
1

A Source-to-Source Transformation Tool for Error Fixing

Dr. Youry Khmelevsky*, Dr. Martin Rinard**, Dr. Stelios Sidiroglou-Douskos**

* Computer Science, UBC Okanagan, Kelowna, BC, Canada

** CSAIL, MIT, Cambridge, MA, USA

Abstract

We present a methodology and a prototype of a
source-to-source transformation tool for error
fixing in C/C++ program source code for missing
condition checks after a method call. The missing
condition checks in a C program could lead to a
program crash. This tool can be extended for oth-
er programming languages in addition to C/C++.

The developed tool includes the ability to
generate and apply a fix for a source code without
human intervention. The tool can be run on dif-
ferent platforms, including MS Windows, Linux,
MAC OS and other operating systems. We evalu-
ate our technique by applying it to five widely
used open source programs. Our results show that
it is able to successfully detect and add the miss-
ing condition check or correct it after a method
call in the program, and that our detection and
error fixing technique is quite accurate in practice.

1 Introduction
A key component of any reliable software system
is its exception handling, which allows the system
to detect errors and react to them correspondingly
[1]. A system without proper exception handling
is likely to crash continuously, which renders it
useless for practical purposes. For instance, more
than 50% of all system failures in a telephone
switching application are due to faults in excep-
tion handling algorithms [1]. Even the simplest
exception handling strategy takes up to 11% of an
application’s implementation, and it is scattered
over many different files and functions and is

Copyright © 2013 Dr. Youry Khmelevsky, Dr. Martin
Rinard, and Dr. Stelios Sidiroglou-Douskos. Permission
to copy is hereby granted provided the original copy-
right notice is reproduced in copies made.

tangled with the application’s main functionality
[15, 16]. The C and Cobol programming lan-
guages do not explicitly support exception-
handling, but are still used to develop and support
software systems. The most common form of ex-
ception-handling method used by software pro-
grammers is the “return-code” technique that was
popularized as part of C and UNIX, as it's shown
in Figure 1 [30]:

1 if ((fd = open(filename, O_RDONLY)) == -1) {
2 fprintf (stderr, “Error %d opening file %s\n”,
 errno, filename);
3 exit();
4 }

Figure 1: The “return-code” technique example.

Although this technique is the most popular,
it has many major drawbacks [30]:

1. Error Prone: Checking return values by
if-statements is easy for programmers to
ignore.

2. Poor Modular Decomposition: The main
execution thread of the operation is
mixed with if-statements and error-
handling code.

3. Poor Testability: It is difficult to analyti-
cally verify that every possible error has
a known handler, and it is hard to test
every scenario in a systematic manner.

4. Inconsistency: The return value which
denotes error is inconsistent. Some func-
tions return NULL to indicate errors
while others use -1.

5. Lack of Information: Any additional data
crucial to handling exceptions must be
passed outside the return code method.

In this paper we present a technique and a
prototype of a source-to-source transformation

2

tool that detects missed checking of the return
value of a method call and adds the missed checks
or corrects them. Many programmers fail to in-
corporate error checking in specific classes of I/O
operations where I/O errors could occur and
where there is no mechanism in place to handle
the error. They also rely on certain assumptions,
such as “file output is always guaranteed", to en-
sure correct application operation. In many cases,
software developers duplicate source code to rep-
licate functionality, but this practice can produce
additional bugs when two identical code segments
are edited inconsistently [2]. The original code
can have unfixed errors too.

Incorrect error handling is a longstanding
problem in many application domains [3], but it is
especially troubling when it affects I/O operations.
File systems occupy a delicate middle layer in
operating systems. For instance, a popular operat-
ing system such as Linux has many tools and ap-
plications that are written in C, which offer no
exception handling mechanisms by which an error
code could be raised or thrown. Errors must prop-
agate through conventional mechanisms such as
variable assignments and function return values.
Correct error checking associated with an I/O
routine must occur between the set (called a defi-
nition or simply def) of the potential error value
and use of a result value or values along all possi-
ble paths of execution [4]. For instance, the C
code example for the fopen() call of the stdio.h C
library, which is shown in Figure 2 can lead to a
program crash. The successful return of the fopen()
call is a handle to a file. A zero, also referred to as
NULL, should then be used to report that the file
system was unable to open the file [4].

1 FILE * fp = fopen (sTmp, "w");
2 fprintf (fp,"%d", getpid ());

Figure 2: Code that may lead to a failure.

The code example in Figure 3 protects
against a possible error condition (lines 2 - 5) [4].

1 FILE * fp = fopen (sTmp, "w");
2 if (fp != NULL) {
3 fprintf (fp, "%d", getpid()) ;
5 }

Figure 3: Program logic guards against a possible
unsuccessful result.

Many other source code examples with incor-
rect error handling or a missed condition check
after a method call are available on the Internet,
which could be found by using such code search
engines as Google, Koders, Codase, etc. [4].

As we mentioned above, detecting and han-
dling errors in system calls written in older pro-
gramming languages such as C that do not
explicitly support exceptions typically relies on an
idiomatic approach for signaling and handling
exceptions. Though C++ supports exceptions,
C++ code may rely on legacy code and libraries
that are written in C, and use the return code idi-
om [5]. Bruntink et al [1] showed that exception
handling behavior is hard to test, as the root caus-
es that invoke the exception handling mechanism
are often difficult to generate. It is also very hard
to prepare a system for all possible errors that
might occur at runtime. The environment in which
the system will run is often unpredictable, and
errors may thus occur for which a system was not
prepared. Moreover, they inform “any software
system that is developed in a language without
exception handling support will suffer the same
problems". Mortensen et al described the follow-
ing potential faults associated with the return
codes [5]:

1. If the system does not check the return
code of a function, the exception is ig-
nored with potentially unpredictable be-
havior beyond that point.

2. The error code may need to be propagat-
ed up the call stack so that a series of
calling functions can correctly check and
signal exceptions through return values.

3. Contextual information may need to be
passed from the location of the exception
to the function that should handle it.
Such information is often managed
through global variables and log files and
may not be consistently implemented
throughout an application.

1.1 Usage Scenarios
We want to detect faults statically, because early
detection and prevention of faults is less costly
[28, 29], and because testing exception handling
is inherently difficult [1].

The developed tool scans C/C++ source code
and is capable of statically detecting violations to
the return code idiom in the source code. We use

3

def-check-use analysis for the systems prototype,
which was described by Bigrigg and Vos [4] for
static analysis and source code correction. In the
testing environment, before debugging C/C++
source code, the suspected code is deployed and
evaluated with accordance to the reported prob-
lems. In a few cases we were unable to repeat the
reported problems and we found that the problems
were not confirmed by some other users/testers
(for instance, the bug issue was reported once
only and nobody could confirm it). In other cases,
the version of the application was outdated, which
can be incompatible with the modern OS version,
or the current compiler version was incompatible
with the old version of the application. The source
code is then corrected by the tool, compiled, and
re-deployed for testing purposes. We implement
the following logical checks:

1. Checking of method calls against NULL
or other possible values. In the current
implementation we tested with the
fopen() method only. The method calls,
like fmpfile(), freopen(), fgets(), etc. can
be checked by the tool in future releases.

2. Check for the pointer name in the corre-
sponding check for the method call (if
the check was found by the tool).

3. Check for the main method type in the
source code to add appropriate return
statements.

Some extra parameters will be described later
in the following Sections.

1.2 Contributions
This paper makes the following contributions:

1. It presents a methodology for automati-
cally detecting missed check(s) of the re-
turn value of a method call in a C/C++
source code.

2. A technique of automatically fixing er-
rors in a source code. The developed pro-
totype tool automatically fixes the
system call error handling mechanism.
The tool recognizes the type of the call-
ing functions and then adds an appropri-
ate return statement.

3. Experimental results: It presents experi-
mental results that characterize how well
the technique works on five applications

drawn from the open-source software
community. The results show that our
technique can detect and fix missed
checks of the return value of the method
calls, and/or correct appropriate pointer
names in the source code as well.

2 Related Works
In this section we discuss related works in source
code checking and source code error fixing. As it
is discussed in [24], the “current static code anal-
ysis tools are able to detect errors in programs, but
most cannot actually fix the errors. Manual de-
bugging is necessary to fix these issues, but de-
velopers make mistakes and often work under
tight deadlines”.

2.1 Source Code Checking
Marri et al [6] proposed a life-cycle model that
can be used to develop approaches based on code
searching and mining in the two phases of the
life-cycle model. They also suggested post-
processing techniques for mining patterns from
gathered code examples, which can be used to
detect defects in a program under analysis. Fur-
thermore, they demonstrate the application of
their life-cycle model with a preliminary evalua-
tion. The developed PARSEWeb, which includes
16 heuristics. These heuristics are contrary to the
type checking done by a compiler. PARSEWeb
accepts queries of the form “Source object type →
Destination object type” and finds method-
invocation sequences that produce the destination
object type from the source object type. Our pro-
totype is developed to fix defects automatically in
a program under analysis.

Bigrigg and Vos [4] presented a methodology
that detects robustness failures in source code
where I/O errors could occur with no mechanism
in place to handle the error. The presented meth-
odology, based upon a static analysis of the pro-
gram, is to track the propagation of error reporting
in order to determine the assumptions used when
the software was created. A dataflow analysis was
described for detecting bugs in the propagation of
errors in user applications. It augments traditional
def-use chains with intermediate check operations.
A working implementation that is interprocedural
and context-sensitive has been applied to thou-
sands of lines of kernel code and detection of the
overwritten, out-of scope, and unsaved unchecked

4

errors on Linux file system implementations [7]:
CIFS, ext3, IBM JFS, ReiserFS, ext4, and shared
virtual file system (VFS). Flow- and context-
sensitive approaches produced results while
providing diagnostic information, including pos-
sible execution paths that demonstrate each bug
found. For the implementation, the CIL C front
end was used [8]. The WALi WPDS library [9]
was used to perform the interprocedural dataflow
analysis on the WPDS. Within the WALi-based
analysis code, weights utilizing using binary deci-
sion diagrams (BDDs) were used [10].

Mortensen and Ghosh [5] used an aspect-
oriented approach for throwing exceptions in
place of the “return code idiom" and discussed the
use of aspects to modularize scattered code for
detecting and handling errors in system calls, such
as fopen. Several potential faults associated with
the return code idiom, which are often managed
through global variables and log files and may not
be consistently implemented throughout an appli-
cation, are described [5]:

1. If the system does not check the return
code of that function, the exception is ig-
nored with potentially unpredictable be-
haviour beyond that point. This is a main
case of our research and our findings in
open source application and tools, pub-
lished on the Internet.

2. The error code may need to be propagat-
ed up the call stack so that a series of
calling functions must correctly check
and signal exceptions through return val-
ues. This is a possible problem, but un-
common in our findings.

3. Contextual information may need to be
passed from the location of the exception
to the function that should handle it.

They manually refactored the PowerAnalyzer
to use aspects for throwing and catching excep-
tions. This aspect provides a modular way of add-
ing exceptions using a pointcut that is easy to
specify and maintain since it is based only on the
name of the function (fopen) that triggers the error.
In our research our prototype tool performs static
analysis of program source code and adds missing
condition checks after a method call automatically.

ITS4, a token-based scanning tool for stati-
cally scanning C and C++ source code for securi-
ty vulnerabilities [11], offers real-time feedback
to developers during coding and scanning C++

code. ITS4 breaks a non-preprocessed file into a
series of lexical tokens, and then matches patterns
in that stream of tokens. Matching code and then
matching patterns in that stream of tokens. Match-
ing code is added by hand, so non-regular patterns
can be recognized [11]. They identified several
problems related to Advanced Static Analysis for
C/C++ and informed that C's liberal nature makes
the language poorly suited for static analysis.
They also addressed race conditions in file ac-
cesses, so-called “Time-Of-Check, Time-Of-Use”
(TOCTOU) problems. We use these in our tool as
well. The TOCTOU functions are classified,
based on their handler, into functions that can be
checks and functions that can be used. Every time
they see a function, they look at the identifier that
holds the file name. They store a mapping of vari-
ables to the list of TOCTOU functions that use
that variable, but they do not address the aliasing
problem.

Bruntink et al [1] analyzes the exception han-
dling mechanism of an industrial embedded soft-
ware system (developed by ASML, a Dutch
company) that uses the return code idiom for deal-
ing with exceptions. In the Related Work section
they discussed Fault (Bug) Finding techniques
and Metal [12], PREfix [13], and ESC [14] tools,
and the related model checking CMC tool [15].
Additionally, they discussed program verification,
which is focused on proving specified properties
of system tools (MOPS [16], SLAM [17] and ESP
[18]), and Idiom Checkers, that can find basic
coding errors [19], [20]. But, as they inform, these
tools are incapable of verifying domain-specific
coding idioms, such as the return code idiom [1].
On the other hand, more advanced tools [21], [22]
are restricted to detecting higher-level design
flaws but are not applicable at the implementation
level [1]. The focus of the paper was to analyze
which faults can be introduced and to show how
they can be detected and prevented. Based on the
fault model, they developed SMELL, the State
Machine for Error Linking and Logging, which is
capable of statically detecting violations to the
return code idiom in the source code, and is im-
plemented as a CodeSurfer plugin [36]. Their
approach has limitations, both formally unsound
and incomplete [1]: both false negatives (missed
faults) or false positives (false alarms) are possi-
ble, but as they inform, the unsoundness property
and incompleteness properties do not necessarily
harm the usefulness of their tool, given that the
tool still allows to detect a large number of faults

5

that may cause much machine down-time, and
that the number of false positives remains man-
ageable.

The DynaMine tool [23] analyzes source
code check-ins (revision histories) to find highly
correlated method calls as well as common bug
fixes in order to automatically discover applica-
tion-specific coding patterns. The combination of
revision history mining and dynamic analysis
techniques leveraged in DynaMine is effective for
both discovering new application-specific patterns
and for finding errors when applied to very large
applications. They have analyzed Eclipse and
jEdit Java applications. Their technique for min-
ing patterns from software repositories can be
used independently with a variety of bug finding
tools by looking for pattern violations at runtime,
as opposed to using a static analysis technique.
They inform that certain categories of patterns can
be gleaned from antipattern literature, but many
antipatterns tend to deal with high-level architec-
tural concerns rather than with low-level coding
issues. The idea to use patterns and antipatterns is
interesting, but for many typical errors in the
source code, a more simple way can be used to fix
the common problems. One can simply add a
missed check to the return code of a method call.
Source code error fixing automatic patch genera-
tion was described by Michael Lam in [24], but he
says that current techniques are limited to well-
defined scopes and problem domains, and they
can only suggest good solutions to very specific
types of problems, usually involving common
programming mistakes. Future work may involve
extending current techniques, integrating tools
from related fields, and justifying the usefulness
of patch generation with empirical studies. She
says that it is ultimately impossible to always
generate perfect patches.

McAdam in [25-26] describes a system for
fixing type errors in functional programs. This
system finds possible replacements for type-
unsafe expressions by rewriting them according to
currying and associativity axioms, performing
associative-commutative unification on the result-
ing forms, and finally performing a partial evalua-
tion to achieve a human-readable and useful
output. McAdam implemented this system in a
tool for Mlj.

Weimer [27] describes a system for generat-
ing patches from static analysis error reports. This
tool is able to automatically generate missing
code or remove extraneous code to produce a pro-

gram that satisfies a given policy. Weimer also
includes a study of the effectiveness of this meth-
od across several projects by reporting bug fix
rates as correlated with automatic patch sugges-
tion.

Several projects have used the term “auto-
matic patch generation” to describe the process of
repairing binaries after a malicious attack such as
a buffer overflow [24], [28-30].

Error correcting compilers [31], [32] actually
serve a slightly different purpose. The main goal
of an error-correction routine in a compiler is to
continue the compilation process even after find-
ing a syntactic error, and there are few attempts to
find or fix semantic or logical errors [24].

AutoPaG [33] aims at reducing the time
needed for software patch generation. It focused
on the out-of-bound vulnerability, which includes
buffer overflows and general boundary condition
errors. The AutoPaG is able to catch the out-of-
bound violation, and then, based on data flow
analysis, automatically analyzes the program
source code and identifies the root cause – vulner-
able source-level program statements. AutoPaG
generates a source code patch to temporarily fix it
without human intervention.

Hovemeyer and Pugh [34] demonstrate au-
tomatic detector implementation for a variety of
bug patterns found in Java programs. They have
found that the effort required to implement a bug
pattern detector by using relatively simple static
analysis techniques tends to be low, and that even
extremely simple detectors find bugs in real ap-
plications. They have found that even well tested
code written by experts contains a surprising
number of obvious bugs and even Java (and simi-
lar languages) has many language features and
APIs, which are prone to misuse. A simple auto-
matic technique can be effective at countering the
impact of both ordinary mistakes and misunder-
stood language features inspection. Authors have
implemented a number of automatic bug pattern
detectors in a tool called FindBugs [37]. They
discuss dereferencing a null pointer, which almost
always indicates an error. The detector for this
pattern catches many obvious null dereferences
errors, but they don’t discuss any automatic bug
fixing implementation for the null pointer excep-
tions to compare with our tool. The tool was de-
veloped for Java, not for the C language, as in our
research.

Microsoft’s PREfast is a similar utility for
static code analysis for MS Windows family of

6

OSs. “It can find defects in C/C++ code such as
buffer overruns, null pointer dereferencing, for-
getting to check function return value and so on”
[51]. PREfast is a tool for an automatic code re-
view, but not for automatic bugs fixing by source-
to-source code transformation and doesn’t work
on other operating systems to compare with our
OS agnostic prototype.

The approach described in [52] uses legality
assertions, source code assertions inserted before
each subscript and pointer dereference that explic-
itly check that the referencing expression actually
specifies a location within the array or object
pointed at run time. They have developed a trans-
formation system to automatically insert legality
assertions in the source program where array ele-
ments are accessed or pointers are dereferenced.
In our transformation tool we used conditions
checks instead of assertions.

3 A Model for the Tool
To distinguish different components of the return
code idiom in our tool, we developed a model for
missed exception handling within the return code
idiom [1], the exception handling mechanism
(EHM) [35] and the def-check-use analysis [4].

The Open Group Base Specifications Issue 6
IEEE Std 1003.1, 2004 Edition explains that “Up-
on successful completion, fopen() shall return a
pointer to the object controlling the stream. Oth-
erwise, a null pointer shall be returned, and errno
shall be set to indicate the error” [38].

Our model defines several different error
scenarios, which can be automatically fixed by the
developed tool. We investigated many C/C++
programs and tools when a method was called
without exception handling and when program
crashed during execution in our testing environ-
ment. We found references on the Internet for
such problems and some of them are described in
the Evaluation section. We found two main prob-
lems:

1. A missed error detection (or check) in
the source code. In our case, a missed
checking of the value of the method call
against NULL or another value. See ex-
ample in Figure 2 and the corrected
source code example in Figure 3.

2. Incorrect error detection (or check) in the
source code.

The return code idiom [1] relies on the fact
that when an error is received, the corresponding
error value should be logged and should propa-
gate to the return statement. In our model, the
return code idiom relies on the fact that when an
error is received from the call function, the corre-
sponding error value should be evaluated
(checked) and error notification should propagate
to the return statement (returned), depending on
the type of the main or calling function (void, int,
bool or char methods).

A call function can be regarded as a black
box, i.e., only its input–output behaviour is con-
sidered. Any error values received from the call
functions (receive predicate in Table 1) are re-
garded as input. Outputs are comprised of the
error value that is returned by a main or calling
function (return) [1].

The fault model makes two simplifications.
First, it assumes that a function receives at most
one error during its execution. Second, only one
error value can be received, it makes little sense to
link more than one error value to it [1].

Our fault model consists of three categories.
Each includes a failure scenario. We define sever-
al potential faults associated with the return code
idiom [2]:

1. Category 1. The received error value x is
not checked. The exception is ignored
with potentially unpredictable behaviour
beyond that point (see example in Figure
2).

2. Category 2. The received error value x is
not checked, but the value y is checked
instead. This is a possible human error,
when the part of source code can be cop-
ied from examples from the Internet or
internal code repositories. The pointer
names are different (see lines 1, 2, and 6
in example in Figure 4). The exception is
ignored with potentially unpredictable
behaviour beyond that point.
Possible problems include erroneously
checked error value y.

3. Category 3. The received error value x is
not checked, but the value y is checked
instead, the exception is ignored and the
value y is used with potentially unpre-
dictable behaviour beyond that point (see
example in Figure 5).

7

The predicates capturing the faults in each
category are displayed in Table 1. Just as an ex-
ample the last column in the table (Correct) shows
correct error handling for a function, where z is
returning error message to the calling function
(void for the void type of the calling function, -1
for the int, -1 for the float, -1 for double, False for
the bool if the bool datatype and False were de-
clared in the C application explicitly, and 1 for the
char datatype).

Table 1. Predicates for the three fault categories

and the last one show correct error handling.

Category 1 Category 2 Category 3 Correct

receive (x) receive (x) receive (x) receive (x)

^ use (x) ^ check (y) ^ check (y) ^ check (x)

 ^ use (x) ^ use (y) ^ return (z) ^

 ^ x ≠ y ^ x ≠ y z = { Void,
False, -1, 1 for
char}

1 FILE * fp1 = fopen (sTmp , "w");
2 if (fp2 == NULL) {
3 printf ("Error while opening file! \n");
4 return -1;
5 }
6 fprintf (fp1, "%d", getpid ());
7 fclose (fp1);

Figure 4: Category 2 possible fault associated
with the return code idiom.

1 FILE * fp1 = fopen(sTmp, "w");
2 if (fp2 == NULL) {
3 printf ("Error while opening file! \n");
4 return -1;
5 }
6 fprintf(fp2,"%d", getpid ());
7 fclose(fp2);

Figure 5: Category 3 possible fault associated
with the return code idiom.

4 Example
Figure 6 presents a snippet of the Rsync utility
source code for the Rsync version 2.6.3, protocol
version 29 that may lead to a failure [39]. At line
147, the fopen() method was used without check-
ing the value of the method call against NULL.

As we discussed in the Section 1, such source
code can lead to a program crash, or as it was
reported [40]: “... got a core dump when starting a
daemon which tried to write to a log file that it
had no permission to write to."

142 void log open(void)
143 {
144 if (logfname && !logfile) {
145 extern int orig_umask;
146 int old_umask = umask (022 | orig_umask) ;
147 logfile = fopen(logfname , "a ") ;
148 umask (old_umask) ;
149 }
150 }

Figure 6: The Original Snippet of Rsync Utility
V.2.6.3, Protocol Version 29.

1 $ sudo rm /var/log/rsyncd.log
2 $ sudo mkdir /var/log/rsyncd.log
3 $ sudo /usr/local/bin/rsync --daemon -v --no-detach
4 $ sudo tail -f /var/log/messages
5 . . .
6 Dec 3 13:45:58 abrt [6491]: saved core dump of pid
 6490 (/usr/local/bin/rsync) to /var/spool/abrt/ccpp-
 1291401958-6490.new/coredump (425984 bytes)
7 Dec 3 13:45:58 abrtd: Directory 'ccpp-1291401958-
 6490' creation detected
8 Dec 3 13:45:58 abrtd: Executable
 '/usr/local/bin/rsync' doesn't belong to any package
9 Dec 3 13:45:58 abrtd: Corrupted or bad crash
 /var/spool/abrt/ccpp -1291401958-6490 (res:4),
 deleting

Figure 7: The Core Dump Registration with
Rsync Utility Version 2.6.3, Protocol Version 29.

We deployed the Rsync utility on a Linux
host and tested with different Rsync configuration
options. We indeed registered a core dump in the
system /var/log/messages, as it's shown in lines 6-
7 on Figure 7.

The developed tool corrected the Rsync utili-
ty source code automatically, by adding lines 147-
156, as it is shown in Figure 8. As a result of the
automatic source code debugging, we had no core
dump anymore and the Rsync utility was success-
fully running in the same testing environment, but
the logfile was written into the local logfile in-
stead of default location.

Note: In this example the additional option
for the tool was used to implement the spoofing
file in the local folder.

8

142 void log open (void) {
143 if (logfname && ! logfile) {
144 extern_int orig_umask ;
145 int old umask = umask (022 |orig_umask);
146 logfile = fopen(logfname ,"a ") ;
147 /* filehandler check for NULL was added
 automatically */
148 if(logfile == NULL) {
149 printf("Error while opening file!\n");
150 // the file is replaced by ./TempFile
151 logfile = fopen("TempFile", "a");
152 if(logfile == NULL) {
153 printf(“Error while opening the TempFile
 file too , sorry!\n") ;
154 return;
155 }
155 return;
156 }
156 /*end of the filehandler check for NULL code! */
157 umask (old_umask) ;
158 }
159 }

Figure 8: The Fixed Snippet of Rsync V.2.6.3.

5 Implementation
Our automatic error fixing technique contains
three main components:

1. The first logical component of the tool
searches for all method calls in the pro-
gram source code by a pattern match. In
the prototype the fopen() method call
was used for the testing purposes only,
but the prototype can be extended for
other method calls as well.

2. The second logical component detects
missed parts of the source code, which
should check the value of the method
calls against NULL, but can be extended
for other values as well.

3. The third logical component adds the fol-
lowing missed parts of the code or cor-
rects pointer names in the following part
of the source code:

a. Checks the value of the method
calls against NULL (see exam-
ple on the Figure 8 lines 147-
156).

b. Corrects any mistyped FILE
type pointer names.

c. Evaluates the type of the main
function, which contains the
method call to use appropriate
return statement. See lines 142
and 154 in the example on the
Figure 8.

d. If the additional “--spoofing"
option was used, the tool uses a
“spoofing" filename to open a
file in the current location (see
“logfile" pointer name as an ex-
ample of where this problem
could occur and be fixed on the
Figure 8 lines 146 and 148).
This option was found useful in
one testing example, which is
shown in Figure 5 to avoid a
core dump or an application
crash.

e. Finally, the tool updates the
program source code.

6 Evaluation
We evaluate our technique by applying it to sev-
eral sizable, widely-used programs selected from
the open-source software community with public-
ly reported 8 bugs of the fault category 1 (see
Section 3). These programs include:

1. Rsync, which is an open source utility
that provides fast incremental file trans-
fer. Rsync is freely available under the
GNU General Public License and is cur-
rently being maintained by Wayne Da-
vison [41].

2. Gtk-theme-switch, which is a small and
fast command line utility to switch GTK
themes on the fly. It also has an optional
GUI to preview the requested theme and
change the font used with it, an optional
GUI dock, and it can install themes
downloaded from gtk.themes.org, pre-
view them, or switch to them immediate-
ly [42].

3. Gtk-chtheme, a program that lets you to
change the gtk+2.0 theme. The aim is to
make theme preview and selection as
slick as possible. Themes installed on the
system are presented for selection and
previewed on the fly [43].

9

4. Gammu, the name of the project as well
as name of a command line utility, can
be used to control a cell phone. It is writ-
ten in C and built on top of libGammu.
The Gammu command line utility pro-
vides access to wide range of phone fea-
tures, however support level differs from
phone to phone and you might want to
check Gammu Phone Database for user
experiences with various phones [44].

5. AbiWord, which is a free word pro-
cessing program similar to Microsoft
Word. It is suitable for a wide variety of
word processing tasks. AbiWord allows
you to collaborate with multiple people
on one document at the same time. It is
tightly integrated with the AbiCollab.net
web service, which lets you store docu-
ments online, allows easy document
sharing with your friends, and performs
format conversions on the fly.

We used available regression tests for the
AbiWord, Gammu and Rsync to check our error
fixing by the tool. In the cases when we had no
regression tests, we tested applications with typi-
cal application operations manually. All of these
programs may execute, in principle, for an un-
bounded amount of time. Rsync, in particular, is
typically deployed as a part of a standard compu-
ting environment.

All of the programs mentioned above, which
were deployed from original source code, crashed
in the reported environments or with specific con-
figuration files (see appropriate references and
additional information in the related subsections
below). All applications continued to run in the
same environment and with the same configura-
tion parameters after reported bugs were fixed
automatically by the tool. We applied our tool for
the specific source files only, which appeared in
the bug report. Some files had many hundred lines
of code, but some of them had relatively small
size. The tool was able to fix several places in the
same source files, where errors were identified.
On the other hand, we tested our tool against al-
ready fixed code, and against code, which has
none of the problems mentioned above as well.
The tool didn’t report any problems against cor-
rected or well-written code.

The identification and the fixing took from
several milliseconds to several seconds for a larg-
est files on a Quad Core Intel based CentOS

(Linux) with 3 GHz CPU for all investigated ap-
plications. We didn’t investigate performance,
because it took considerably small amount of time
for all tested applications.

Our evaluation focuses on the two following
issues:

1. The ability of our technique to find
missed or incorrect parts of source code,
which should check the value of a meth-
od call (by a specific pattern).

2. The automatic insertion of missed parts
of source code or on correction of the
mistyped pointer in the source code
(check the value of the method calls with
appropriate type of the return statement
in our case).

We perform the following experiments for
each program:

1. Searching and Automatic Correction
Runs: We used our tool to evaluate a
piece of source code and automatically
add missed parts of the source code,
which should check the value of a meth-
od call.

2. Validation Runs: We've built and de-
ployed the original and updated pro-
grams to confirm the reported bugs and
check the results of the bug fixing by the
tool.

As an example of our evaluation (see more in
the Section 4 above), the Figure 6 presents a snip-
pet of the Rsync utility that may lead to a failure
[39]. At line 147, the fopen() method was used
without checking the value of the method call
against NULL. We deployed the Rsync utility and
tested with different Rsync configuration options.
As we mentioned above, we indeed registered a
core dump in the system /var/log/messages, as it's
shown in lines 6-7 on Figure 7. Our tool corrected
the Rsync utility source code automatically, by
adding lines 147-156, as it is shown in Figure 8.
In the same way we evaluated other four applica-
tions additionally to Rsync (see below).

6.1 Rsync
The evaluation was performed with version 2.6.3,
protocol version 29. The bug was reported in the
“rsync user list" of the samba.org mailing list on
28 January 2005 [46]. If the Rsync daemon was
started with the incorrect log file name in the con-

10

figuration file (in our testing case a directory
name was used instead of a log filename), the
Rsync crash and cause a core dump, as it's shown
in lines 6-7 on the Figure 7. The snippet of the
original source code is shown on the Figure 6 and
automatically fixed snippet is shown on the Fig-
ure 8, which allows running Rsync tool in the
same environment with incorrect log file name
without a core dump and Rsync crash.

6.2 Gtk-theme-switch
The evaluation was performed with the Gtk-
theme-switch version 2.0.5. The bug was reported
in the “debian-qa-packages" of the Debian mail-
ing list on 10 September 2008 [47]. We per-
formed the evaluation with the incorrect location
of the configuration file. The switch crashed dur-
ing our evaluation when we tried to save configu-
ration parameters in a wrong location. Snippets of
the original source code with missed checks of the
return value of the fopen() method calls (4 method
calls without appropriate checks) are shown on
the Figure 9.

 . . .
FILE *gtkrc = fopen(path ,"w") ;
fprintf (gtkrc , "# -- THEME AUTO-WRITTEN DO
NOT EDIT\n include \"%s \"\n\n", include_file);
. . .
FILE *gtkrc = fopen(path_to_gtkrc, "r ");
 . . .
FILE *gtkrc = fopen(path, "w");
. . .
FILE *gtkrc_backup = fopen(g_strdup_printf(
"%s/.gtkrc-2.0.bak ", homedir),"w");

Figure 9: The Original Snippets of GTK Theme
Switch V. 2.0.5.

After fixing errors automatically with the tool,
the switch continue to run even with an incorrect
configuration file location and a warning message
in the terminal window during attempt to save
configuration parameters in our tests. The fixed
snippets of the source code are shown on Figure
10.

. . .
FILE * gtkrc = fopen(path, "w");
if(gtkrc == NULL){
 printf("Error while opening file!\n");
 return;
}
fprintf(gtkrc, "# --THEME AUTO-WRITTEN

 DO NOT EDIT\n include \"%s \"\n\n", include_file);
. . .
FILE * gtkrc = fopen(path_to_gtkrc, "r ");
if(gtkrc == NULL){
 printf("Error while opening file! \n");
 return -1;
}
. . .
FILE * gtkrc = fopen(path, "w");
if(gtkrc == NULL){
 printf("Error while opening file! \n");
 return;
}
. . .
FILE gtkrc backup = fopen (g_strdup_printf(
"%s/.gtkrc-2.0.bak" ,homedir),"w");
if(gtkrc backup == NULL){
 printf(" Error while opening file! \n");
 return;
}

Figure 10: The Fixed Snippets of GTK Theme

Switch V. 2.0.5 by the Tool.

6.3 Gtk-chtheme
The evaluation was performed with the Gtk-
chtheme version 0.3.1 [48]. The bug was reported
in the Debian Bug report logs - #500076 “[gtk-
chtheme] An unchecked fopen leads to
SIGSEGV" on Wed, 24 Sep 2008 [49]. As it is
informed in the report: “Like all gtk theme
switching utility based on gtk-theme-switch, gtk-
chtheme includes some unchecked getenv() calls.
Add to this an unchecked fopen or fdopen, then it
generates a SIGSEGV". The chtheme crashed
during our evaluation when we tried to save con-
figuration parameters in an incorrect location. The
original snippet of the source code with the un-
checked fopen is shown on the Figure 11.
…
void apply_new_look(gboolean is_preview)
{
if(! themename) return;
cleanup_temporary();
FILE *gtkrcfh = is_preview ? fdopen (
g_file_open_tmp
("gtkrc . preview-XXXXXXXX" , &tmp_rc , NULL) ,
"w+"):
fopen(gtkrc , "w") ;
. . .

Figure 11: The Original Snippet of Gtk-chtheme

V. 0.3.1-3.

11

After bugs were fixed by the tool (see the
fixed snippet on the Figure 12), the Gtk-chtheme
continued to run even with the incorrect configu-
ration file location and a warning message ap-
peared in the terminal window during an attempt
to save the configuration parameters.

. . .
void apply_new_look (gboolean is_preview)
{
 if (! themename) return ;
 cleanup temporary () ;
 FILE *gtkrcfh = is_preview ? fdopen (
g_file_open_tmp("gtkrc.preview-XXXXXXXX" ,
&tmp_rc , NULL) , "w+") : fopen (gtkrc , "w") ;
 if (gtkrcfh == NULL)
 {
 printf ("Error while opening file! \n");
 return;
 }
. . .

Figure 12: The Fixed Snippet Gtk-chtheme V.

0.3.1-3 by the Tool.

6.4 Gammu
The evaluation was performed with Gammu ver-
sion 1.17.90 to store the VCARD21 into the non-
existent folder output le1.vcf. The Debian Bug
report #463013: states “gammu exits with seg-
mentation fault if trying to write a vcf file with
savefile command" [50]. We confirmed this dur-
ing our evaluation test with the original source
code. The snippet of the original source code of
the Gammu tool with the mentioned above bug is
presented on the Figure 13.
…
file = fopen (argv [3] , "wb");
if (j != fwrite (Buffer, 1 , j , file)){
 printf_err (_("Error while writing file ! \ n ")) ;
}
fclose (file) ;
. . .

Figure 13: The Original Snippet of Gammu
V.1.17.90.

After bug fixing with the tool, Gammu con-
tinues to run even with the non-existing folder and
a warning message in the terminal window during
attempt to save output file 1.vcf. The snippet,
which was fixed by the tool, is shown on the Fig-
ure 14.

. . .
file = fopen (argv [3] , "wb") ;
if(file == NULL)
{
 printf ("Error while opening file ! \n") ;
 return;
}
if (j != fwrite (Buffer , 1 , j , file)) {
 printf_err (("Error while writing file ! \n")) ;
}
fclose (file);
. . .

Figure 14: The Fixed Snippet of Gammu V.
1.17.90 by the Tool.

6.5 AbiWord
The evaluation was performed with AdiWord
version 2.4.3 by using command line AbiCom-
mand plugin, which failed towritepid with NULL
value. The AdiWord crashed during our evalua-
tion when we tried to execute writepid with
NULL value in AbiWord command shell. The
snippet of the original code of the AbiCommand
tool is presented on the Figure 15 and the fixed
snippet by the tools is shown on the Figure 16.

After the bug fixing, AbiWord doesn't crash
and continues to run even with the warning mes-
sage in the terminal window during attempt to
execute the writepid with the NULL value.
. . .
{
 if (pToks->getItemCount () < 2) {
 return -1;
 }
UT String pidFile ;
pidFile = * constcast<UT_String *>(
static_cast<const UT_String *>(pToks->
getNthItem (1))) ;
FILE * pidF = fopen (pidFile.c_str() , "w") ;
fprintf (pidF , "%d" , getpid ()) ;
fflush (pidF) ;
fclose (pidF) ;
return 0 ;
}
. . .

Figure 15: The Original Snippet of AbiWord
V.2.4.3 AbiCommand Plugin.

12

. . .
{
 if (pToks->getItemCount () < 2) {
 return -1;
 }
 UT_String pidFile ;
 pidFile = * const_cast<UT_String *>(
 static_cast <const UT_String *>(
 pToks->getNthItem (1))) ;
 FILE * pidF = fopen (pidFile.c_str () , "w") ;
 if (pidF == NULL){
 printf ("Error while opening file ! \n") ;
 return -1;
 }
 fprintf (pidF , "%d" , getpid ()) ;
 fflush (pidF) ;
 fclose (pidF) ;
 return 0;
}

Figure 16: The Fixed Snippet of AbiWord V.
2.4.3 AbiCommand Plaugin by the Tool.

6.6 Summary
In each discussed program from 1 to 4 condition
checks were added by the tool (4 condition checks
in Gtk-theme-switch version 2.0.5 and 1 condition
check in other 4 programs). All of these condition
checks belong to fault category 1. The analysis
and repair took just a few milliseconds, because
we analyzed and fixed only publicly reported
bugs in the specific program files.

7 Conclusion
Incorrect error handling or the absence of error
handling is a longstanding problem in many ap-
plication domains, but it is especially troubling
when it affects I/O operations.

Our automatic error fixing technique searches
for missed checks on the value of the method calls
or incorrect pointer names in source code and
adds or corrects them automatically. Our results
show that this technique can eliminate important
problems in programs, which lead to crashes
and/or core dumps.

Acknowledgments
Our thanks to Okanagan College Extended Study
Leave committee for the financial support and
active supervision of this research project in the
Computer Science and Artificial Intelligence La-

boratory (CSAIL) at Massachusetts Institute of
Technology (MIT).

The authors would like to thank the reviewers
for their valuable comments, which have helped
to improve this paper.

About the Authors
Dr. Youry Khmelevsky is a Professor in Comput-
er Science at Okanagan College, Kelowna, BC
from 2005 and Adjunct Professor in Computer
Science at UBC Okanagan, Kelowna, BC, Canada
from 2011. He can be reached at the address
Computer Science, Science Health and Technolo-
gy School, 1000 KLO Rd., Kelowna, BC, V1Y
4X8, Canada. His Internet addresses are
ykhmelevsky at okanagan dot bc dot ca and youry
dot khmelevsky at ubc dot ca.

Dr. Martin C. Rinard is a Professor in the
Department of Electrical Engineering and Com-
puter Science at the Massachusetts Institute of
Technology, and a member of the Computer Sci-
ence and Artificial Intelligence Laboratory. He
can be reached at the address MIT Computer Sci-
ence and Artificial Intelligence Laboratory, the
Stata Center, Building 32-G828, 32 Vassar Street
Cambridge, MA 02139. His Internet address is
rinard at lcs dot mit dot edu.

Dr. Stelios Sidiroglou-Douskos is a research
scientist in the Computer Science and Artificial
Intelligence Laboratory at MIT in Cambridge,
MA. He is also a member of the Center for Relia-
ble Software CRS. His Internet address is stelios
at csail dot mit dot edu.

References
[1] M. Bruntink, A. van Deursen, and T. Tourwé,

“Discovering faults in idiom-based exception
handling,” 2006, p. 242.

[2] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt,
and Z. Su, “Scalable and systematic detection
of buggy inconsistencies in source code,”
2010, p. 175.

[3] C. Rubio-González, H. S. Gunawi, B. Liblit,
R. H. Arpaci-Dusseau, and A. C. Arpaci-
Dusseau, “Error propagation analysis for file
systems,” 2009, p. 270.

[4] M. W. Bigrigg and J. J. Vos, “The set-check-
use methodology for detecting error propaga-
tion failures in I/O routines,” WDB’02, 2002.

13

[5] M. Mortensen and S. Ghosh, “Refactoring
idiomatic exception handling in C++: Throw-
ing and catching exceptions with aspects,”
URL http://aosd.net/2007/program/industry/ I,
vol. 2, 2007.

[6] M. R. Marri, S. Thummalapenta, and T. Xie,
“Improving software quality via code search-
ing and mining,” in Proceedings of the 2009
ICSE Workshop on Search-Driven Develop-
ment-Users, Infrastructure, Tools and Evalua-
tion, 2009, pp. 33–36.

[7] C. Rubio-González, H. S. Gunawi, B. Liblit,
R. H. Arpaci-Dusseau, and A. C. Arpaci-
Dusseau, “Error propagation analysis for file
systems,” SIGPLAN Not., vol. 44, no. 6, pp.
270–280, Jun. 2009.

[8] G. Necula, S. McPeak, S. Rahul, and W.
Weimer, “CIL: Intermediate language and
tools for analysis and transformation of C
programs,” in Compiler Construction, 2002,
pp. 209–265.

[9] N. Kidd, T. Reps, and A. Lal, WALi: A C++
library for weighted pushdown systems. 2009.

[10] R. E. Bryant, “Binary decision diagrams and
beyond: Enabling technologies for formal
verification,” in Computer-Aided Design,
1995. ICCAD-95. Digest of Technical Pa-
pers., 1995 IEEE/ACM International Confer-
ence on, 1995, pp. 236–243.

[11] J. Viega, J. T. Bloch, T. Kohno, and G.
McGraw, “Token-based scanning of source
code for security problems,” ACM Transac-
tions on Information and System Security,
vol. 5, no. 3, pp. 238–261, Aug. 2002.

[12] D. Engler, B. Chelf, A. Chou, and S. Hallem,
“Checking system rules using system-specific,
programmer-written compiler extensions,” in
Proceedings of the 4th conference on Sympo-
sium on Operating System Design & Imple-
mentation-Volume 4, 2000, pp. 1–1.

[13] W. R. Bush, J. D. Pincus, and D. J. Sielaff,
“A static analyzer for finding dynamic pro-
gramming errors,” Software-Practice and Ex-
perience, vol. 30, no. 7, pp. 775–802, 2000.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata, “Extend-
ed static checking for Java,” in Proceedings
of the ACM SIGPLAN 2002 Conference on

Programming language design and imple-
mentation, New York, NY, USA, 2002, pp.
234–245.

[15] M. Musuvathi, D. Y. W. Park, A. Chou, D. R.
Engler, and D. L. Dill, “CMC: A pragmatic
approach to model checking real code,” ACM
SIGOPS Operating Systems Review, vol. 36,
no. SI, pp. 75–88, 2002.

[16] H. Chen and D. Wagner, “MOPS: an infra-
structure for examining security properties of
software,” in Proceedings of the 9th ACM
conference on Computer and communica-
tions security, 2002, pp. 235–244.

[17] T. Ball and S. K. Rajamani, “The S LAM
project: debugging system software via static
analysis,” ACM SIGPLAN Notices, vol. 37,
no. 1, pp. 1–3, 2002.

[18] M. Das, S. Lerner, and M. Seigle, “ESP:
Path-sensitive program verification in poly-
nomial time,” ACM SIGPLAN Notices, vol.
37, no. 5, pp. 57–68, 2002.

[19] S. C. Johnson, “Lint, a C program checker,”
Computer science technical report, vol. 65,
1978.

[20] S. Paul and A. Prakash, “A framework for
source code search using program patterns,”
Software Engineering, IEEE Transactions on,
vol. 20, no. 6, pp. 463–475, 1994.

[21] E. Van Emden and L. Moonen, “Java quality
assurance by detecting code smells,” in Re-
verse Engineering, 2002. Proceedings. Ninth
Working Conference on, 2002, pp. 97–106.

[22] T. Tourwé and T. Mens, “Identifying refac-
toring opportunities using logic meta pro-
gramming,” in Software Maintenance and
Reengineering, 2003. Proceedings. Seventh
European Conference on, 2003, pp. 91–100.

[23] B. Livshits and T. Zimmermann, “DynaMine:
finding common error patterns by mining
software revision histories,” SIGSOFT Softw.
Eng. Notes, vol. 30, no. 5, pp. 296–305, Sep.
2005.

[24] M. Lam, “Automatic Patch Generation,”
2007.

[25] B. J. McAdam, “How to repair type errors
automatically,” Trends in functional pro-
gramming, vol. 3, p. 87, 2002.

14

[26] B. J. McAdam, “Repairing type errors in
functional programs,” 2002.

[27] W. Weimer, “Patches as better bug reports,”
in Proceedings of the 5th international con-
ference on Generative programming and
component engineering, 2006, pp. 181–190.

[28] J. H. Perkins, S. Kim, S. Larsen, S. Amara-
singhe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, S. Sidiroglou, G. Sullivan, and
others, “Automatically patching errors in de-
ployed software,” 2009.

[29] A. Smirnov and T. Chiueh, “Automatic patch
generation for buffer overflow attacks,” in In-
formation Assurance and Security, 2007. IAS
2007. Third International Symposium on,
2007, pp. 165–170.

[30] S. Sidiroglou and A. D. Keromytis, “Counter-
ing network worms through automatic patch
generation,” Security & Privacy, IEEE, vol. 3,
no. 6, pp. 41–49, 2005.

[31] A. V. Aho and T. G. Peterson, “A minimum
distance error-correcting parser for context-
free languages,” SIAM Journal on Compu-
ting, vol. 1, p. 305, 1972.

[32] P. Degano and C. Priami, “Comparison of
syntactic error handling in LR parsers,”
Software: Practice and Experience, vol. 25,
no. 6, pp. 657–679, 1995.

[33] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie,
“AutoPaG: towards automated software patch
generation with source code root cause iden-
tification and repair,” in Proceedings of the
2nd ACM symposium on Information, com-
puter and communications security, 2007, pp.
329–340.

[34] D. Hovemeyer and W. Pugh, “Finding bugs
is easy,” SIGPLAN Not., vol. 39, no. 12, pp.
92–106, Dec. 2004.

[35] M. Lippert and C. V. Lopes, “A study on
exception detection and handling using as-
pect-oriented programming,” in Software En-

gineering, 2000. Proceedings of the 2000 In-
ternational Conference on, 2000, pp. 418–427.

[36] http://www.grammatech.com

[37] http://findbugs.sourceforge.net

[38] http://pubs.opengroup.org/onlinepubs/009695
399/functions/fopen.html

[39] http://samba.anu.edu.au/ftp/rsync/src/rsync-
2.6.3.tar.gz

[40] http://lists.samba.org/archive/rsync/2005-
January/011472.html

[41] http://samba.anu.edu.au/rsync/

[42] http://freshmeat.net/projects/gtkthemeswitch/

[43] http://plasmasturm.org/code/gtk-chtheme/

[44] http://wammu.eu/gammu/

[45] http://freshmeat.net/projects/gtkthemeswitch/

[46] http://lists.samba.org/archive/rsync/2005-
January/011472.html

[47] http://lists.debian.org/debian-qa-
packages/2008/09/msg00122.html

[48] https://launchpad.net/ubuntu/+archive/primar
y/+files/gtk-chtheme_0.3.1.orig.tar.gz

[49] http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=500076

[50] http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=463013

[51] S. Podobry. Using PREfast for Static Code
Analysis. Apriorit Inc, Published online. 11
Mar 2011. http://is.gd/MlT4N5

[52] L. Wang, J.R. Cordy and T.R. Dean, "En-
hancing Security Using Legality Assertions",
Proc. WCRE 2005 - IEEE 12th International
Working Conference on Reverse Engineering,
Pittsburgh, November 2005, pp. 35-44.

