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Two faces of submodular functions

Convex aspects
= minimization!

Concave aspects
=» maximization!




Submodular maximization

max F'(.5)
SCV

=» submodularity and concavity



Concave aspects

¢ submodularity:

ACB, s¢ B:
F(AUs)— F(A)

@ concavity:
a<b, s>0:

fla+s)— fla)

F(A) “intuitively”
>

| A

[V

|V

F(BUs)— F(B)

f(b+s)— f(0)
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Maximizing submodular functions

maximum
¢ Suppose we want for submodular F
A" = arg mjLXF(A) st. ACV
o Example: | |;°\|

e F(A) =U(A) — C(A) where U(A) is submodular utility,
and C(A) is supermodular cost function

¢ In general: NP hard. Moreover:

o If F(A) can take negative values:
As hard to approximate as maximum independent set
(i.e., NP hard to get O(n'¢) approximation)



Exact maximization of SFs

¢ Mixed integer programming
¢ Series of mixed integer programs [Nemhauser et al ‘81]
¢ Constraint generation [Kawahara et al ‘09]

¢ Branch-and-bound
¢ ,Data-Correcting Algorithm® [Goldengorin et al '99]

Useful for small/moderate problems

All algorithms worst-case exponential!
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Rando*mized USM (Buchbinder et al ‘12)

{} \Y;

Start with A={}, B=V
Fori=1ton
vy =max|( F(AU{s;}) — F(A),0
v_ =max| F(B\{s;}) — F(B),0
Pick U ~ Unif(|0, 1])
If U < U—I—/(”—I— —|—v_)S€t A%AU{SZ}
Else B <+ B\ {s;}

Return A (: B) 11



Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak ’09; Buchbinder, Feldman, Naor, Schwartz '12]

Theorem
Given a nonnegative submodular function F,

RandomizedUSM returns set A; such that
F(AR) 2 1/2 max, F(A)

e Cannot do better in general than %2 unless P = NP

12



Unconstrained vs. constraint maximization

Given monotone utility F(A) and cost C(A), optimize:

Option 1: Option 2:
max F(A)—C(A) max F(A)
st. ACV s.t. C(A) < B
“Scalarization” “Constrained maximization”

Can get 1/2 approx..  \What is possible?
if F(A)-C(A) = 0
for all sets A

Positiveness is a
strong requirement ®

13
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Monotonicity
Placement A ={1, 2} Placement B ={1,...,5}

ool | a%;g% sl A b
, @ ﬁk‘% @
SE B@P

—
s

L L

QL L

@HOF%

8@8
.

@@@ O IZIIZI@:'@@@ O 50O

Fis monotonic: VA,s: F(AU{s})— F(A) >0
A(s|A) >0

Adding sensors can only help



Cardinality constrained maximization

¢ Given: finite set V, monotone SF F

o Want:[ 4 €V such that ol |
A* = argmax F(A) 4 i@ UJjO gig&’ [%
A<k %) 1 {P
NP-hard! 3 i g
O :



Greedy algorithm

¢ Given: finite set V, monotone SF F

¢ Want: A" CV such that

A* = argmax F(A)
A<k

NP-hard!

Greedy algorithm:
Start with 4 = ()

Fori=1tok
s* «— argmax F (AU {s})

A AU{s*)

How well can this simple heuristic do?

17



Performance of greedy

(o

Optimal
=
oo 7|
C
0 6§ Greedy | Temperature data
c 5t from sensor network
| -
S 4
=

1 2 3 4 5
Number of sensors placed

Greedy empirically close to optimal. Why?

18



One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey '78]

For monotonic submodular functions,
Greedy algorithm gives constant factor approximation

oreed ) 2 (1-1/6) F(Aot)

~63%

¢ Greedy algorithm gives near-optimal solution!

¢ In general, need to evaluate exponentially many sets to do better!
[Nemhauser & Wolsey '78]

¢ Also many special cases are hard (set cover, mutual information, ...)

19



Scaling up the greedy algorithm [Minoux ~ 78]

In round i+1,
¢ have picked A, = {s,,...,s}
e pick s, = argmax F(A. U {s})-F(A))
l.e., maximize “marginal benefit” A(s | A)

Als | A) = F(A; U {s})-F(A)

Key observation: Submodularity implies

A(s |A) 2A(s | Ay

sl |

i<j => Als | A)Z2A(s | A)

Marginal benefits can never increase!

20



“Lazy” greedy algorithm [Minoux ’ 78]

Lazy greedy algorithm:

- First iteration as usual Benefit A(s | A)

- Keep an ordered list of marginal . -
benefits A, from previous iteration B .

- Re-evaluate A, only for top o
element

- If A, stays on top, use it, d
otherwise re-sort 6

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec, Krause et al. " 07]



Empirical improvements [Leskovec, Krause et al’06]

- - E ‘ 400 \ \ \
ol o300 A=
:Ij = ! Exhaustive search l." Ul © Exhaustive search
Q < i / (All subsets) i § 3001 (All subsets)
2 E o} | « 8¢
7)) — 200 i Naive g ) — :
. — ) i — 0 o Naive
| £ i greedy *—| E2007, .
o| F i s ol &
& ! = =
% g 100 ! ‘ Fast greedy % € 100| —
— c ; —| 2 Fast greedy
> i
= i
v O == * 1t ?X( —
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1

Number of sensors selected Number of blogs selected

Blog selection ——~" &

30x speedup 700x speedup
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Network inference

lipstick on a pig our entire economy

is in danger

e to help me

. economy must not fail
nunity
ilities .
the most serious

financial crisis since

the great depression

fundamentals of
our economy are
strong

president's
job to deal
- with more
' * thanone
. thing at
- once

effort to protect the american

decent person and a person
that you do not have to be
scared of as president of
the united states

this is something that all of us will
swallow hard and go forward with

i think when you sj
who is the real the wealth around
barack obama good for everybod

i am not
president

he's palling around
with terrorists

hey can she is a diva
i call you takes no adv
from anyone

29 9/5 912 9/19 9/26 10/3 10/10 7 10117 10/24

How can we learn who influences whom?
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Cascades in the Blogosphere

Machine Learning hni“ﬂhni“ﬂ
. ' l (Theol’)’) A Directory 6f Wonderful Things

'sisu cngadget®

LA L
B0 MDL s, bt et e e R (o
Bayen, ML sl comebubones )

g s g wn m—— o —

Simpsons film references - frame-by-frame

Time

Simpsons film references - frame-by-frame

Information
cascade

24



Inferring diffusion networks
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

Given: Want:

engadget™ » __—> engadget

et

n u =
D3 b0 na
tat

1

L] ] B
| fof
‘A Directory OF Wonderrut Things 0

Given traces of influence, wish to infer sparse
directed network G=(V,E)

=» Formulate as optimization problem
E* = arg max F(F)
| E|<k

25



Estimation problem

. .
' & gt L] ] ;
Sisu o 23 boinaboinats
R " story o wanastau, Tones
LR ~e

L] L] &
-
boinaboinag

¢ Many influence trees T consistent with data
» For cascade C, model P(C.| T)

¢ Find sparse graph that maximizes likelihood for all
observed cascades

=» Log likelihood monotonic submodular in selected edges

F(F) = Zlog max P(C; | T)

tree TCFE 26



Evaluation: Synthetic networks

1 | | I I ]
0.8 -
C
3 06 -
D
g 04 .
021 Netlnf ]
0 Baseline, | 1 1
0 02 04 06 038 1
Recall

1024 node hierarchical Kronecker
exponential transmission model

Precision

1 %‘\ieiinfl ™~
Baseline
0.8 |

06
04 §

02 r

0 L L L L L
0 02 04 06 038 1
Recall

1000 node Forest Fire (a=1.1)
power law transmission model

¢ Performance does not depend on the network

structure:

¢ Synthetic Networks: Forest Fire, Kronecker, etc.
¢ Transmission time distribution: Exponential, Power Law

¢ Break-even point of > 90%
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Diffusion Network
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

e PR » Blogs

) Y . .
. /o @ Mainstream media

Actual network inferred from 172 million
articles from 1 million news sources g



Document summarization [Lin & Bilmes ‘11]

¢ Which sentences should we select that best
summarize a document?

29



Marginal gain of a sentence

C

¢ Many natural notions of ,,document coverage” are
submodular [Lin & Bilmes ‘11]

30



Document summarization

F(S) = R(S) + AD(S)

\

Relevance Diversity

31



Relevance of a summary
A

F(S) = R(S) + AD(S) **") %

How well is sentence i ,covered” by S
Ci(S) =) w;;
jES X

Similarity between i and |
32



Diversity of a summary

Z Z ’7’] O
@ @ O ® 3
@ @

P, O

Relevance of sentence j to doc. ® p, @ ®
rs = N § Ws 4 Clustering of sentences
' " in document

Similarity between i and j

33



Empirical results [Lin & Bilmes ‘11]

R F
L1(S) 4+ ARg(9) 12.18 | 12.13
L1(S)+Y20_, MRao.x(5) 12.38 |[12.33)
Toutanova et al. (2007) 11.89 | 11.89
Haghighi and Vanderwende (2009) 11.80 -
Celikyilmaz and Hakkani-tiir (2010) 11.40 -
Best system in DUC-07 (peer 15), using web search || 12.45 | 12.29

Best F1 score on benchmark corpus DUC-07!

Can do even better using submodular structured

prediction! [Lin & Bilmes ‘12]
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Submodular Sensing Problems

[with Guestrin, Leskovec, Singh, ukhatme, ]

i

Water distribution networks

Environmental monitoring [J WRPM ’08]
[UAI'O5, JAIR '08, ICRA “10]
:: (Theory)
g o [sisu |
engadge@
Recommending blogs & news
Experiment design [KDD ‘07, "10]

[NIPS ‘10, ’11, PNAS’13]

Can all be reduced to monotonic submodular maximization



More complex constraints

¢ So far: A* — argmaXF(A)
A<k

¢ Can one handle more complex constraints?

36



Example: Camera network

Ground set V ={14,1p,...,54,5}
Configuration: S = {vl, ... o}
Sensing quality model F:2V 5 R

Configuration is feasible if no camera is pointed in
two directions at once




Matroids

¢ Abstract notion of feasibility: independence

Sisindependent if ...

.|| <k

Uniform matroid

Partition matroid

... S contains at most one
element from each square

=]

... S contains no cycles

Graphic matroid

 Sindependent =2 T C Salsoindependent

38



Matroids

¢ Abstract notion of feasibility: independence

Sisindependent if ...

i e e /
T e o] I><I

.. |S| £k ... S contains at most one ... S contains no cycles
element from each group

Uniform matroid Partition matroid Graphic matroid

 Sindependent = T C Salsoindependent
 Exchange property: S, U independent, |S| > |U|
=>» some e € S can be added to U: [/ U e independent

* All maximal independent sets have the same size

39



Example: Camera network

Ground set V ={14,1p,...,54,5}
Configuration: S = {vl, ... o}
Sensing quality model F:2V 5 R

Configuration is feasible if no camera is pointed in
two directions at once

This is a partition matroid:
P = {1a716}7"'7p5 — {5a75b}

Independence:
SNP| <1




Greedy algorithm for matroids:

¢ Given: finite set V

> Want: | 4" €V such that
A* = argmax F(A)

A independent

I
il

s* < argmax F(AU{s})
s: AU{s} indep. al
A— AU{s") % i % _lF

v

Greedy algorithm:
Start with 4 = ()
While Js : AU {s} indep.




Maximization over matroids

Theorem [Nemhauser, Fisher & Wolsey '78]
For monotonic submodular functions,

Greedy algorithm gives constant factor approximation

I:(Areed ) =7 F(Aot)

o Greedy gives 1/(p+1) over intersection of p matroids

e Can model matchings / rankings with p=2:
Each item can be assigned < 1 rank, each rank can take < 1 item

o Can get also obtain (1-1/e) for arbitrary matroids [Vondrak et al '08]
using continuous greedy algorithm

42



Maximization: More complex constraints

¢ Approximate submodular maximization possible

under a variety of constraints:

¢ (Multiple) matroid constraints
¢ Knapsack (non-constant cost functions)

¢ Multiple matroid and knapsack constraints |

¢ Path constraints (Submodular orienteering)
¢ Connectedness (Submodular Steiner)
e Robustness (minimax)

‘ L )

Greedy
works well

b ]

Need
r non-greedy
algorithms

e Survey on ,Submodular Function Maximization®
[Krause & Golovin ‘12] on submodularity.org

43



Key intuition for approx. maximization

A
For submod. functions,
local maxima
can‘t be too bad

¢ E.g., all local maxima under cardinality constraints
are within factor 2 of global maximum

¢ Key insight for more complex maximization
=>» Greedy, local search, simulated annealing
for (non-monotone, constrained, ...)

44



Two-faces of submodular functions

Cuts,

_ Coverage,
clustering, diversity
similarity
Convex aspects
=» minimization! —
MAP inference summarization

Concave aspects

> 4 | _
maximization! -
:
"f‘ 3
y = Phe
e I;‘! “. o '. =

structured sparsity

regularization sensing

45



Unconstrained

Constrained

Maximization

NP-hard, but
well-approximable
(if nonnegative)

NP-hard but well-
approximable
,Greedy-(like)” for
cardinality, matroid
constraints;

Non-greedy for more
complex (e.g.,
connectivity) constraints

Minimization
Polynomial time!
Generally inefficent
(n"6), but can exploit
special cases

(cuts; symmetry;
decomposable; ...)

NP-hard; hard to
approximate, still useful
algorithms

46



What to do with submodular functions

Learnir@

47



What to do with submodular functions

, N
/ Learnir@
4

N/
AN
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Example 1: Valuation Functions

For combinatorial auctions, show bidders various
subsets of items, see their bids

Can we learn a bidder’s utility
function from few bids?

49



Example 2: Graph Evolution

-~

e

~

%

¢ Want to track changes in a graph
¢ Instead of storing entire graph at each time step, store

some measurements

-~

o

~

%

o Hope: # of measurements << # of edge changes in graph

50



Random Graph Cut #1

Cut value = 13 Cut value = 14

@ Choose a random partition of vertices
o Count total # of edges across partition

51



Random Graph Cut #2

Cut value = 13 Cut value =12

o Choose another random partition of vertices
o Count total # of edges across partition

52



Symmetric Graph Cut Function

F(A) = sum of weights of edges between A and V\A
* V =set of vertices

* One-to-one correspondence of graphs and cut functions

Can we learn a graph from the value of few cuts?
[E.g., graph sketching, computational biology, ...]

53



General Problem: Learning Set Functions

Base Set V
Set function F:2¥ = R

Can we learn F from few measurements / data?

{(Ala F(Al))v S (Ama F(Am))}

54



“Regressing” submodular functions
[Balcan, Harvey STOC ‘11]

o Sample msets A, ... A_, from dist. D; see F(A,), ..., F(A,,)
¢ From this, want to generalize well
o| Fis(a,e,8)-PMAC iff with prob. 1-8 it holds that

Pap [F(A) < F(A) < aF(A)| >1-¢

Theorem: cannot approximate better than
o = n3 /log(n)
unless one looks at exponentially many samples A,

But can efficiently obtain o, = n”




Approximating submodular functions
[Goemans, Harvey, Kleinberg, Mirrokni,  08]

o Pick msets, A, ... A_, get to see F(A,), ..., F(A,)
¢ From this, want to approximate F' by [ s.t.

F(A) < F(A) < aF(A) for all A

Theorem: Even if

¢ Fis monotonic
e we can pick A, adaptively,

cannot approximate better than Ol = n” / Iog(n)
unless one looks at exponentially many sets A,

But can efficiently obtain o = n”* log(n)

56



What if we have structure?

o To learn effectively, need additional assumptions
beyond submodularity.

o Sparsity in Fourier domain [Stobbe & Krause '12]
F(A)= > (-)A"PIF(B)
BCV T
Sparsity: Most coefficients =0

¢ ,Submodular” compressive sensing
e Cuts and many other functions sparse in Fourier domain!

o Also can learn XOS valuations [Balcan et al ‘12]
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Results: Sketching Graph Evolution
[Stobbe & Krause ‘12]

* Tracking evolution :

of 128-vertex Loﬁs |

subgraph using 507 N, ek

random cuts gzi | \
* A =number of ;2‘3‘

differences 0.2

between graphs 0.1

0 200 400 600 800 | 1000 1200 1400
Number of measurements

¢ Autonomous Systems Graph (from SNAP)
e For low error, observing m ~ 8 A random cuts suffices
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What to do with submodular functions

N

AN

~

- e
- N
Online/
adaptive
optim.
NN — /
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Learning to optimize
o Have seen how to

e optimize submodular functions

e learn submodular functions

What if we only want to
learn enough to optimize?

60



Learning to optimize submodular functions

e Online submodular optimization

¢ Learn to pick a sequence of sets to maximize a sequence of
(unknown) submodular functions

e Application: Making diverse recommendations

e Adaptive submodular optimization
e Gradually build up a set, taking into account feedback
¢ Application: Experimental design / Active learning

61



News recommendation

YAHOO.’® NEWS

HOME U.S. WORLD BUSINESS ENTERTAINMENT SPORTS TECH POLITICS SCIENCE HEALTH

Top Stories ABC News Latest News Slideshows AP Reuters AFP

Everest weekend death toll reaches 4 ~p -2 hrs 7 mins ago

Climbers have reported seeing another body on Mount Everest, raising the death toll to
four for one of the worst days ever on the world’s highest mountain. More »

Colombia Secret Service prostitution scandal spreads to DEA Asc News -2

hrs ago

The Drug Enforcement Administration announced that at least three of its agents are
under investigation for allegedly hiring prostitutes in Cartagena. More »

Obama: U.S. can’t wait for Afghanistan to be 'perfect’ The Ticket- 7 hrs ago

President Obama acknowledged "risks" in his decision to withdraw U.S. combat forces
from Afghanistan by the end of 2014 but said war-weary Americans can't wait for that
strife-torn country to be "perfect.” More »

Why ex-Rutgers student got 30-day sentence in spycam case Christian Science
Monitor - 9 hrs ago

A former Rutgers University student was sentenced to serve 30 days in jail in a case of
webcam spying that drew national attention to issues of online privacy, suicide, and

4 S | M | 5 NN




Application: Diverse Recommendations

“Google to DOJ: Let us prove to users that NSA isn't snooping on them”
“US tech firms push for govt transparency on securityReuters”
“Internet Companies Call For More Disclosure of Surveillance”

“NSA scandal: Twitter and Microsoft join calls to disclose data requests”
“NSA Secrecy Prompts a Pushback”

“Google to DOJ: Let us prove to users that NSA isn't snooping on them”
“Storms Capable of Producing Derecho Possible in Midwest Today”
“Ohio kidnap suspect pleads not guilty”

“Five takeaways from Spurs-Heat in Game 3 of the NBA Finals”
“Samsung Unveils Galaxy S4 Zoom With 16 MP Camera”

Prefer recommendations that are both relevant and diverse



Simple model

o We're given a set of articles 1/

» Each round:
o A user appears, interested in a subset of the articles g,
o We recommend a set of articles A,
e The user clicks on any displayed article that she is interested in

Ft(At) — m1n(|At M St|, 1)

¢ Goal: Maximize the total #of clicks ZFt (Ay)
o Challenge:

¢ We don‘t know which articles the user is interested in!
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Online maximization of submodular functions
[Streeter, Golovin NIPS ‘08]

Picksets A, A, A, L Observe either
\ \ \ / F., oronly F.(A,)
SFs Fi F, F, .
\ \ \
Reward r;=F,(A;) r, r, .. rT Total: ), r, 2 max
> Time

Goal: Want to choose A,,...A, s.t. the regret
T

R+ = max Fi(A) — F. (A
r= max 32 A(A) - 3 R4

grows sublinearly, i.e., RT/T 0

For k=1, many good algorithms known! ©
But what if k>1?
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Online Greedy Algorithm

[Streeter & Golovin, NIPS "08]

Replace each stage of greedy algorithm with a
multi-armed bandit algorithm.

[Select {a,, a, , A3, .,

r “
Feedback to Ej for action a; is (unbiased est. of)

F{ay, @y -y 314, @}) — Fi{ay, @y, -y A141)




Online maximization of submodular functions
[Streeter, Golovin NIPS ‘08]

Theorem
Online greedy algorithm chooses A,,...,A; s.t.
for any sequence F,,...,F;

T T
D Fi(A) > max Y Fy(A)
t=1

A|<k
t=1

Can get ‘no-regret’ over greedy algorithm in hindsight
l.e., can learn "enough’ about F to optimize greedily!

67



Stochastic linear submodular bandits
[Yue & Guestrin ‘11]

¢ Basic submodular bandit algorithm has slow convergence

o Can do better if we make stronger assumptions
e Submodular function is linear combination of m SFs

1=1
o We evaluate it up to (stochastic) noise*
Fi(S) = F(5) + noise
=» LSBGreedy algorithm

*some independence conditions ¢



User Study [Yue & Guestrin ’11]

o Real data: >10k articles
o T=10 days, rec. 10 articles per day

o 27 users rate articles, aim to maximize #likes

V4

“Google to DOJ: Let us prove to users that NSA isn't snooping on them” (,‘/
“Storms Capable of Producing Derecho Possible in Midwest Today” Q/
“Ohio kidnap suspect pleads not guilty” X

“Five takeaways from Spurs-Heat in Game 3 of the NBA Finals” C/
“Samsung Unveils Galaxy S4 Zoom With 16MP Camera” X

o LSBGreedy outperforms baselines that fail to ...
¢ adapt weights (no personalization)
¢ address the exploration—exploitation tradeoff
o model diversity explicitly



Other results on online submodular optimization

¢ Online submodular maximization

e No (1-1/e) regret for ranking (partition matroids)
[Streeter, Golovin, Krause 2009]

¢ Distributed implementation [Golovin, Faulkner, Krause ‘2010]

e Online submodular coverage

e Min-cost / Min-sum submodular cover
[Streeter & Golovin NIPS 2008, Guillory & Bilmes NIPS 2011]

@ Online Submodular Minimization
¢ Unconstrained [Hazan & Kale NIPS 2009]
¢ Constrained [Jegelka & Bilmes ICML 2011]

¢ See also the ,submodular secretary problem*
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Learning to optimize submodular functions

e Online submodular optimization

¢ Learn to pick a sequence of sets to maximize a sequence of
(unknown) submodular functions

e Application: Making diverse recommendations

e Adaptive submodular optimization
¢ Gradually build up a set, taking into account feedback
e Application: Experimental design / Active learning
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Adaptive Sensing / Diagnosis

s .;fx.li\»"

.L,Lw' 1
MM
i uuuu

Want to effectively diagnose while minimizing cost of testing!
Classical submodularity does not apply ®

Can we generalize submodularity for
sequential decision making?
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Adaptive selection in diagnosis

o Prior over diseases P(Y) @

» Deterministic test outcomes P(X, | Y)

Cetver?) Caatn) Coino

o Each test eliminates hypotheses y

States y

73



Problem Statement

Given:
¢ ltems (tests, experiments, actions, ...) V={1,...,n}

¢ Associated with random variables X,,..., X, taking values in O
e Objective: [ : 2V x 0V =R

¢ Policy T maps observation x, to next item

Value of policy r:  F'(m ZP xy ) f(m(xy),Xv)

Tests run by 1T

if world in state x
Want 7" € argmax F'(m) v

|| <k

NP-hard (also hard to approximate!)
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Adaptive greedy algorithm
» Suppose we’ve seen X, = X,
¢ Conditional expected benefit of adding item s:

A(s | x4) = ELf(A U {shxr) = (A,xv) | XA}

| |
Adaptive Greedy algorithgnefit if wolrld in state x,, f

Start with A = () Conditional on
Fori=1:k observations x,
o Pick s € argmax A(s | x4)
o Observe X, = x,,
* Set A+ AU {sk}

When does this adaptive greedy algorithm work?? 7



Adaptive submodularity
[Golovin & Krause, JAIR 2011]

Adaptive monotonicity:

A(s|x4) >0

Xz observes

more than x,
Adaptive submodularity: \

A(s|xa) > A(s | xp) whenever x4 = xp

Theorem: If f is adaptive submodular and adaptive
monotone w.r.t. to distribution P, then

) 2 (1-1/e) F(TT,)

F(TT

greedy

Many other results about submodular set functions

can also be “lifted” to the adaptive setting! y



From sets to policies
Submodularity Adaptive submodularity

Applies to: set functions policies, value functions

Ap(s| A)=F(AU{s}) — F(A) Ap(s|x4) = E[f(AU {s},xv) — f(A,xy) yxA]

Ap(s|A) >0 Ap(s|xa) >0
ACB=Ap(s|A)>Apr(s|B) |xa=xp=Ap(s|xa)>Apr(s|xp)
max F'(A) max F'(7)
A s

Greedy algorithm provides Greedy policy provides

+ (1-1/e) for max. w card. const. | . (1-1/e) for max. w card. const.

- 1/(p+1) for p-indep. systems . 1/(p+1) for p-indep. systems

- log Q for min-cost-cover - log Q for min-cost-cover

- 4 for min-sum-cover . 4 for min-sum-cover




Optimal Diagnosis
o Prior over diseases P(Y)
» Deterministic test outcomes P(X,, | Y) &
¢ How should we test to & & m

eliminate all incorrect hypotheses?

‘mass ruled out

At | xa) =E|by tif we

know x4

“Generalized binary search”

Equivalent to max. infogain




OD is Adaptive Submodular

bo := (( ) Objective = probability mass of hypotheses
you have ruled out.

g1 + by Outcome =0 Outcome =1

bo = b1, go = N
Not hard to show that  A(s | {}) > A(s | Xy.w)
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Theoretical guarantees

Garey & Graham, 1974;
Loveland, 1985;
Arkin et al., 1993;
Kosaraju et al., 1999;
Dasgupta, 2004;
Guillory & Bilmes, 2009;
Nowak, 2009;
Gupta et al., 2010

in) + 1) approximation.

SN\ With adaptive
submodular
analysis!

Result requires that tests are exact (no noise)!



What if there is noise?
[w Daniel Golovin, Deb Ray, NIPS “10]

o Prior over diseases P(Y)
» Noisy test outcomes P(X,, | Y)

¢ How should we test
to learn about y (infer MAP)?

¢ Existing approaches:

¢ Generalized binary search?
¢ Maximize information gain? Not adaptive submodular!

¢ Maximize value of information?

Theorem: All these approaches can have cost
more than n/log n times the optimal cost!

=>» |Is there an adaptive submodular criterion?? 81



Theoretical guarantees
[with Daniel Golovin, Deb Ray, NIPS ‘10]

Theorem: Equivalence class edge-cutting (EC?) is
adaptive monotone and adaptive submodular.
Suppose P(xy,h) € {0}U 4, 1] forall xy ., h
Then it holds that

1
Cost(Tgreedy) < O <log 5) Cost (™)

First approximation guarantees for nonmyopic VOI
in general graphical models!
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Example: The lowa Gambling Task
[with Colin Camerer, Deb Ray]

A) What would you prefer? B)
Prob. 4 7 Prob. 4 J
3 3
-10S 0S +10S -10S 0S +10S

Various competing theories on how people make decisions
under uncertainty

o Maximize expected utility? [von Neumann & Morgenstern ‘47]

o Constant relative risk aversion? [Pratt ‘64]

« Portfolio optimization? [Hanoch & Levy ‘70]

o (Normalized) Prospect theory? [Kahnemann & Tversky ~ 79]

How should we design tests to distinguish theories? |



lowa Gambling as BED

Every possible test X, = (g, ;,8; ,) is a pair of gambles
Theories parameterized by 0

Each theory predicts utility for
every gamble U(g,y,0)

PX3:1 79 —
( ) = e U 0e1.0.0 = U(9e2.9.0)

0
Difference in utility AU



Simulation Results

InfoGain
0.9r Adaptive |
Submodular\
o8l BED i
0.7 i

UncertaintySampling

Random

Accuracy
o
»

AN

Generalized
binary search

0.2 | | | |
0 5 10 15 20 25 30

Number of tests

Adaptive submodular criterion (EC?)
outperforms existing approaches



Num. classified

30

25

20

15 -

10

Experimental Study

[with Colin Camerer, Deb Ray]

Study with 57
naive subjects

32,000 designs

40s per test ®

Using lazy
| | evaluations:
Expected Meanvar. Prospect  Const. rel. <5s per test @

value skewness Theory risk aversion

e Strongest support for PT, with some heterogeneity

¢ Unexpectedly no support for CRRA

e Submodularity enables real-time performance! 86



Application: Touch-based localization
[Javdani, Klingensmith, Bagnell, Pollard, Srinivasa, ICRA 2013]




Interactive submodular coverage

¢ Alternative formalization of adaptive optimization
[Guillory & Bilmes, ICML ‘10]

¢ Addresses the worst case setting

¢ Applications to (noisy) active learning, viral marketing
[Guillory & Bilmes, ICML ‘11]
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What to do with submodular functions

Learnir@
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Other directions

¢ Game theory
¢ Equilibria in cooperative (supermodular) games / fair allocations
¢ Price of anarchy in non-cooperative games
¢ Incentive compatible submodular optimization

o Generalizations of submodular functions

o L#t-convex / discrete convex analysis
¢ XOS/Subadditive functions

e More optimization algorithms

¢ Robust submodular maximization
¢ Maximization and minimization under complex constraints

e Submodular-supermodular procedure / semigradient methods

o Structured prediction with submodular functions
90



Further resources

e submodularity.org
e Tutorial Slides

¢ Annotated bibliography
e Matlab Toolbox for Submodular Optimization
¢ Links to workshops and related meetings

e discml.cc

e NIPS Workshops on Discrete Optimization in Machine Learning
¢ Videos of invited talks on videolectures.net

Invited Talk R Invited Talk ‘, Keynote Talk
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Conclusions

¢ Discrete optimization abundant in applications

¢ Fortunately, some of those have structure:
submodularity

o Submodularity can be exploited to develop efficient,
scalable algorithms with strong guarantees

¢ Can handle complex constraints
¢ Can learn to optimize (online, adaptive, ...)
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