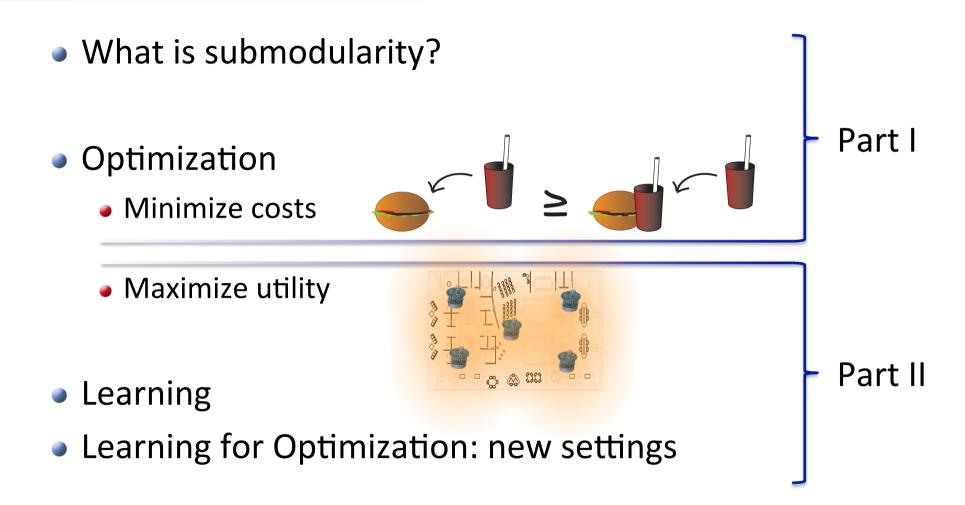
Outline



Optimization

Optimization

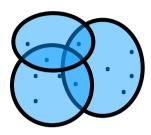
Minimization

Maximization

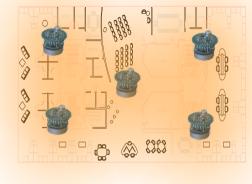
Learning

Online/ adaptive optim.

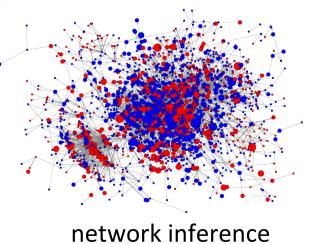
Submodular maximization



covering

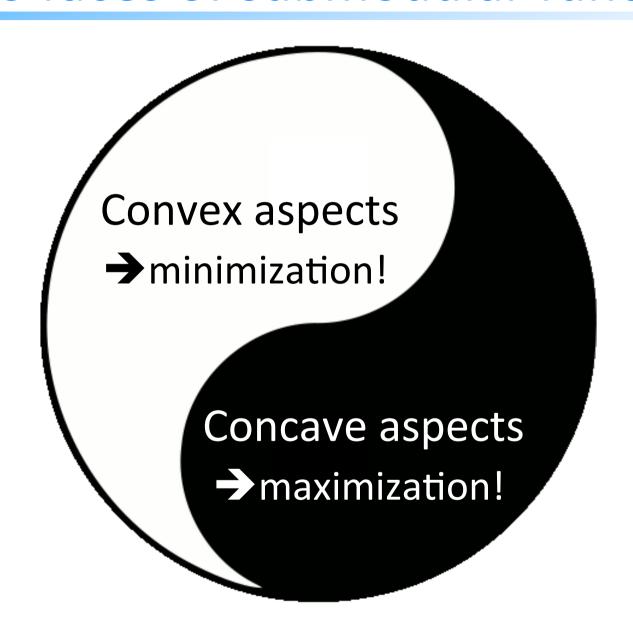


sensing



summarization

Two faces of submodular functions



Submodular maximization

$$\max_{S\subseteq V} F(S)$$

submodularity and concavity

Concave aspects

submodularity:

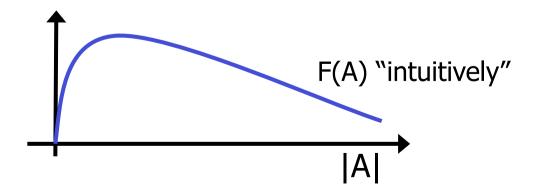
$$A \subseteq B, \ s \notin B:$$

$$F(A \cup s) - F(A) \ge F(B \cup s) - F(B)$$

concavity:

$$a \le b, \ s > 0:$$

$$f(a+s) - f(a) \ge f(b+s) - f(b)$$



Optimization

Optimization

Minimization

Maximization

Learning

Online/ adaptive optim.

Optimization

Optimization

Minimization

unconstrained

constrained

Learning

Online/ adaptive optim.

Maximizing submodular functions

Suppose we want for submodular F

$$A^* = \arg\max_A F(A) \text{ s.t. } A \subseteq V$$

- Example:
 - F(A) = U(A) C(A) where U(A) is submodular utility,
 and C(A) is supermodular cost function

- In general: NP hard. Moreover:
- If F(A) can take negative values: As hard to approximate as maximum independent set (i.e., NP hard to get $O(n^{1-\epsilon})$ approximation)

maximum

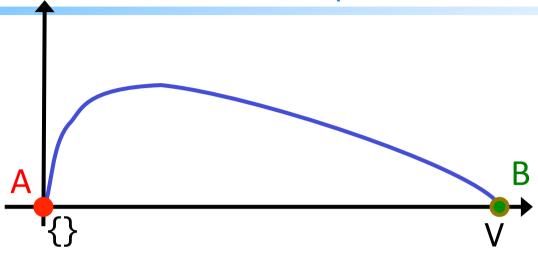
Exact maximization of SFs

- Mixed integer programming
 - Series of mixed integer programs [Nemhauser et al '81]
 - Constraint generation [Kawahara et al '09]
- Branch-and-bound
 - "Data-Correcting Algorithm" [Goldengorin et al '99]

Useful for small/moderate problems

All algorithms worst-case exponential!

Randomized USM (Buchbinder et al '12)



Start with A={}, B=V

$$v_{+} = \max \left(F(A \cup \{s_i\}) - F(A), 0 \right)$$
$$v_{-} = \max \left(F(B \setminus \{s_i\}) - F(B), 0 \right)$$

Pick $U \sim \mathrm{Unif}([0,1])$

If
$$U \le v_+/(v_+ + v_-)$$
 set $A \leftarrow A \cup \{s_i\}$
Else $B \leftarrow B \setminus \{s_i\}$

Return
$$A \ (= B)$$

Maximizing positive submodular functions

[Feige, Mirrokni, Vondrak '09; Buchbinder, Feldman, Naor, Schwartz '12]

Theorem

Given a nonnegative submodular function F, RandomizedUSM returns set A_R such that

$$F(A_R) \ge 1/2 \max_A F(A)$$

Cannot do better in general than ½ unless P = NP

Unconstrained vs. constraint maximization

Given monotone utility F(A) and cost C(A), optimize:

Option 1:

$$\max_{A} F(A) - C(A)$$

s.t. $A \subseteq V$

"Scalarization"

Option 2:

$$\max_{A} F(A)$$

s.t. $C(A) \leq B$

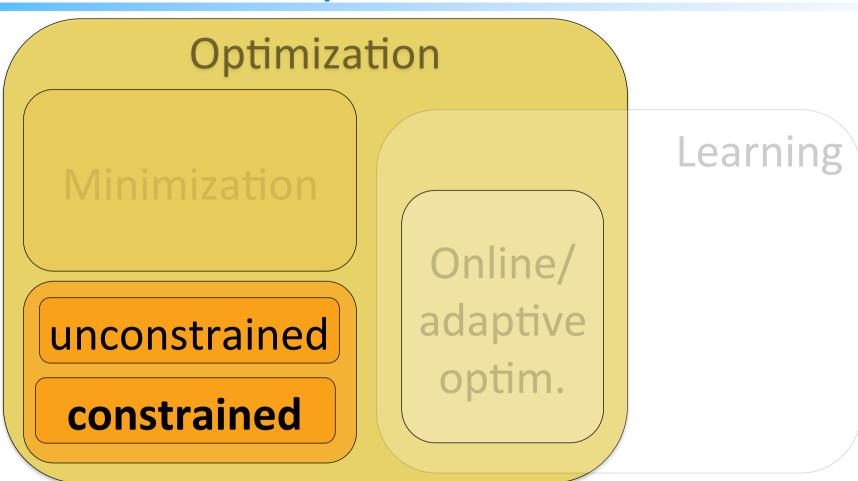
"Constrained maximization"

Can get 1/2 approx... if $F(A)-C(A) \ge 0$ for all sets A

What is possible?

Positiveness is a strong requirement \otimes

Optimization

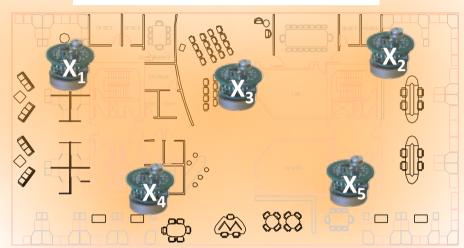


Monotonicity

Placement $A = \{1,2\}$

Placement B = $\{1,...,5\}$





F is monotonic:
$$\forall A, s: F(A \cup \{s\}) - F(A) \geq 0$$

$$\Delta(s \mid A) > 0$$

Adding sensors can only help

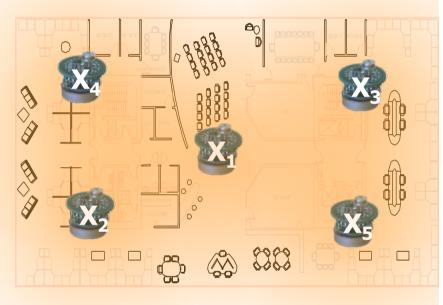
Cardinality constrained maximization

Given: finite set V, monotone SF F

Want:

$$\mathcal{A}^* \subseteq \mathcal{V}$$
 such that $\mathcal{A}^* = \operatorname*{argmax}_{|\mathcal{A}| \leq k} F(\mathcal{A})$

NP-hard!



Greedy algorithm

- Given: finite set V, monotone SF F

NP-hard!

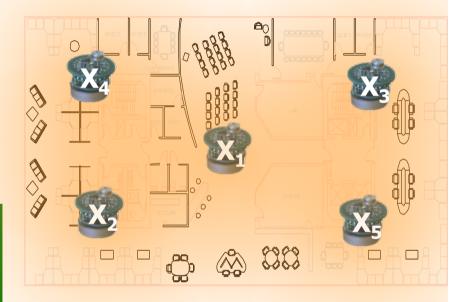
Greedy algorithm:

Start with
$$A = \emptyset$$

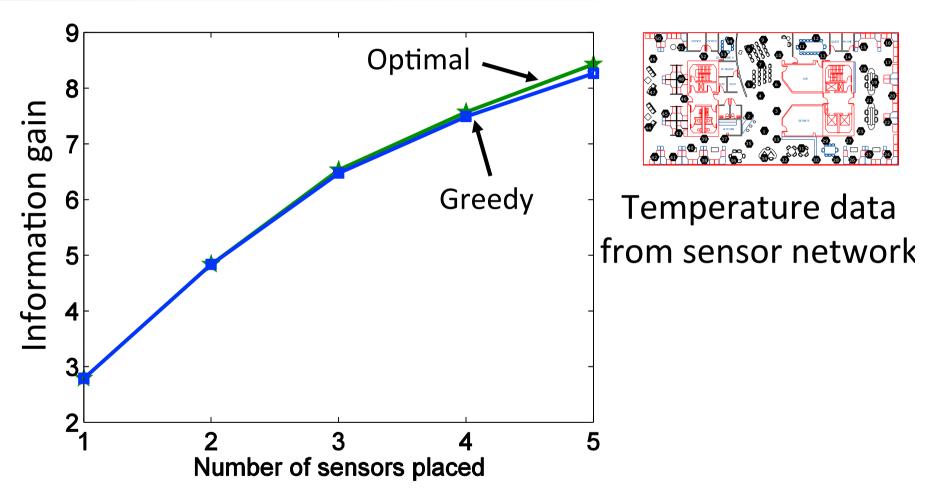
For i = 1 to k

$$s^* \leftarrow \arg\max_s F(\mathcal{A} \cup \{s\})$$

 $\mathcal{A} \leftarrow \mathcal{A} \cup \{s^*\}$



Performance of greedy



Greedy empirically close to optimal. Why?

One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey '78]

For monotonic submodular functions, Greedy algorithm gives constant factor approximation

$$F(A_{greedy}) \ge (1-1/e) F(A_{opt})$$

~63%

- Greedy algorithm gives near-optimal solution!
- In general, need to evaluate exponentially many sets to do better!
 [Nemhauser & Wolsey '78]
- Also many special cases are hard (set cover, mutual information, ...)

Scaling up the greedy algorithm [Minoux '78]

In round i+1,

- have picked $A_i = \{s_1, ..., s_i\}$
- pick $s_{i+1} = argmax_s F(A_i U \{s\}) F(A_i)$

I.e., maximize "marginal benefit" $\Delta(s \mid A_i)$

$$\Delta(s \mid A_i) = F(A_i \cup \{s\}) - F(A_i)$$

Key observation: Submodularity implies

$$i \le j => \Delta(s \mid A_i) \ge \Delta(s \mid A_j)$$

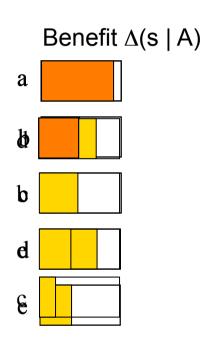
$$s = \sum_{s \in S} \Delta(s \mid A_{i+1})$$

Marginal benefits can never increase!

"Lazy" greedy algorithm [Minoux '78]

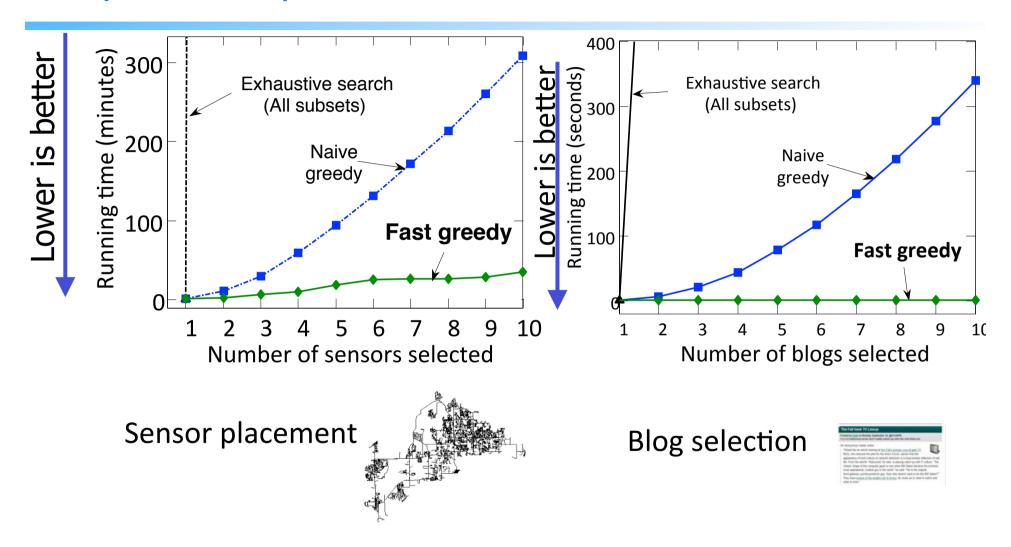
Lazy greedy algorithm:

- First iteration as usual
- Keep an ordered list of marginal benefits Δ_i from previous iteration
- Re-evaluate Δ_i only for top element
- If Δ_i stays on top, use it, otherwise re-sort



Note: Very easy to compute online bounds, lazy evaluations, etc. [Leskovec, Krause et al. '07]

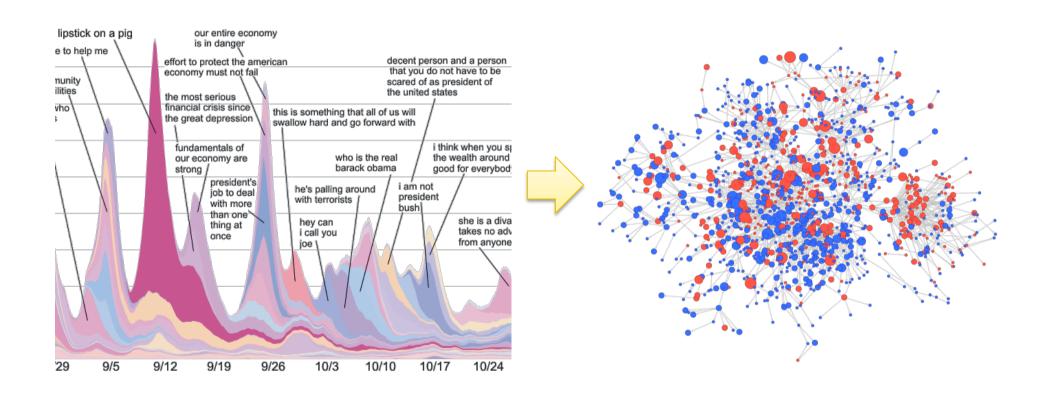
Empirical improvements [Leskovec, Krause et al'06]



30x speedup

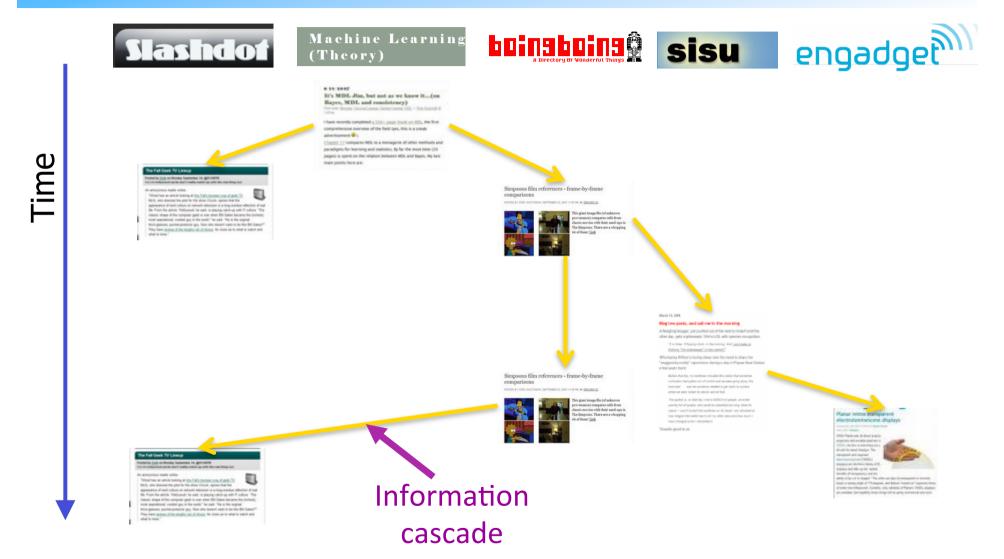
700x speedup

Network inference



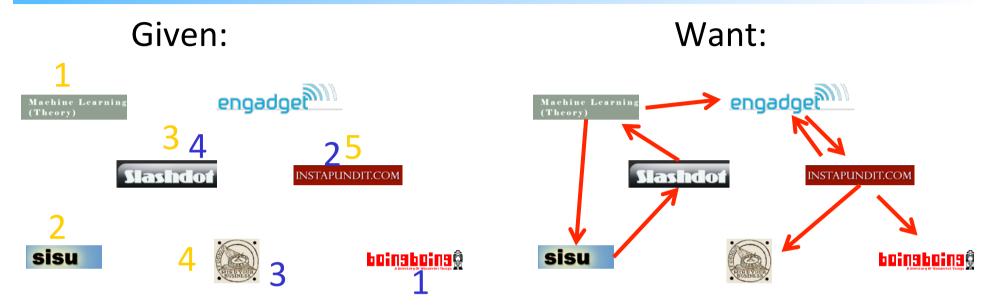
How can we learn who influences whom?

Cascades in the Blogosphere



Inferring diffusion networks

[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]



Given traces of influence, wish to infer sparse directed network G=(V,E)

→ Formulate as optimization problem

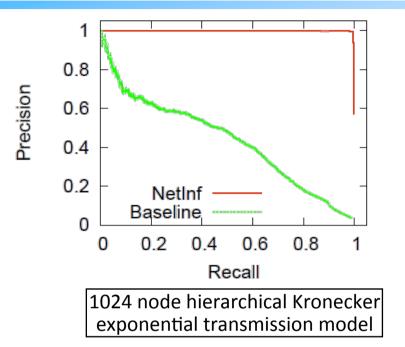
$$E^* = \arg\max_{|E| \le k} F(E)$$

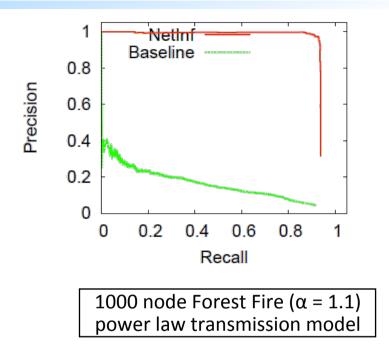
Estimation problem

- Many influence trees T consistent with data
- For cascade C_i, model P(C_i | T)
- Find sparse graph that maximizes likelihood for all observed cascades
- → Log likelihood monotonic submodular in selected edges

$$F(E) = \sum_{i} \log \max_{\text{tree } T \subseteq E} P(C_i \mid T)$$

Evaluation: Synthetic networks

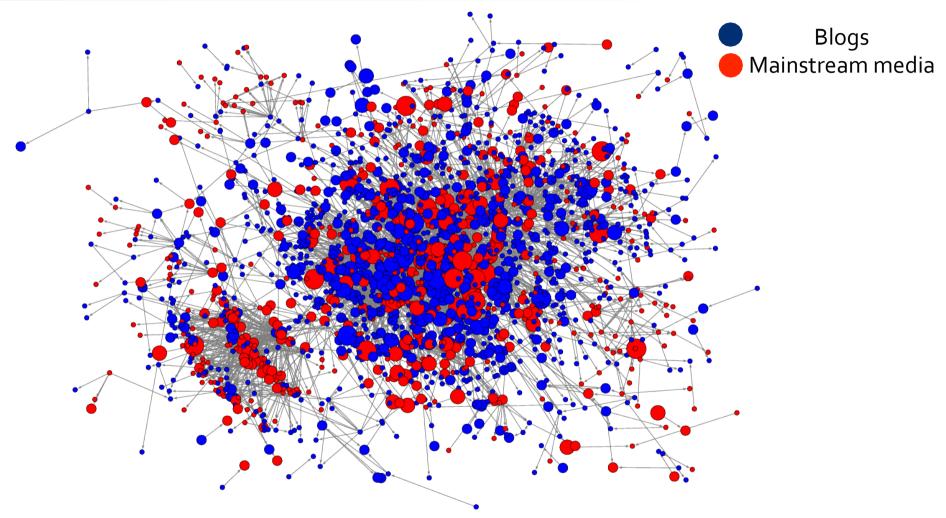




- Performance does not depend on the network structure:
 - Synthetic Networks: Forest Fire, Kronecker, etc.
 - Transmission time distribution: Exponential, Power Law
- Break-even point of > 90%

Diffusion Network

[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

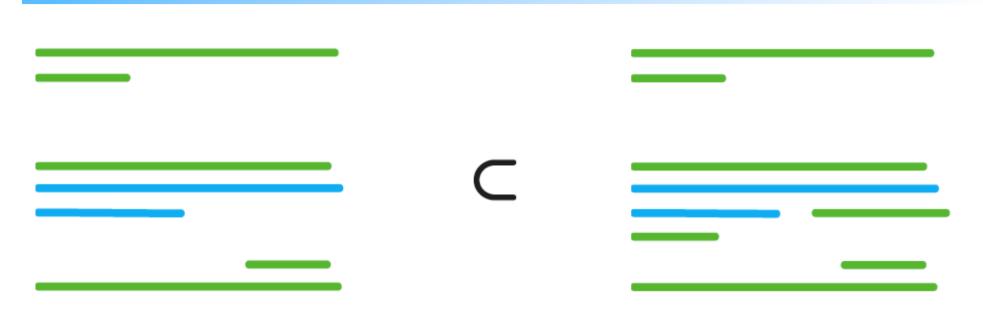


Actual network inferred from 172 million articles from 1 million news sources

Document summarization [Lin & Bilmes '11]

• Which sentences should we select that best summarize a document?

Marginal gain of a sentence

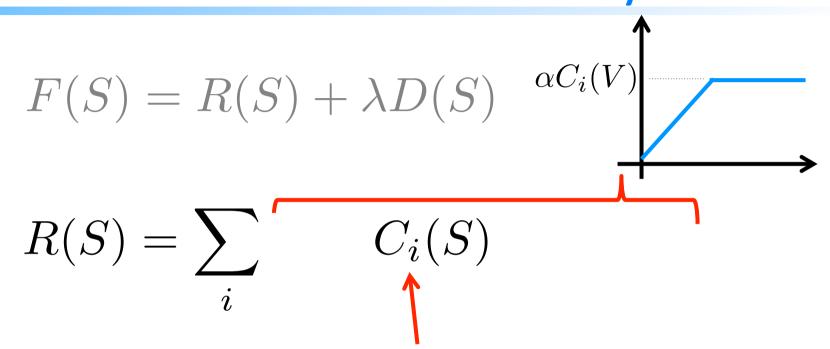


 Many natural notions of "document coverage" are submodular [Lin & Bilmes '11]

Document summarization

$$F(S) = R(S) + \lambda D(S)$$
 Relevance Diversity

Relevance of a summary



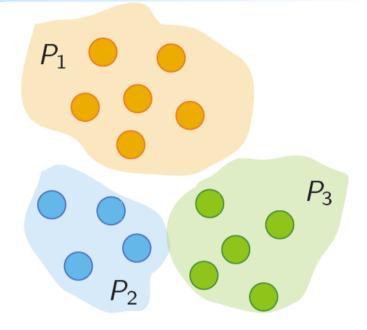
How well is sentence i "covered" by S

$$C_i(S) = \sum_{j \in S} w_{i,j}$$

Similarity between i and j

Diversity of a summary

$$D(S) = \sum_{i=1}^{K} \sqrt{\sum_{j \in P_i \cap S} r_j}$$



Relevance of sentence j to doc.

$$r_j = \frac{1}{N} \sum_i w_{i,j}$$

Clustering of sentences in document

Similarity between i and j

Empirical results [Lin & Bilmes '11]

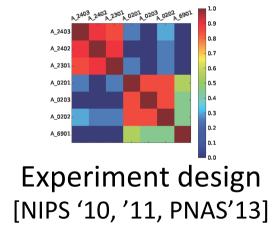
	R	F
$\mathcal{L}_1(S) + \lambda \mathcal{R}_Q(S)$	12.18	12.13
$\mathcal{L}_1(S) + \sum_{\kappa=1}^3 \lambda_\kappa \mathcal{R}_{Q,\kappa}(S)$	12.38	12.33
Toutanova et al. (2007)	11.89	11.89
Haghighi and Vanderwende (2009)	11.80	-
Celikyilmaz and Hakkani-tür (2010)	11.40	-
Best system in DUC-07 (peer 15), using web search	12.45	12.29

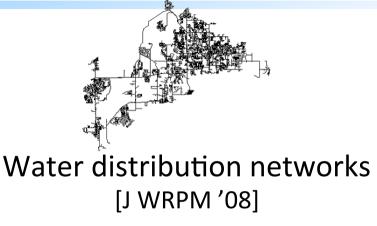
Best F1 score on benchmark corpus DUC-07! Can do even better using submodular structured prediction! [Lin & Bilmes '12]

Submodular Sensing Problems

[with Guestrin, Leskovec, Singh, Sukhatme, ...]

Environmental monitoring [UAI'05, JAIR '08, ICRA '10]





Recommending blogs & news [KDD '07, '10]

Can all be reduced to monotonic submodular maximization

More complex constraints

• So far: $\mathcal{A}^* = \operatorname*{argmax} F(\mathcal{A})$ $|\mathcal{A}| \leq k$

Can one handle more complex constraints?

Example: Camera network

Ground set

$$V = \{1_a, 1_b, \dots, 5_a, 5_b\}$$

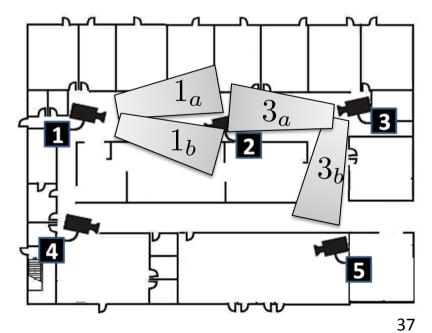
Configuration:

$$S = \{v^1, \dots, v^k\}$$

Sensing quality model $F: 2^V \to \mathbb{R}$

$$F: 2^V \to \mathbb{R}$$

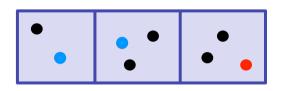
Configuration is feasible if no camera is pointed in two directions at once



Matroids

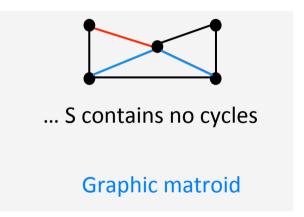
Abstract notion of feasibility: independence

S is independent if ...



... S contains at most one element from each square

Partition matroid

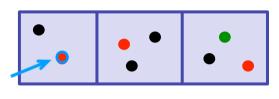


• S independent \rightarrow $T \subseteq S$ also independent

Matroids

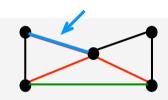
Abstract notion of feasibility: independence

S is independent if ...



... S contains at most one element from each group

Partition matroid



... S contains no cycles

Graphic matroid

- S independent \rightarrow $T \subseteq S$ also independent
- Exchange property: S, U independent, |S| > |U| \Rightarrow some $e \in S$ can be added to U: $U \cup e$ independent
- All maximal independent sets have the same size

Example: Camera network

Ground set

$$V = \{1_a, 1_b, \dots, 5_a, 5_b\}$$

Configuration:

$$S = \{v^1, \dots, v^k\}$$

Sensing quality model $F: 2^V \to \mathbb{R}$

$$F: 2^V \to \mathbb{R}$$

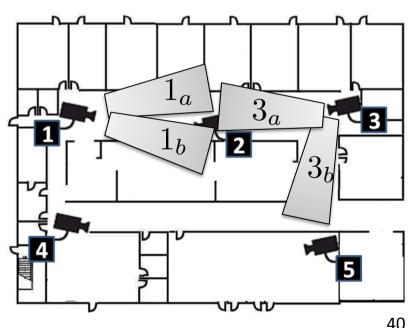
Configuration is feasible if no camera is pointed in two directions at once

This is a partition matroid:

$$P_1 = \{1_a, 1_b\}, \dots, P_5 = \{5_a, 5_b\}$$

Independence:

$$|S \cap P_i| \le 1$$



Greedy algorithm for matroids:

- Given: finite set V

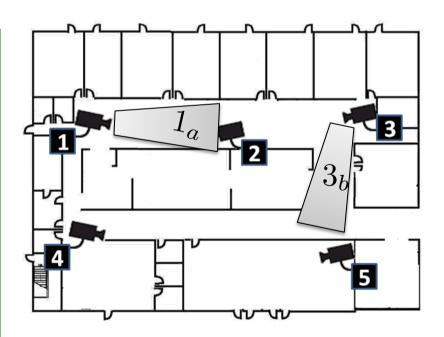
Greedy algorithm:

Start with $A = \emptyset$

While
$$\exists s : A \cup \{s\} \text{ indep.}$$

$$s^* \leftarrow \underset{s: A \cup \{s\} \text{ indep.}}{\operatorname{argmax}} F(A \cup \{s\})$$

$$\mathcal{A} \leftarrow \mathcal{A} \cup \{s^*\}$$



Maximization over matroids

Theorem [Nemhauser, Fisher & Wolsey '78]

For monotonic submodular functions, Greedy algorithm gives constant factor approximation

$$F(A_{greedy}) \ge \frac{1}{2} F(A_{opt})$$

- Greedy gives 1/(p+1) over intersection of p matroids
 - Can model matchings / rankings with p=2:
 Each item can be assigned ≤ 1 rank, each rank can take ≤ 1 item
- Can get also obtain (1-1/e) for arbitrary matroids [Vondrak et al '08] using continuous greedy algorithm

Maximization: More complex constraints

- Approximate submodular maximization possible under a variety of constraints:
 - (Multiple) matroid constraints
 - Knapsack (non-constant cost functions)
 - Multiple matroid and knapsack constraints
 - Path constraints (Submodular orienteering)
 - Connectedness (Submodular Steiner)
 - Robustness (minimax)

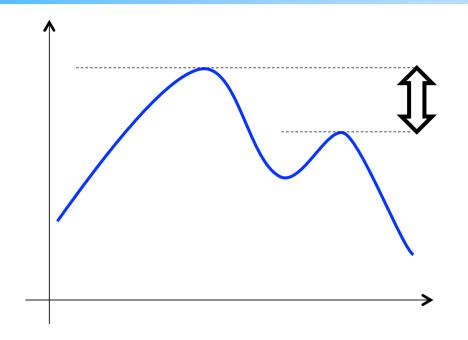
• ...

Greedy works well

Need non-greedy algorithms

Survey on "Submodular Function Maximization"
 [Krause & Golovin '12] on submodularity.org

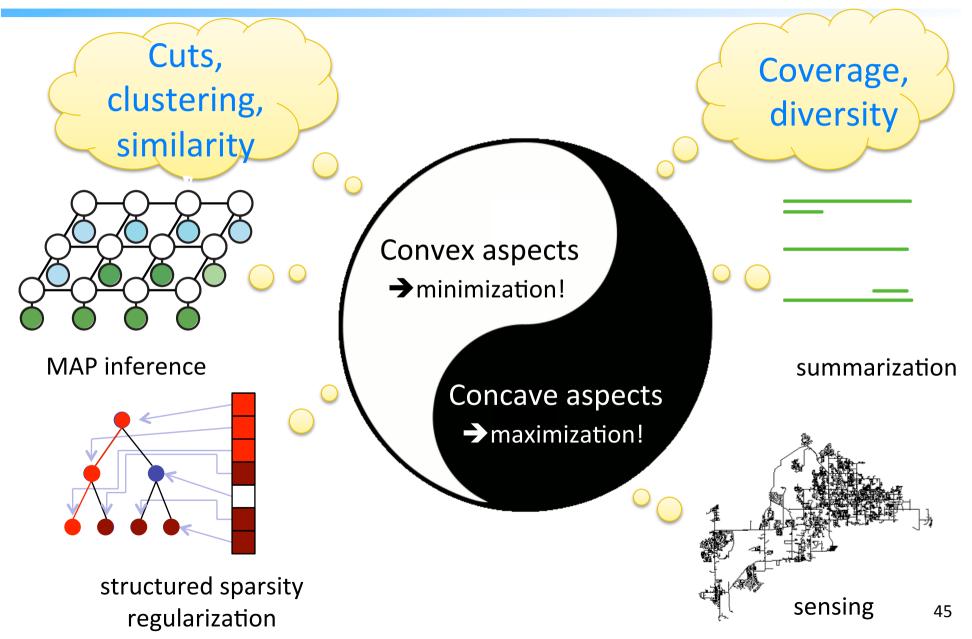
Key intuition for approx. maximization



For submod. functions, local maxima can't be too bad

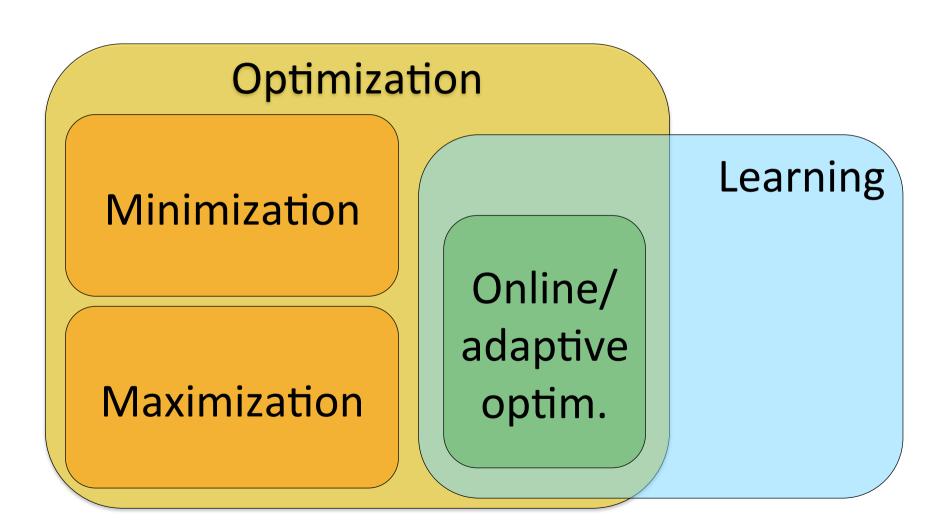
- E.g., all local maxima under cardinality constraints are within factor 2 of global maximum
- Key insight for more complex maximization
 - → Greedy, local search, simulated annealing for (non-monotone, constrained, ...)

Two-faces of submodular functions

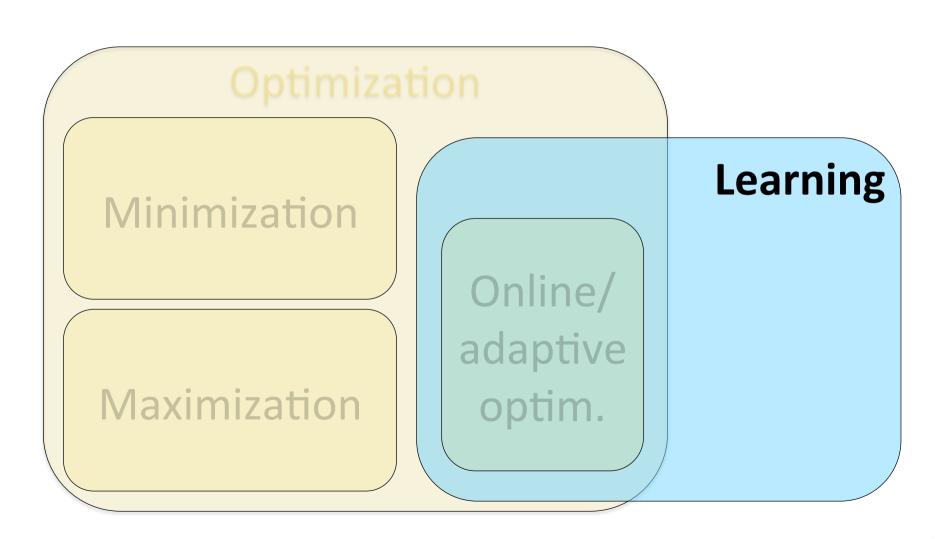


		Maximization	Minimization
	Unconstrained	NP-hard, but well-approximable (if nonnegative)	Polynomial time! Generally inefficent (n^6), but can exploit special cases (cuts; symmetry; decomposable;)
	Constrained	NP-hard but well- approximable "Greedy-(like)" for cardinality, matroid constraints; Non-greedy for more complex (e.g., connectivity) constraints	NP-hard; hard to approximate, still useful algorithms

What to do with submodular functions



What to do with submodular functions

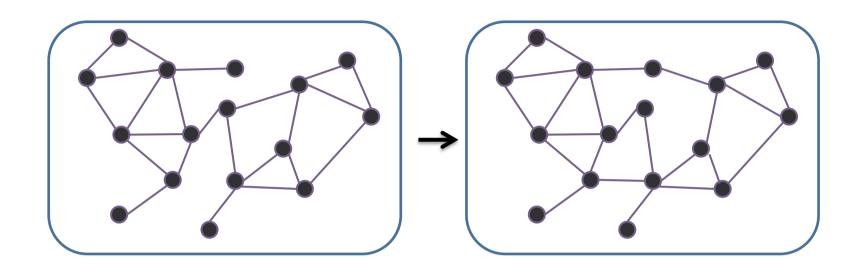


Example 1: Valuation Functions

For combinatorial auctions, show bidders various subsets of items, see their bids

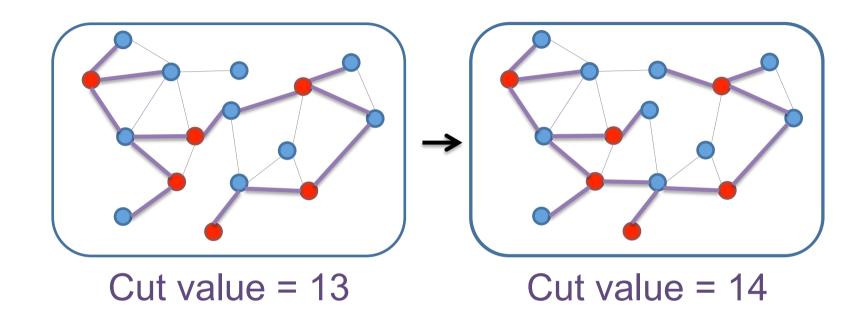
Can we learn a bidder's utility function from few bids?

Example 2: Graph Evolution



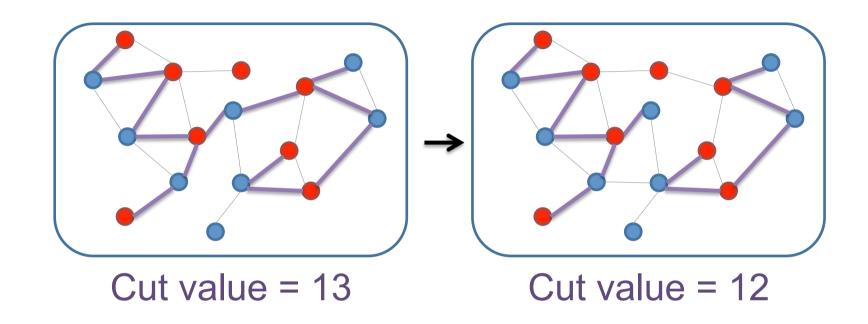
- Want to track changes in a graph
- Instead of storing entire graph at each time step, store some measurements
- Hope: # of measurements << # of edge changes in graph</p>

Random Graph Cut #1



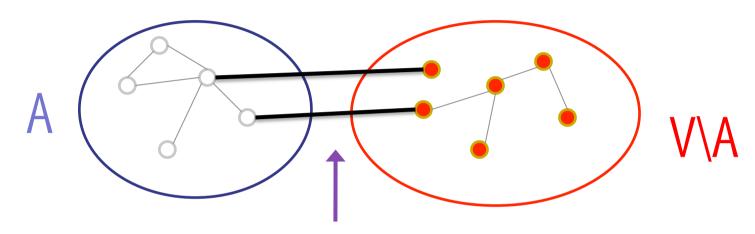
- Choose a random partition of vertices
- Count total # of edges across partition

Random Graph Cut #2



- Choose another random partition of vertices
- Count total # of edges across partition

Symmetric Graph Cut Function



 $F(A) = sum of weights of edges between A and V\A$

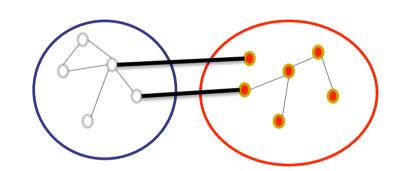
- V = set of vertices
- One-to-one correspondence of graphs and cut functions

Can we learn a graph from the value of few cuts? [E.g., graph sketching, computational biology, ...]

General Problem: Learning Set Functions

Base Set V

Set function $F: 2^V \to \mathbb{R}$



Can we learn F from few measurements / data?

$$\{(A_1, F(A_1)), \ldots, (A_m, F(A_m))\}$$

"Regressing" submodular functions [Balcan, Harvey STOC '11]

- Sample m sets $A_1 ... A_m$, from dist. D; see $F(A_1)$, ..., $F(A_m)$
- From this, want to generalize well

$$\hat{F}$$
 is $(\alpha, \epsilon, \delta)$ -PMAC iff with prob. 1- δ it holds that
$$P_{A \sim \mathcal{D}} \left[\hat{F}(A) \leq F(A) \leq \alpha \hat{F}(A) \right] \geq 1 - \varepsilon$$

Theorem: cannot approximate better than

$$\alpha = n^{1/3} / \log(n)$$

unless one looks at exponentially many samples Ai

But can efficiently obtain $\alpha = n^{\frac{1}{2}}$

Approximating submodular functions

[Goemans, Harvey, Kleinberg, Mirrokni, '08]

- Pick m sets, $A_1 ... A_m$, get to see $F(A_1)$, ..., $F(A_m)$
- ullet From this, want to approximate F by \hat{F} s.t.

$$\hat{F}(A) \leq F(A) \leq \alpha \hat{F}(A)$$
 for all A

Theorem: Even if

- F is monotonic
- we can pick A_i adaptively,

cannot approximate better than $\alpha = n^{\frac{1}{2}} / \log(n)$ unless one looks at exponentially many sets A_i

But can efficiently obtain $\alpha = n^{\frac{1}{2}} \log(n)$

What if we have structure?

 To learn effectively, need additional assumptions beyond submodularity.

Sparsity in Fourier domain [Stobbe & Krause '12]

$$F(A) = \sum_{B \subseteq V} (-1)^{|A \cap B|} \hat{F}(B)$$

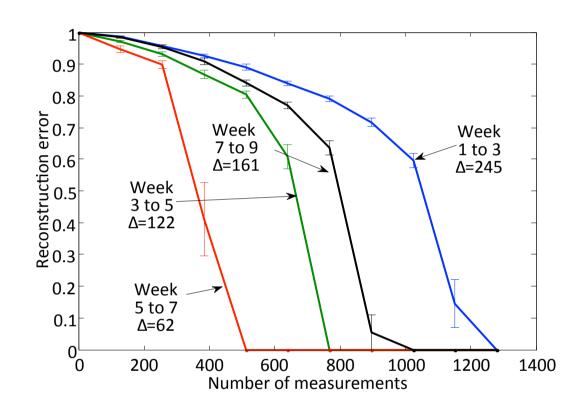
Sparsity: Most coefficients ≈0

- "Submodular" compressive sensing
- Cuts and many other functions sparse in Fourier domain!
- Also can learn XOS valuations [Balcan et al '12]

Results: Sketching Graph Evolution

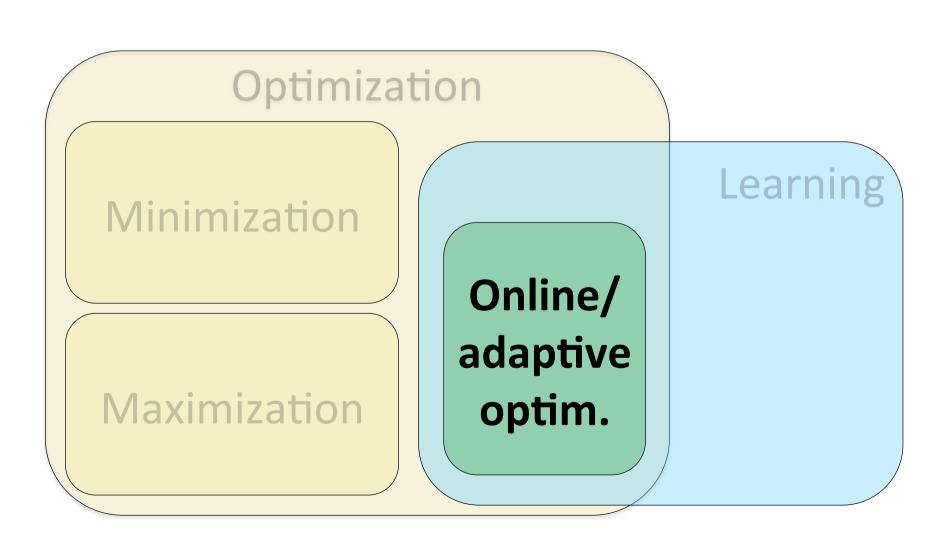
[Stobbe & Krause '12]

- Tracking evolution of 128-vertex subgraph using random cuts
- Δ = number of differences between graphs



- Autonomous Systems Graph (from SNAP)
- For low error, observing $m \approx 8\Delta$ random cuts suffices

What to do with submodular functions



Learning to optimize

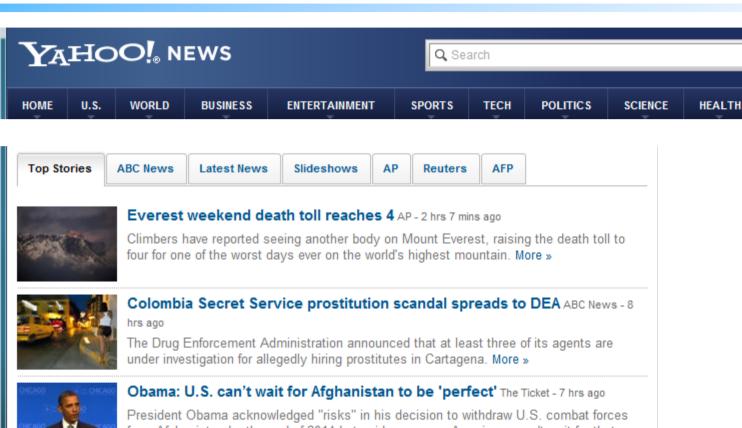
- Have seen how to
 - optimize submodular functions
 - learn submodular functions

What if we only want to learn *enough* to optimize?

Learning to optimize submodular functions

- Online submodular optimization
 - Learn to pick a sequence of sets to maximize a sequence of (unknown) submodular functions
 - Application: Making diverse recommendations
- Adaptive submodular optimization
 - Gradually build up a set, taking into account feedback
 - Application: Experimental design / Active learning

News recommendation



President Obama acknowledged "risks" in his decision to withdraw U.S. combat forces from Afghanistan by the end of 2014 but said war-weary Americans can't wait for that strife-torn country to be "perfect." More »

A former Rutgers University student was sentenced to serve 30 days in jail in a case of webcam spying that drew national attention to issues of online privacy, suicide, and

Application: Diverse Recommendations

"Google to DOJ: Let us prove to users that NSA isn't snooping on them"
"US tech firms push for govt transparency on securityReuters"
"Internet Companies Call For More Disclosure of Surveillance"
"NSA scandal: Twitter and Microsoft join calls to disclose data requests"
"NSA Secrecy Prompts a Pushback"

"Google to DOJ: Let us prove to users that NSA isn't snooping on them"

"Storms Capable of Producing Derecho Possible in Midwest Today"

"Ohio kidnap suspect pleads not guilty"

"Five takeaways from Spurs-Heat in Game 3 of the NBA Finals"

"Samsung Unveils Galaxy S4 Zoom With 16MP Camera"

Prefer recommendations that are both relevant and diverse

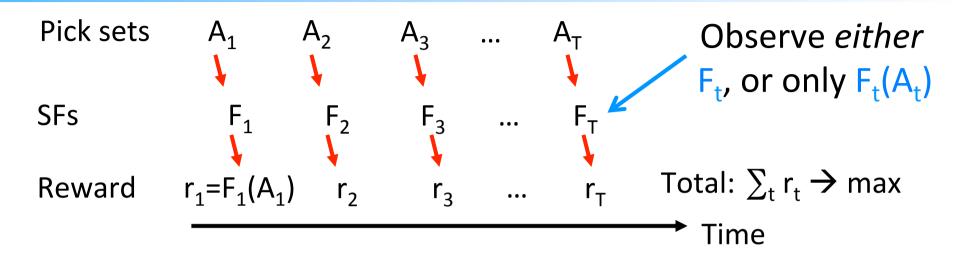
Simple model

- ullet We're given a set of articles V
- Each round:
 - ullet A user appears, interested in a subset of the articles S_t
 - We recommend a set of articles A_t
 - The user clicks on any displayed article that she is interested in

$$F_t(A_t) = \min(|A_t \cap S_t|, 1)$$

- Goal: Maximize the total #of clicks $\sum_t F_t(A_t)$
- Challenge:
 - We don't know which articles the user is interested in!

Online maximization of submodular functions [Streeter, Golovin NIPS '08]



Goal: Want to choose $A_1,...A_t$ s.t. the regret

$$R_T = \max_{|A| \le k} \sum_{t=1}^{T} F_t(A) - \sum_{t=1}^{T} F_t(A_t)$$

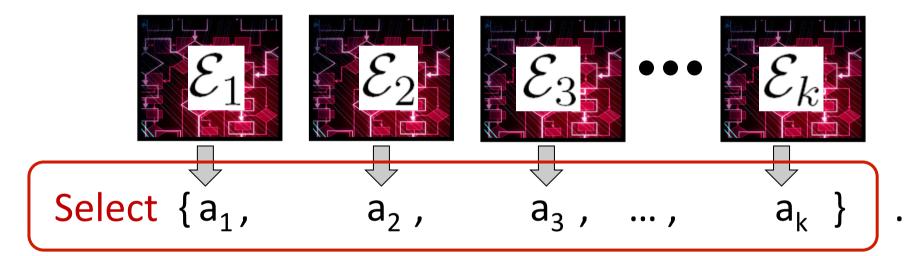
grows sublinearly, i.e., $R_T/T o 0$

For k=1, many good algorithms known! © But what if k>1?

Online Greedy Algorithm

[Streeter & Golovin, NIPS '08]

Replace each stage of greedy algorithm with a multi-armed bandit algorithm.



Feedback to \mathcal{E}_j for action $\mathbf{a_j}$ is (unbiased est. of) $F_t(\{\mathbf{a_1, a_2, ..., a_{j-1}, a_j}\}) - F_t(\{\mathbf{a_1, a_2, ..., a_{j-1}}\})$

Online maximization of submodular functions [Streeter, Golovin NIPS '08]

Theorem

Online greedy algorithm chooses $A_1,...,A_T$ s.t. for any sequence $F_1,...,F_T$

$$\sum_{t=1}^{T} F_t(A_t) \ge \max_{|A| \le k} \sum_{t=1}^{T} F_t(A)$$

Can get 'no-regret' over greedy algorithm in hindsight I.e., can learn ``enough'' about F to optimize greedily!

Stochastic linear submodular bandits

[Yue & Guestrin '11]

- Basic submodular bandit algorithm has slow convergence
- Can do better if we make stronger assumptions
 - Submodular function is linear combination of m SFs.

$$F(S) = \sum_{i=1}^{m} w_i F_i(S)$$

We evaluate it up to (stochastic) noise*

$$F_t(S) = F(S) + \text{noise}$$

→ LSBGreedy algorithm

User Study [Yue & Guestrin '11]

- Real data: >10k articles
- T=10 days, rec. 10 articles per day
- 27 users rate articles, aim to maximize #likes

"Google to DOJ: Let us prove to users that NSA isn't snooping on them"
"Storms Capable of Producing Derecho Possible in Midwest Today"
"Ohio kidnap suspect pleads not guilty"
"Five takeaways from Spurs-Heat in Game 3 of the NBA Finals"
"Samsung Unveils Galaxy S4 Zoom With 16MP Camera"

- LSBGreedy outperforms baselines that fail to ...
 - adapt weights (no personalization)
 - address the exploration—exploitation tradeoff
 - model diversity explicitly

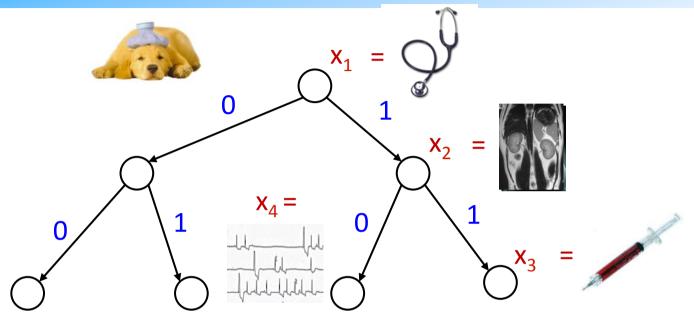
Other results on online submodular optimization

- Online submodular maximization
 - No (1-1/e) regret for ranking (partition matroids)
 [Streeter, Golovin, Krause 2009]
 - Distributed implementation [Golovin, Faulkner, Krause '2010]
- Online submodular coverage
 - Min-cost / Min-sum submodular cover
 [Streeter & Golovin NIPS 2008, Guillory & Bilmes NIPS 2011]
- Online Submodular Minimization
 - Unconstrained [Hazan & Kale NIPS 2009]
 - Constrained [Jegelka & Bilmes ICML 2011]
- See also the "submodular secretary problem"

Learning to optimize submodular functions

- Online submodular optimization
 - Learn to pick a sequence of sets to maximize a sequence of (unknown) submodular functions
 - Application: Making diverse recommendations
- Adaptive submodular optimization
 - Gradually build up a set, taking into account feedback
 - Application: Experimental design / Active learning

Adaptive Sensing / Diagnosis



Want to effectively diagnose while minimizing cost of testing!

Classical submodularity does not apply

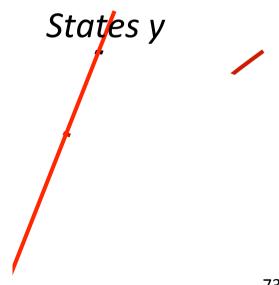
Can we generalize submodularity for sequential decision making?

Adaptive selection in diagnosis

Prior over diseases P(Y)

• Deterministic test outcomes $P(X_v \mid Y)$

Each test eliminates hypotheses y



Problem Statement

Given:

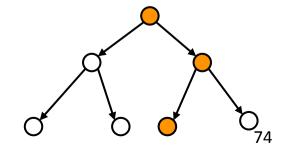
- Items (tests, experiments, actions, ...) V={1,...,n}
- Associated with random variables X₁,...,X_n taking values in O
- Objective: $f: 2^V \times O^V \to \mathbb{R}$
- Policy \mathbf{T} maps observation \mathbf{x}_{Δ} to next item

Value of policy
$$\pi$$
: $F(\pi) = \sum_{\mathbf{x}_V} P(\mathbf{x}_V) f(\pi(\mathbf{x}_V), \mathbf{x}_V)$

Want
$$\pi^* \in \operatorname*{argmax} F(\pi)$$
 $|\pi| \le k$

NP-hard (also hard to approximate!)

Tests run by π if world in state $\mathbf{x}_{\mathbf{v}}$



Adaptive greedy algorithm

- Suppose we've seen $X_A = X_{A.}$
- Conditional expected benefit of adding item s:

$$\Delta(s \mid \mathbf{x}_A) = \mathbb{E}\left[f(A \cup \{s\}, \mathbf{x}_V) - f(A, \mathbf{x}_V) \mid \mathbf{x}_A\right]$$

Adaptive Greedy algorithm efit if world in state x_V

Start with
$$A = \emptyset$$

• Pick
$$s_k \in \operatorname*{argmax}_s \Delta(s \mid \mathbf{x}_A)$$

• Observe
$$X_{s_k} = x_{s_k}$$

• Set
$$A \leftarrow A \cup \{s_k\}$$

Conditional on observations \mathbf{x}_{A}

Adaptive submodularity [Golovin & Krause, JAIR 2011]

Adaptive monotonicity:

$$\Delta(s \mid \mathbf{x}_A) \geq 0$$

 x_B observes more than x_A

Adaptive submodularity:

$$\Delta(s \mid \mathbf{x}_A) \geq \Delta(s \mid \mathbf{x}_B)$$
 whenever $\mathbf{x}_A \leq \mathbf{x}_B$

Theorem: If f is adaptive submodular and adaptive monotone w.r.t. to distribution P, then

$$F(\pi_{greedy}) \ge (1-1/e) F(\pi_{opt})$$

Many other results about submodular set functions can also be "lifted" to the adaptive setting!

From sets to policies

Submodularity

Adaptive submodularity

Applies to: set functions

$$\Delta_F(s \mid A) = F(A \cup \{s\}) - F(A)$$
$$\Delta_F(s \mid A) \ge 0$$
$$A \subseteq B \Rightarrow \Delta_F(s \mid A) \ge \Delta_F(s \mid B)$$

$$\max_{A} F(A)$$

Greedy algorithm provides

- (1-1/e) for max. w card. const.
- 1/(p+1) for p-indep. systems
- log Q for min-cost-cover
- 4 for min-sum-cover

policies, value functions

$$\Delta_{F}(s \mid \mathbf{x}_{A}) = \mathbb{E}\left[f(A \cup \{s\}, \mathbf{x}_{V}) - f(A, \mathbf{x}_{V}) \mid \mathbf{x}_{A}\right]$$

$$\Delta_{F}(s \mid \mathbf{x}_{A}) \geq 0$$

$$\mathbf{x}_{A} \leq \mathbf{x}_{B} \Rightarrow \Delta_{F}(s \mid \mathbf{x}_{A}) \geq \Delta_{F}(s \mid \mathbf{x}_{B})$$

$$\max_{\mathbf{x}} F(\pi)$$

Greedy policy provides

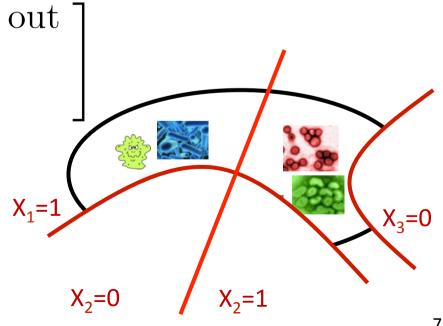
- (1-1/e) for max. w card. const.
- 1/(p+1) for p-indep. systems
- log Q for min-cost-cover
- 4 for min-sum-cover

Optimal Diagnosis

- Prior over diseases P(Y)
- Deterministic test outcomes $P(X_v | Y)$
- How should we test to eliminate all incorrect hypotheses?

$$\Delta(t \mid x_A) = \mathbb{E} \begin{bmatrix} \text{mass ruled out} \\ \text{by } t \text{ if we} \\ \text{know } x_A \end{bmatrix}$$

"Generalized binary search" Equivalent to max. infogain



OD is Adaptive Submodular

$$b_0 := \mathbb{P}(\bigcirc)$$

Objective = probability mass of hypotheses you have ruled out.

$$g_0 := \mathbb{P}(\bigcirc)$$

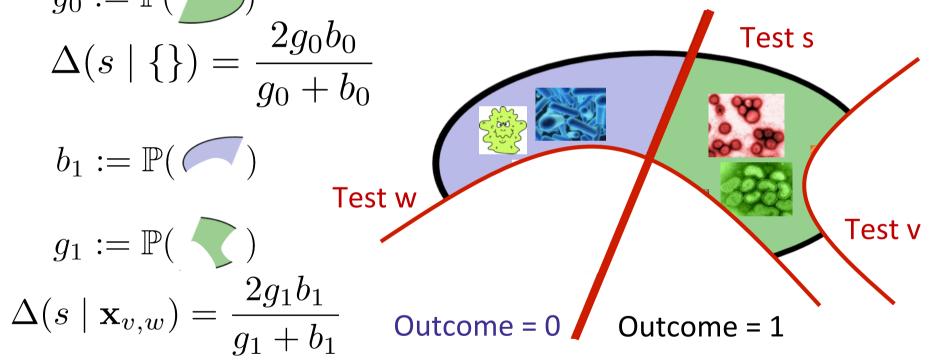
$$g_0 := \mathbb{P}())$$

$$\Delta(s \mid \{\}) = \frac{2g_0b_0}{g_0 + b_0}$$

$$b_1 := \mathbb{P}(\frown)$$

$$g_1 := \mathbb{P}(\bigcirc)$$

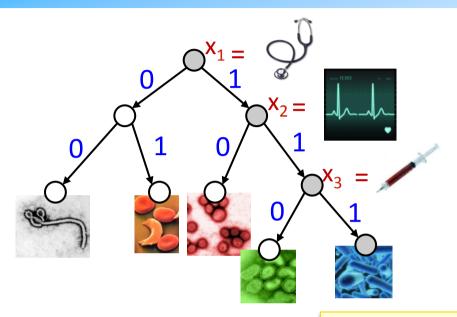
$$\Delta(s \mid \mathbf{x}_{v,w}) = \frac{2g_1b_1}{g_1 + b_1}$$



$$b_0 \ge b_1, \quad g_0 \ge g_1$$

Not hard to show that
$$\Delta(s \mid \{\}) \geq \Delta(s \mid \mathbf{x}_{v,w})$$

Theoretical guarantees



Adaptive-Greedy is a $(\ln(1/p_{\min}) + 1)$ approximation.

$$(\ln(1/p_{\min}) + 1)$$

```
Garey & Graham, 1974;
   Loveland, 1985;
   Arkin et al., 1993;
 Kosaraju et al., 1999;
   Dasgupta, 2004;
Guillory & Bilmes, 2009;
     Nowak, 2009;
   Gupta et al., 2010
```

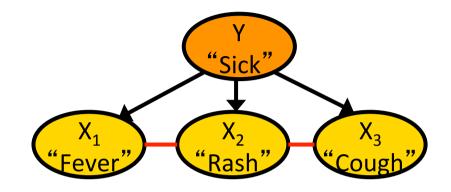
With adaptive submodular analysis!

Result requires that tests are exact (no noise)!

What if there is noise?

[w Daniel Golovin, Deb Ray, NIPS '10]

- Prior over diseases P(Y)
- Noisy test outcomes P(X_V | Y)
- How should we test to learn about y (infer MAP)?



- Existing approaches:
 - Generalized binary search?
 - Maximize information gain?
 - Maximize value of information?

Not adaptive submodular!

Theorem: All these approaches can have cost more than n/log n times the optimal cost!

→ Is there an adaptive submodular criterion??

Theoretical guarantees

[with Daniel Golovin, Deb Ray, NIPS '10]

Theorem: Equivalence class edge-cutting (EC²) is adaptive monotone and adaptive submodular.

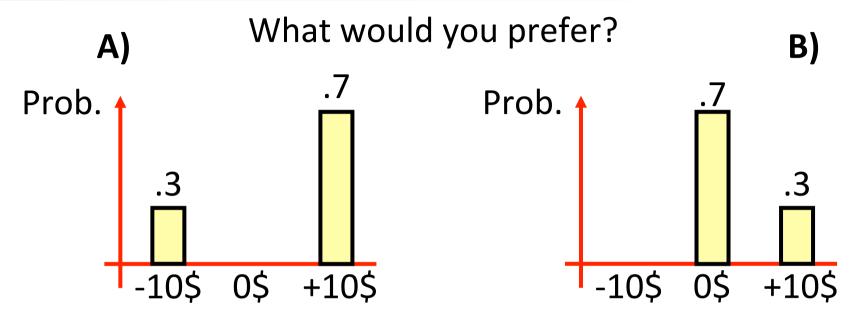
Suppose $P(\mathbf{x}_V,h) \in \{0\} \cup [\delta,1]$ for all \mathbf{x}_V,h Then it holds that

$$\operatorname{Cost}(\pi_{\operatorname{Greedy}}) \leq \mathcal{O}\left(\log \frac{1}{\delta}\right) \operatorname{Cost}(\pi^*)$$

First approximation guarantees for **nonmyopic VOI** in general graphical models!

Example: The Iowa Gambling Task

[with Colin Camerer, Deb Ray]



Various competing theories on how people make decisions under uncertainty

- Maximize expected utility? [von Neumann & Morgenstern '47]
- Constant relative risk aversion? [Pratt '64]
- Portfolio optimization? [Hanoch & Levy '70]
- (Normalized) Prospect theory? [Kahnemann & Tversky '79]

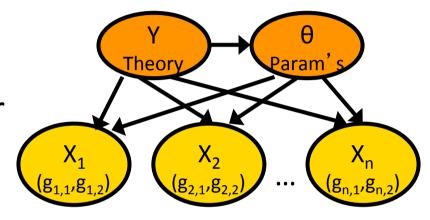
How should we design tests to distinguish theories?

Iowa Gambling as BED

Every possible test $X_s = (g_{s,1}, g_{s,2})$ is a pair of gambles

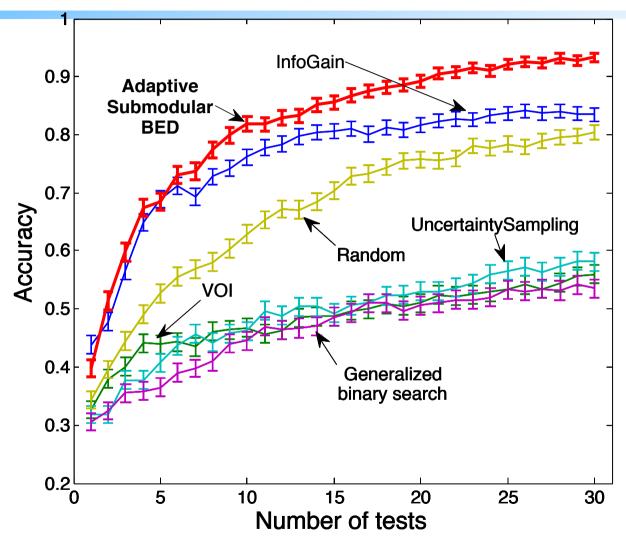
Theories parameterized by θ

Each theory predicts utility for every gamble $U(g,y,\theta)$



$$P(X_s = 1 \mid y, \theta) = \frac{1}{1 + \exp(U(g_{s,1}, y, \theta) - U(g_{s,2}, y, \theta))}$$

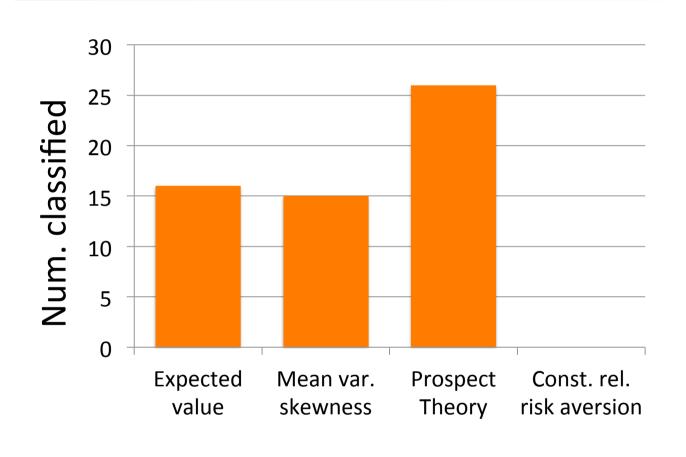
Simulation Results



Adaptive submodular criterion (EC²) outperforms existing approaches

Experimental Study

[with Colin Camerer, Deb Ray]



Study with 57 naïve subjects

32,000 designs

40s per test ⊗

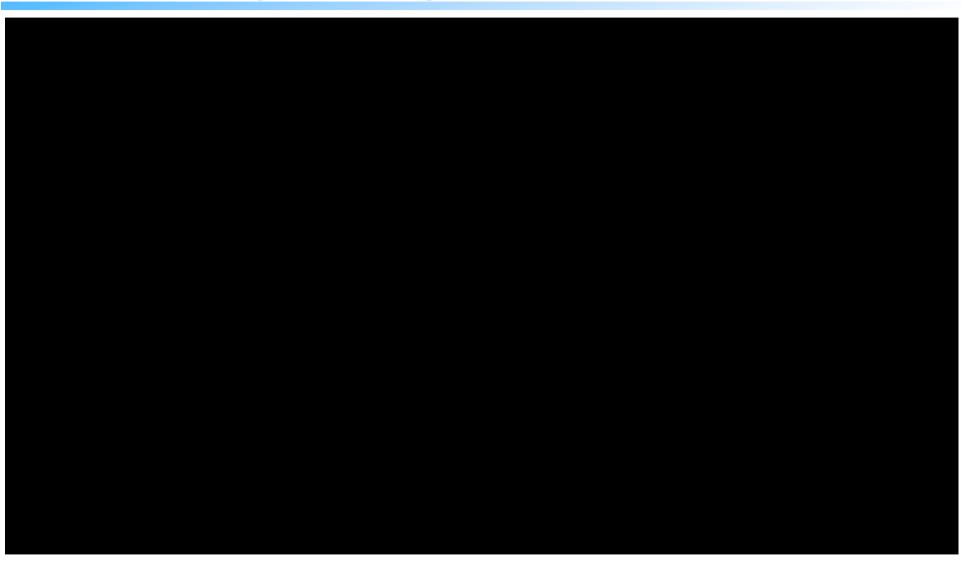
Using lazy evaluations:

<5s per test ©

- Strongest support for PT, with some heterogeneity
- Unexpectedly no support for CRRA
- Submodularity enables real-time performance!

Application: Touch-based localization

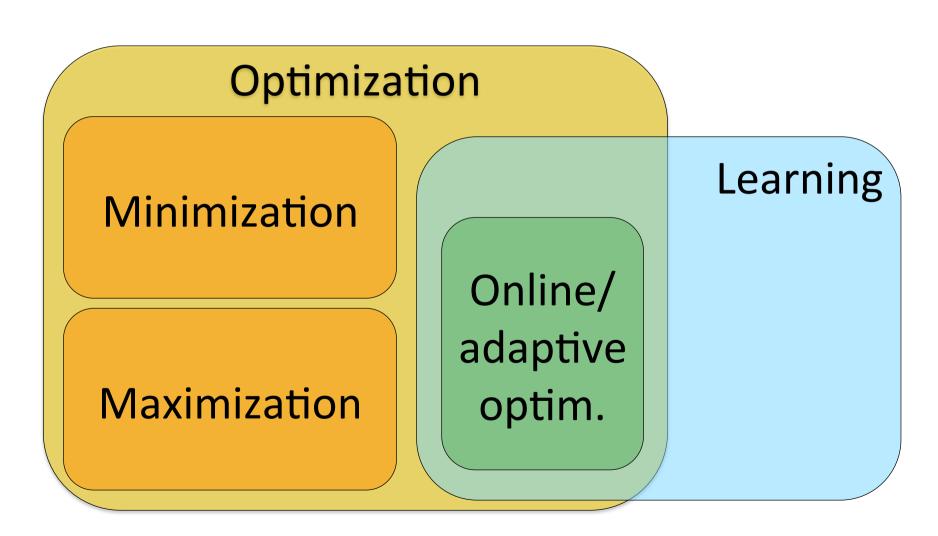
[Javdani, Klingensmith, Bagnell, Pollard, Srinivasa, ICRA 2013]



Interactive submodular coverage

- Alternative formalization of adaptive optimization [Guillory & Bilmes, ICML '10]
 - Addresses the worst case setting
- Applications to (noisy) active learning, viral marketing [Guillory & Bilmes, ICML '11]

What to do with submodular functions



Other directions

- Game theory
 - Equilibria in cooperative (supermodular) games / fair allocations
 - Price of anarchy in non-cooperative games
 - Incentive compatible submodular optimization
- Generalizations of submodular functions
 - L#-convex / discrete convex analysis
 - XOS/Subadditive functions
- More optimization algorithms
 - Robust submodular maximization
 - Maximization and minimization under complex constraints
 - Submodular-supermodular procedure / semigradient methods
- Structured prediction with submodular functions

Further resources

- submodularity.org
 - Tutorial Slides
 - Annotated bibliography
 - Matlab Toolbox for Submodular Optimization
 - Links to workshops and related meetings
- discml.cc
 - NIPS Workshops on Discrete Optimization in Machine Learning
 - Videos of invited talks on videolectures.net

• •

Conclusions

- Discrete optimization abundant in applications
- Fortunately, some of those have structure: submodularity
- Submodularity can be exploited to develop efficient,
 scalable algorithms with strong guarantees
- Can handle complex constraints
- Can learn to optimize (online, adaptive, ...)