
Automatic Runtime Error Repair and
Containment via Recovery Shepherding

Fan Long Stelios Sidiroglou-Douskos Martin Rinard
{fanl, stelios, rinard}@csail.mit.edu

MIT EECS & CSAIL

Abstract
We present a system, RCV, for enabling software applications to
survive divide-by-zero and null-dereference errors. RCV operates
directly on off-the-shelf, production, stripped x86 binary executa-
bles. RCV implements recovery shepherding, which attaches to the
application process when an error occurs, repairs the execution,
tracks the repair effects as the execution continues, contains the
repair effects within the application process, and detaches from the
process after all repair effects are flushed from the process state.
RCV therefore incurs negligible overhead during the normal exe-
cution of the application.

We evaluate RCV on all divide-by-zero and null-dereference
errors available in the CVE database [2] from January 2011 to
March 2013 that 1) provide publicly-available inputs that trigger
the error which 2) we were able to use to trigger the reported
error in our experimental environment. We collected a total of 18
errors in seven real world applications, Wireshark, the FreeType
library , Claws Mail, LibreOffice, GIMP, the PHP interpreter, and
Chromium. For 17 of the 18 errors, RCV enables the application
to continue to execute to provide acceptable output and service to
its users on the error-triggering inputs. For 13 of the 18 errors,
the continued RCV execution eventually flushes all of the repair
effects and RCV detaches to restore the application to full clean
functionality. We perform a manual analysis of the source code
relevant to our benchmark errors, which indicates that for 11 of
the 18 errors the RCV and later patched versions produce identical
or equivalent results on all inputs.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Error handling and recovery; D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Corrections

Keywords Divide-by-zero; Null-dereference; Error recovery

1. Introduction
Divide-by-zero and null-dereference errors are an important source
of software failures. These errors generate a signal, which is caught
by the default signal handler, which then prints an error message
and terminates the application. Obvious potential negative conse-
quences include denial of service to users, data corruption, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PLDI ’14, June 9–11, 2014, Edinburgh, United Kingdom.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2784-8/14/06.
http://dx.doi.org/10.1145/2594291.2594337

disasters caused by the failure of large-scale computer-controlled
systems. Given these consequences, a technique that enabled appli-
cations to successfully survive divide-by-zero and null-dereference
errors (and, ideally, other simple errors such as arithmetic overflow
errors [17]) would be of enormous value.

We present a new system, RCV, which enables applications to
recover from divide-by-zero and null-dereference errors, continue
on with their normal execution path, and productively serve the
needs of their users despite the presence of such errors. RCV
replaces the standard divide-by-zero (SIGFPE) and segmentation
violation (SIGSEGV) signal handlers with its own handlers. RCV’s
divide-by-zero handler manufactures the default value of zero as
the result of the divide, then returns back to the application to
continue normal execution after the instruction that triggered the
divide-by-zero error.

For writes via an address close to zero, RCV’s segmentation
violation handler discards the write. For reads via an address close
to zero, RCV’s handler manufactures the default value of zero as
the result of the read. For function calls via a function pointer
close to zero, the handler skips the call (such calls often correspond
to method invocations on a null object). In all cases RCV then
returns back to the application to continue normal execution after
the instruction that triggered the segmentation violation.

1.1 Error Containment and Recovery Shepherding
Our experience with prior similarly effective recovery and re-
silience techniques [16, 22, 23, 25, 30, 31] leads us to anticipate
concerns that the continued RCV execution may propagate manu-
factured values (or values influenced by manufactured values) be-
yond the application to corrupt other processes or persistent data.
To address this concern, RCV implements recovery shepherding,
an influence tracking and error containment system. The influence
tracking system tracks all values influenced by the manufactured
values that RCV generates. It also detects when all influenced state
has either been deallocated or overwritten with clean values.

In the absence of implicit flows, the error containment system
prevents influenced values from escaping the recovering applica-
tion to influence other processes or persistent data. Specifically,
RCV can interpret and block any system call that executes after
the repair but before the repair effects have been flushed from the
system. By providing an enhanced understanding of how the RCV
recovery effects may propagate through the system, and by block-
ing system calls that may be influenced by these effects, recovery
shepherding can help provide the reassurance that some may need
to confidently deploy RCV.

1.2 Experimental Evaluation
To gain a better understanding of how the continued RCV execu-
tion is likely to work out in practice, we evaluate RCV empirically
on all divide-by-zero and null-dereference errors available in the



CVE database [2] from January 2011 to March 2013 that 1) pro-
vide publicly-available inputs that trigger the error which 2) we
were able to use to trigger the reported error in our experimental
environment. We report results for a total of 18 errors in seven real
world applications, Wireshark, the FreeType library, Claws Mail,
LibreOffice, GIMP, the PHP interpreter, and Chromium. For all but
one of these errors, RCV enabled the application, when run on the
publicly-available error-triggering input, to produce the identical or
equivalent (identical except for error messages) results as a subse-
quent version with the error eliminated via a developer patch. If we
turn off assertions that impede the recovery, RCV produces accept-
able results for the last remaining error.

To better understand the effect of RCV on these errors, we
perform a source-code based analysis of the applications, the errors,
the RCV recovery mechanisms as applied to the errors, and the
subsequent developer-provided patches that eliminate the errors.
This analysis indicates that 1) for nine of the 18 errors, the RCV
and patched versions of the applications produce identical results
for all inputs, 2) for two of the remaining nine errors, the RCV
and patched versions produce equivalent (identical except for error
messages) results for all inputs, and 3) for three of the remaining
seven errors, the RCV version produces different but acceptable
results in comparison with the patched version. For one of the
remaining errors source code is not available.

1.3 Reasons for Success
We attribute much of the success of RCV to a common compu-
tational pattern that occurs in all of the benchmark applications.
Specifically, all of the applications divide the input into units,
then process each unit in turn. Examples of units include packets
(Wireshark), fonts (FreeType), email messages (Claws Mail), data
sheets (LibreOffice), images (GIMP), PHP statements (PHP inter-
preter), and web pages (Chromium). The input unit computations
are loosely coupled — the computation for one input unit typically
has little or no interaction with the computations for other units.
RCV Nullifies the Computation: For 14 of the 18 errors, RCV
nullifies the computation of the input unit that triggers the error,
in effect turning that computation into a noop and enabling the
application to continue on to successfully process subsequent input
units. This nullification occurs, for example, by discarding writes
via null pointers, skipping method calls on null objects, or causing
loops to execute zero iterations.
Nullifying the Computation is the Correct Behavior: Nullify-
ing computations that trigger divide-by-zero and null-dereference
errors can be particularly effective because, in many cases, it is
the desired correct behavior. Such errors are often triggered by
malformed or degenerate (zero sized) input units that the correct
patched version of the program is not designed to process and in-
stead simply skips. In other cases the errors are triggered by inter-
nal conditions (such as failed memory allocations) that prevent the
patched version from successfully processing the input unit at all.
In both cases the patched version skips the input unit and the RCV
and patched versions produce identical or equivalent behavior.
Other Properties: Our analysis also revealed several other inter-
esting properties of the continued RCV execution:

• Subsequent Anticipated Error Checks: The continued RCV
execution often eventually encounters a subsequent check for
an anticipated error case that the application is coded to handle
correctly. Such checks recognize, for example, malformed input
units or internal errors such as failed memory allocations or
inconsistent data structures. The check detects the error case,
correctly executes the recovery code, and RCV has enabled the
application to survive long enough to execute correctly.

• Shallow Errors: In general, we note that many of the errors
are caused by shallow oversights. For example, eight of the 18

errors are caused by missing sanity checks for malformed input
units that the application is not designed to process; three of the
18 errors are caused by a failure to check for simple internal
errors such as failed memory allocations. The patches for these
errors are simple — they all add a check for the missing case
and skip the remaining computation for the input unit if the
check succeeds. Indeed, the patches for these errors contain,
on average, only three lines of code.
These data are consistent with the hypothesis that most errors
in deployed software are shallow, involving developers who
simply overlook a (usual trivial) uncommon case that somehow
escapes testing. Indeed, only two of the 18 errors involve a logic
error or conceptual misunderstanding of the problem.

• Cascaded Errors: If an application encounters one divide-by-
zero or null-dereference error, it typically encounters more cas-
caded errors (in some cases hundreds or even thousands of er-
rors) as RCV enables the application to successfully work its
way through the computation for the input unit. The fact that the
application succeeds despite all of these cascaded errors high-
lights the ability of RCV to unlock the inherent (but otherwise
latent) error resilience present in these applications.

• Resource Leaks and Cleanup: Many of the errors occur af-
ter the computation has already allocated local resources for
processing the input unit. By enabling the application to exe-
cute through any cascaded errors to reach the code at the end
of the computation that deallocates these local resources, RCV
can prevent errors from causing resource leaks.

One of the goals of RCV is to turn fatal errors into benign cases
that the program is already coded to handle correctly, for example
via an anticipated error check or by doing nothing for zero-sized
inputs (see Section 4.2.2). The use of zero as a manufactured
value is designed to promote this translation of fatal errors into
benign cases — developers often use zero/null to represent missing,
erroneous, or zero-sized data or input components.

1.4 The Bigger Picture
In our experience, many researchers expect that such simple repairs
as RCV implements are likely to be ineffective in practice. The ex-
pectation is that continued execution will prove to be futile because
a divide-by-zero or null-dereference error is often just the initial
surface manifestation of a more serious corruption from which the
application will be unable to recover.

Our results show that this expectation is not accurate. Indeed,
our results indicate that the continued RCV execution enables
the application to execute acceptably despite the presence of our
benchmark errors. Moreover, these results are consistent with pre-
viously reported results that demonstrate the success of simple er-
ror recovery strategies that (like RCV) combine 1) a simple default
repair action (for example, discarding out of bounds writes [25],
returning manufactured default values for out of bounds reads [25],
or jumping out of infinite loops [7, 16]) with 2) continued execution
along the normal execution path [7, 16, 21, 22, 25].

Because of this mounting body of evidence, and because of our
analysis of the reasons behind the success of these simple recovery
strategies, we anticipate that the basic RCV repair philosophy (sim-
ple repairs that enable normal continued execution) will generalize
to enable broad classes of applications to successfully recover from
similar types of otherwise fatal errors (for example, arithmetic over-
flow errors [17]). Over time, we can hope that developers will come
to embrace a more mature, tolerant, and realistic understanding that
acknowledges the impressive resilience that is already inherently
present in their applications. Ideally, this understanding will then
enable developers to appropriately deploy simple recovery mech-
anisms that unlock this resilience and enable their applications to
deliver more of their true value to society.



1.5 Engineering Concerns
RCV operates directly on off-the-shelf, production, stripped x86
binary executables with no need for source code or debugging
information. By default, RCV operates in detached mode — the
application runs unmodified until it encounters an error and invokes
the corresponding RCV signal handler. At that point, RCV attaches
to the application, applies the recovery strategy, and injects the
monitoring code that enables RCV to track the recovery effects.
Once the recovery effects have been flushed from the system, RCV
detaches and the application again runs unmodified. Except during
recovery and monitoring, the application therefore runs unmodified
in detached mode with negligible overhead.

1.6 Contributions
This paper makes the following contributions:

• Repair and Recovery Techniques: We present simple re-
pair and recovery techniques for divide-by-zero and null-
dereference errors. These errors discard writes via null refer-
ences and return zero as the result of a divide-by-zero or read
via a null reference. They then return back to the application to
continue execution along the normal control-flow path.

• Recovery Shepherding: We present recovery shepherding,
which combines an influence tracking technique and an error
containment technique that addresses concerns that the recov-
ery strategy may corrupt other processes or persistent data.

• Experimental Results: We present results from experiments
that use RCV to enable applications to execute successfully
through errors triggered by the publicly available error-triggering
inputs from the CVE database. RCV enables the applications to
survive 17 of the 18 errors.

• Source Code Analysis: We present a manual analysis of the
source code relevant to our set of benchmark errors. This anal-
ysis highlights the effectiveness of RCV in enabling success-
ful application behavior for all inputs and not just the error-
triggering inputs. It also identifies the computational properties
that make RCV so effective. The analysis indicates that for 11
of the 18 errors the RCV and later patched versions produce
identical or equivalent results on all inputs.

2. Example
We next present an example that illustrates how RCV enables
the Chromium browser to recover from a null-dereference error.
Chromium is a popular open source web browser that serves as the
code base for Google’s chrome browser. It is possible to trigger a
null-dereference error in Chromium 19.0.131.0 by loading a certain
HTML file (CVE-2011-3083).

Figure 1 presents a screen shot of the terminal when we trigger
this error. The yellow box in Figure 1 presents the contents of
an HTML file, ftp.html, that will trigger the error. The second
line of the file, which attempts to open a video stream from a
malformed FTP link, triggers the error. As highlighted in the red
box in Figure 1, opening ftp.html with Chromium triggers a
null-dereference error that causes Chromium to terminate with a
SIGSEGV (segmentation violation) error.

Figure 2 presents simplified Chromium source code that il-
lustrates this error. When Chromium processes ftp.html, it cre-
ates a URLRequestFtpJob object to handle the FTP link. It
then calls URLRequestFtpJob::StartTransaction() (Figure 2
presents the source code) to start the FTP transaction. The call to
ftp_transaction_factory() returns null; Chromium then calls
the member function CreateTransaction() on the returned ob-
ject without properly checking whether the returned object is null
or not (see line 7). This call causes the null-dereference error.

Figure 1. Triggering CVE-2011-3083 with RCV.

1 void URLRequestFtpJob::StartTransaction() {
2 // Create a transaction.
3 ...
4 transaction_.reset(
5 /* null-deref error! */
6 request_->context()->ftp_transaction_factory()
7 ->CreateTransaction());
8

9 SetStatus(URLRequestStatus(
10 URLRequestStatus::IO_PENDING, 0));
11 int rv;
12 if (transaction_.get()) {
13 rv = transaction_->Start(&request_info_,
14 base::Bind(&URLRequestFtpJob::OnStartCompleted,
15 base::Unretained(this)),
16 request_->net_log());
17 if (rv == ERR_IO_PENDING)
18 return;
19 } else {
20 /* set up the flag indicating error */
21 rv = ERR_FAILED;
22 }
23 }

Figure 2. Simplified Code for CVE-2011-3083.

Figure 3. Chromium-19.0.1031.0 screen shot after continued exe-
cution with RCV. The screen shot for the subsequent version with
a developer-supplied patch that corrects the error is identical.

Although Chromium has a multi-process architecture that ren-
ders each web page in a separate process (thereby minimizing the
effect of errors), to avoid performance problems associated with
having many open processes [1], Chromium limits the number
of rendering processes to 20. Given tab usage patterns in mod-
ern browsers [11], the chances of collateral damage caused by
an error in a separate tab are high. Despite Chromium’s multi-
process architecture, this particular null-dereference error occurs in
Chromium’s main process. The entire application terminates and
the user loses any unsaved data, including data in unrelated win-
dows or Chromium tabs.



Running Chromium with RCV. We next show how RCV enables
Chromium to successfully survive this error. The green box in
Figure 1 shows how to run Chromium with RCV as follows:

• Start Chromium with RCV: The user starts Chromium with
RCV by running the rcv_run script. When Chromium starts,
this script uses the LD_PRELOAD environment variable to load
the RCV runtime shared library. The library sets up signal
handlers to intercept signals that Chromium generates when
it encounters divide-by-zero or null-dereference errors. The li-
brary does not otherwise interfere with the Chromium execu-
tion, which runs in native mode with negligible overhead.

• Start Recovery System: When the null-dereference error oc-
curs at line 6 in Figure 2, RCV intercepts the signal and starts
the RCV recovery shepherding system (see the last line of
Figure 1). The recovery shepherding system attaches to the
Chromium process that triggered the error to monitor and con-
trol the execution of all threads in the attached process.

• Recovery Execution: The first null-dereference error is a read
from a null address that occurs when Chromium attempts to use
the null object returned from ftp_transaction_factory()
to obtain the address of the invoked virtual member function
CreateTransaction(). RCV returns the manufactured value
zero as the result of the null-dereference. The continued exe-
cution immediately encounters another null-dereference error
when Chromium interprets the manufactured value as the ad-
dress of the member function to invoke and calls a function at
address zero. RCV skips this call and manufactures zero as the
return value. Chromium continues on to encounter other cas-
caded null-dereference errors, which RCV similarly repairs.

• Influence Tracking: When RCV manufactures a return value
for the skipped call to CreateTransaction(), it tags the value
as influenced by the RCV recovery system. RCV then dynam-
ically tracks the flow of influenced values through the pro-
gram. So, for example, the influence tracking system deter-
mines that the manufactured value will influence the value of
the reference-counting pointer object transaction_.

• Error Containment: During the recovery execution, RCV
can intercept and skip any system calls which send information
beyond the attached process. This strategy can address concerns
that the recovery system may transmit influenced values to other
processes. In the Chromium experiment specifically, RCV is
configured to block all system calls that send information out of
the main process except for those that render the GUI display
or print information to the terminal.

• Back to Clean State and Detach: As the recovery execution
continues, Chromium determines that the reference-counting
object in transaction_ holds a null pointer (line 12 in Fig-
ure 2). In response, it sets the flag variable rv (line 21) to
ERR_FAILED to indicate that an error has occurred. This error
code will be handled by higher level functions in the call stack.
If the user removes the focus of this web page in the Chromium
GUI (by, for example, switching to the tab of another web page
or switching to the window of another application in Ubuntu
GUI), Chromium will destroy the URLRequestFtpJob object
and flush all influenced values from the execution state. At this
point the execution has cleanly recovered and RCV detaches.

• Result: RCV enables Chromium to execute through the null-
dereference error (and subsequent cascading errors) to generate
the screen presented in Figure 3 and successfully process sub-
sequent user interactions. Chromium correctly displays the text
“Hello World” from ftp.html. It also displays a black box in
place of the malfunctioning video stream.

Comparison with Developer Patch. The patch that corrects this
error initializes the media context object (request_->context()

in line 6) with a dummy transaction factory object. If the ftp link
is empty, the call to ftp_transaction_factory() returns the
dummy object instead of null. The patched version sets the return
value rv to ERR_IO_PENDING and returns at line 18. The patched
version of Chromium later handles ERR_IO_PENDING in the same
way as the RCV version handles ERR_FAILED. The patched and
RCV patched versions therefore produce identical results on all
inputs. Specifically, for the html page presented in Figure 1, the
patched version generates the identical result presented in Figure 3.

3. Design
RCV consists of two parts, a lightweight runtime monitor and
a recovery shepherding system. The lightweight runtime monitor
runs together with the application as the application starts. When
a divide-by-zero or null-dereference error occurs, it intercepts the
generated signal and invokes the recovery shepherding system,
providing the recovery shepherding system with the information
it needs (e.g., the process id and the heap status of the application)
to execute the recovery.

The recovery shepherding system is a just-in-time binary instru-
mentation library that attaches to the application process and sits in
the same address space of the process it may later shepherd. It con-
sists of three components, a recovery runtime that implements our
recovery strategy, an influence tracking system that tracks the ef-
fects of our repairs, and an error containment system that blocks
externally visible side effects of the erroneous process before it
reaches a clean execution state. Once the influence tracking system
determines that the process has reached a clean execution state (see
Section 3.3), the recovery phase ends and the recovery shepherding
system detaches from the process.

3.1 Lightweight Runtime Monitor
We implement the RCV lightweight runtime monitor as a shared
library. RCV uses the LD_PRELOAD Linux environment variable to
load the library as the application starts.
Setup Signal Handler: The library initialization routine registers
the RCV SIGFPE and SIGSEGV signal handlers. The application
generates a SIGFPE signal when it encounters an integer or floating
point divide-by-zero error. It generates a SIGSEGV signal when it
encounters a null-dereference error.
Intercept Handler Setup Calls: To ensure that the application
does not overwrite the RCV SIGFPE and SIGSEGV signal han-
dlers, the runtime monitor wraps functions that set up signal han-
dlers (for example, signal() and sigaction()), intercepts any
attempts to register SIGSEGV and SIGFPE handlers, and records
the registered handler. RCV invokes the registered handler only
for errors (for example, buffer overflow errors that generate a
SIGSEGV signal) that are outside the scope of RCV. In our set of
benchmark applications, only Chromium defines its own SIGFPE
and SIGSEGV handlers. And these Chromium handlers perform
no recovery — like the default signal handlers, they print an error
message and terminate the execution.
Intercept Heap Management Calls: To enable the influence
tracking system to accurately track the effect of heap dealloca-
tion operations, the lightweight runtime monitor wraps heap man-
agement functions including malloc(), calloc(), realloc(),
posix_memalign(), and free() to record the mapping between
the address and the size of each allocated memory block. It does
not otherwise affect the execution of the system heap allocator and
therefore incurs negligible runtime overhead.
Invoke the Recovery Shepherding System: When the application
encounters a divide-by-zero or null-dereference error, the operating
system invokes the corresponding RCV handler. The handler first
pauses the execution of all threads in the process in which the error
occurred. It then forks a new process to start the RCV recovery



shepherding system. It also transmits the process id and collected
heap allocation information to the recovery shepherding system.
When the recovery shepherding system successfully attaches to
the process that encountered the error, the monitor resumes the
execution of all paused threads and allows the recovery system to
take control of the execution.

3.2 Recovery Runtime
The recovery runtime in RCV allows the process execution to
continue in the presence of runtime errors. The recovery runtime
disassembles and analyzes the binary code around the instruction
that generated the signal to apply the appropriate repair mechanism.
Note that RCV may encounter and repair multiple errors after the
failure that initiated the repair and recovery.
Divide by Zero: If the execution of an instruction (e.g., idiv)
fails due to a divide-by-zero error, the recovery runtime changes
the values of the registers that hold the results of the instruction
(e.g., rax and rdx for idiv) to a manufactured constant value
(RCV empirically uses zero). The recovery runtime then skips
the offending instruction and continues the execution at the next
instruction by setting the instruction pointer register value (e.g.,
rip) to the start of the next instruction.
Read or Write Null Address: If a memory read or write instruc-
tion fails and the accessed memory address is less than a small
constant (RCV empirically uses 0x1000), RCV treats the failure as
a null-dereference. This mechanism enables RCV to capture null
array access like p[i] where p is a null array pointer and i is a
non-zero index. For a read instruction to a close-to null address,
the recovery runtime returns a manufactured constant value (RCV
empirically uses zero) as the result of the read instruction. For a
write instruction, the recovery runtime ignores the memory write
instruction and continues the execution at the next instruction.
Call to Null Address: If the execution fails because of a call
instruction to a null address, the recovery runtime ignores the call
and sets the register that holds the return value (e.g., rax) to a
manufactured constant value (RCV empirically uses zero). It then
continues execution after the offending call instruction.
Null Dereference in Loops: RCV handles the case that a thread
repeatedly reads and/or writes consecutive close-to null addresses
because of null array accesses inside a loop. If the same instruction
fails more than five times consecutively, the recovery runtime stops
the computation of the current loop and jumps out of the loop [7]. If
the RCV binary analysis cannot determine the exit point of the loop,
the recovery runtime immediately returns to the function that called
the current function. The manufactured return value is zero [30, 31].
Cases to Abort: RCV does not to attempt to repair failures other
than divide-by-zero and memory accesses via close-to-null point-
ers. In particular, the current version of RCV leaves other signal
handlers in place and does not attempt to recover from fatal asser-
tion violations.

3.3 Influence Tracking
The influence tracking system in RCV implements a dynamic data
flow tracking technique to track how the manufactured values of the
repair mechanisms (see Section 3.2) influence the execution state of
the recovering process. We implement this tracking system based
on the libdft library [13]. For brevity, we focus on the deviation of
RCV from the standard dynamic data flow tracking technique.
Track Manufactured Values: Whenever the recovery runtime
generates a manufactured value (see Section 3.2), the influence
tracking system flags the appropriate bits in the corresponding
shadow context or in the memory bitmap for the register or the
memory address that will hold this value. As with standard dynamic
data flow tracking, RCV inserts callbacks before each instruction
and each system call to appropriately track these values.

Deallocation in Stack: Unlike standard dynamic data flow track-
ing, whenever the stack pointer value increases (i.e., the stack
shrinks), RCV clears the influence bits that correspond to the mem-
ory region between the old stack pointer value and the new stack
pointer value. To detect memory deallocations in the stack during
the execution (e.g., when a function exits), RCV inserts callbacks
before the instructions that may change the stack pointer register
(i.e., rsp).
Deallocation in Heap: Unlike standard data flow tracking, when-
ever the process frees a memory block from the heap, RCV clears
the influence bits that correspond to the bytes in the freed mem-
ory block. The influence tracking system inserts callbacks before
all heap management function calls. The influence tracking system
tracks the size of every memory block the process allocates in the
heap. Note that the process may free a memory block that the pro-
cess allocates before the recovery shepherding system attaches to
the process. The influence tracking system relies on the informa-
tion from the lightweight runtime monitor to know the size of the
freed memory block (see Section 3.1).
Detach from the Process: The influence tracking system also
inserts callbacks to periodically check whether all influence bits
are cleared for all threads. If so, the recovery phase ends and the
entire recovery shepherding system detaches from the process.

3.4 Error Containment
During the recovery process, the error containment system in RCV
intercepts all system calls that could possibly send data and/or mes-
sages out of the process (e.g., write, sendmsg, etc.). RCV deter-
mines the type of this communication based on the file descriptor id
argument of the intercepted system call and then handles the system
call based on the communication type as follows:
Console I/O: If the file descriptor argument of the intercepted
system call corresponds to a console device, RCV (by default)
allows this system call to continue. It notifies the user via a console
warning message if the RCV influence tracking system detects that
the repair effects influence the printed data.
GUI I/O: If the file descriptor argument of the intercepted system
call corresponds to a domain socket that connects to special GUI
service processes (e.g., X-Window processes), RCV will allow this
system call to continue by default.
File I/O: If the file descriptor argument of the intercepted system
call corresponds to a file in the hard disk, RCV (by default) logs
this file write request, then silently skips the file write system call.
This mechanism ensures that a process in a potentially erroneous
execution state does not corrupt persistent data. The RCV design
also supports an extension that would buffer the writes, enable the
user to inspect the buffered writes, then commit the writes at the
end of the recovery phase if approved by the user (or any other
appropriate person or mechanism).
Other Types of Communications: RCV skips other intercepted
system call, returning to the process with a manufactured error
number that indicates a low level I/O error [30].

3.5 Implementation
We have implemented RCV in more than 15,000 lines of C/C++.
The current implementation supports applications running on x86
machines with 64-bit Linux operating system. We implemented the
recovery shepherding system based on the PIN binary instrumenta-
tion framework [20]. Our implementation of the influence tracking
system is based on libdft [13], a dynamic taint tracking system. We
have extended libdft to support the 64-bit x86 architecture for our
system. We have also implemented a lightweight version of RCV
that does not support influence tracking and the error containment.
The lightweight version is based on dyninst [6] and libunwind [3].



CVE ID Application Type Location Survives RCV Versus Error Cascaded
With RCV Patched Flush Time Repairs

CVE-2013-2483 Wireshark-1.8.5 Divide packet-acn.c:1045 Yes Identical 35s 3
CVE-2012-4286 Wireshark-1.8.1 Divide pcapng.c:1092 No∗ Different∗ No 8
CVE-2012-4285 Wireshark-1.8.1 Divide packet_dcp_etsi.c:273 Yes Equivalent 41s 3
CVE-2012-1143 FreeType-2.4.8 Divide ftcalc.cc:555 Yes Identical† No 1608
CVE-2012-5668 FreeType-2.4.8 Deref bdflib.c:2475 Yes Identical <1s 6
CVE-2012-4507 Claws-Mail-3.8.1 Deref procmime.c:1756 Yes Identical 23s 3
CVE-2012-4233 LibreOffice-3.5.5.2 Deref libscfiltlo.so Yes Identical 44s 12
CVE-2012-3236 GIMP-2.8.0 Deref fits-io.c:1059 Yes Equivalent 2s 1
CVE-2012-1593 Wireshark-1.6.5 Deref packet.c:469 Yes Equivalent 34s 24
CVE-2012-1128 FreeType-2.4.8 Deref ttinterp.c:5690 Yes Identical† 3s 23050
CVE-2012-0781 PHP-5.3.8 Deref libtidy localize.c:1038 Yes Identical <1s 8
CVE-2011-4153 PHP-5.3.8 Deref zend_constant.c:430 Yes Equivalent N/A 34
CVE-2011-3182 PHP-5.3.6 Deref parse_date.c:354 Yes Equivalent N/A 216
CVE-2011-3083 Chromium-19.0.1031.0 Deref url_request_ftp_job.cc:68 Yes Identical 19s 20
CVE-2011-2849 Chromium-12.0.747.112 Deref websocket_job.cc:495 Yes Identical 10s 3
CVE-2011-1956 Wireshark-1.4.5 Deref proto.c:1740 Yes Identical N/A 90+34

CVE-2011-1691 Chromium-12.0.717.0 Deref CSSComputedStyled Yes Identical 2s 2-Declaration.cc:766
CVE-2011-0421 PHP-5.3.5 Deref zip_name_locate.c:64 Yes Identical <1s 1

∗For CVE-2012-4286, the RCV version of Wireshark-1.8.1 terminates with an assertion violation. Disabling assertions and configuring free() to ignore frees of invalid memory
blocks enables the RCV version to survive the error and produce an acceptable result.

†For CVE-2012-1143 and CVE-2012-1128, both the patched and RCV versions terminate normally and display performance statistics (which vary in different runs) on the console.
The two versions produce identical results except for the performance statistics (which vary even for different runs of the same version).

Table 1. Experimental Results for Executions on Error-Triggering Inputs

4. Experimental Results
We evaluate RCV on all divide-by-zero and null-dereference errors
in the CVE database [2] from January 2011 to March 2013 that
1) provide publicly-available inputs that trigger the corresponding
errors which 2) we were able to use to trigger the reported er-
rors. These errors occur in seven different benchmark applications
(as shown in Table 1), Wireshark (an interactive network packet
analysis application), the FreeType library (a font processing li-
brary), Claws Mail (an interactive email client), LibreOffice (an
open source productivity suite), GIMP (an interactive image pro-
cessing application), the PHP interpreter (the PHP program inter-
pretor), and Chromium (an open source web browser).

4.1 Results on Error-Triggering Inputs
We first evaluate the effectiveness of RCV in enabling the applica-
tions to successfully process the publicly-available error-triggering
inputs. For the three errors inside the FreeType library, we run the
micro benchmark ftbench that comes with the FreeType library to
trigger the errors and conduct our experiments. For all errors ex-
cept the three null-dereference errors in Chromium, we conduct the
experiments on an Intel Core i7 2.8GHz machine running 64-bit
Ubuntu 12.04 on a virtual machine. Because some of the Chromium
versions containing the errors do not build on Ubuntu 12.04, we
conduct the experiments for these errors on 64-bit Ubuntu 10.04
running on the same hardware. During our experiments, we ob-
serve negligible overhead (less than 1%) for the normal executions
of all benchmark applications.

Table 1 summarizes the results. There is one row in the ta-
ble for each error. The first column (CVE ID) presents the iden-
tifier of the error in the CVE database. The second column (Ap-
plication) presents the name and version number of the application
that contains the error. The third column (Type) specifies whether
the error is a divide-by-zero error (Divide) or a null-dereference
error (Deref). The fourth column (Location) identifies the loca-
tion in the source code where the error occurs. For CVE-2012-
4233, the null-dereference error occurs in a binary shared library
(libscfiltlo.so) for which the source code is not available.
Survives With RCV. The fifth column (Survives With RCV) in-
dicates whether RCV enables the application to survive the error

(Yes) or not (No). For all but one of the errors (CVE-2012-4286),
RCV enables the application as released to survive the error and
successfully continue normal execution. Either the application ter-
minates normally (CVE-2012-1143, CVE-2012-1128, CVE-2012-
0781, CVE-2011-3182, CVE-2011-0421), exits gracefully (CVE-
2012-5668, CVE-2011-4153), or remains functional awaiting fur-
ther user input (the remaining 10 errors). For CVE-2012-4286, con-
tinued execution in the released version encounters a fatal assertion
violation. Disabling assertions and appropriately configuring libc
to ignore invalid memory frees enables the application to survive
(see Section 4.3 for more information).
RCV Versus Patched. For all of the errors we were able to obtain
a subsequent version of the application with a developer-provided
patch that eliminates the error. CVE-2011-4153 (PHP-5.3.8) and
CVE-2011-3182 (PHP-5.3.6) remain unpatched in the current sta-
ble version of PHP (PHP-5.3.27). For these two errors we therefore
use patches that were suggested in the error reports. For each of the
other errors we use the next stable version of the respective appli-
cation in which the error has been patched.

The sixth column of Table 1 (RCV Versus Patched) compares
the results from the patched and RCV versions of the application,
both when run on the error-triggering input. The two versions ei-
ther produce identical results (Identical, 12 of 18 errors), identical
results except that the two versions generate different error mes-
sages (Equivalent, five of 18 errors), or the RCV version produces
different output (Different, CVE-2012-4286, see Section 4.3).

In many cases the continued RCV execution encounters a sub-
sequent check for an anticipated error case that the application is
coded to handle correctly, typically by generating an error message
and skipping the remaining computation for the input unit (see Sec-
tion 4.2). For three of the five Equivalent errors (CVE-2012-4285,
CVE-2012-3236, CVE-2011-4153), the error messages differ be-
cause two versions encounter different anticipated error checks and
therefore generate different error messages. For CVE-2012-1593,
the RCV and the patched versions generate different error messages
for the malformed packet in the rightmost information column in
the Wireshark GUI. For CVE-2011-3182 (the PHP interpreter), the
patched and RCV versions print different values on the console for
a failed PHP statement. See Section 4.3 for details.



Error Effect Flush Time. The seventh column (Error Flush Time)
presents whether the RCV recovery shepherding system was able to
detect that the effects of the error were flushed from the system and,
if so, how long it took. An entry of the form Xs (or <Xs) indicates
that the application executed under the control of the RCV recovery
shepherding system for X (or <X) seconds before RCV was able
to verify that the effects had been flushed. The effect flush times,
when available, are small — for all errors except CVE-2011-3083
(Chromium-19.0.1031.0), they are less than 50 seconds.

For CVE-2011-4153 (PHP-5.3.8) and CVE-2011-3182 (PHP-
5.3.6), it is possible to trigger the null-dereference error only when
running with a (restrictive) memory limit of 200 MBytes for the
entire application. With this limit, there is not enough memory for
libdft [13] (upon which our recovery shepherding system depends)
to attach to the application. For CVE-2011-1956 (Wireshark-1.4.5),
the effect of the repair propagates into floating point calculations.
The current version of RCV does not implement influence tracking
for floating point calculations. For these three errors we use the
lightweight version of RCV without influence tracking and error
containment (see Section 3.5).

For CVE-2011-3083 (Chromium), the error flush time depends
on the actions the user takes after RCV enables the browser to
survive the error and support further interactive use (see Section 2).
We measured the flush time for an execution in which the user loads
the error-triggering web page, immediately switches the GUI focus
to other applications, and then switches back.

Based on experiments running SPEC CPU 2006 benchmark
programs [4] with the RCV recovery system, we measure applica-
tion performance with the RCV recovery system as (on average) ap-
proximately 80 times slower than native execution. We attribute the
overhead to the binary instrumentation present in the RCV recovery
system. We note that, despite this overhead, the error flush times re-
main acceptably small. Because the RCV recovery system detaches
and restores the application to fully efficient native execution after
the effects of the error are flushed, RCV does not significantly im-
pair application usability. We also note that the lightweight version
of RCV mentioned above implements the RCV repair mechanisms
fully in native mode with no binary instrumentation overhead.
Cascaded Repairs. In many cases RCV enables the application to
execute through multiple cascaded errors as the application works
its way through the computation for the input unit that triggered the
error. The eighth column (Cascaded Repairs) presents how many
errors RCV repaired before the application finished processing the
error-triggering input. All of the cascaded errors are of the same
type — if the first error is a divide-by-zero error, then so are all of
the remaining errors, and similarly for null-dereference errors.

For CVE-2011-1956, the error-triggering input contains two
error-triggering packets (as well as other benign packets). The first
packet triggers 90 errors, the second packet triggers 34 errors,
so to enable Wireshark to successfully process the input, RCV
repairs a total of 124 errors. For CVE-2011-5668 and CVE-2012-
1128, the null-dereference error occurs inside loops. The number
of repairs for CVE-2011-5668 is relatively small because RCV
jumps out of the loop after repairing the sixth null-dereference error
(see Section 3.2). The number of repairs for CVE-2012-1128 is
relatively large because it has nested loops and the inner loop only
executes one iteration for each error.

4.2 Source Code Analysis
To better understand the interaction between RCV and the bench-
mark applications, we performed a manual analysis of the source
code (when available) surrounding each error. The goal was to un-
derstand the computation in which the error occurred, the continued
execution under RCV, the developer patch that eliminated the error,
and the differences (if any) between the patched and RCV versions.

4.2.1 Basic Computational Pattern
As we analyzed the benchmark applications, it became clear that
all of the applications exhibit the following computational pattern:

• Input Units: The application divides its input into input units,
then processes each input unit in turn. For example, Wireshark
divides its input stream into network packets, then performs a
computation to process each network packet in turn. The input
unit computations are loosely coupled — the computation for
one input unit tends to have little or no interaction with the com-
putations for other input units, with any interactions mediated
by shared data data structures available to both computations.

• Sanity Checks: The computation for each input unit is de-
signed to process well-formed input units that satisfy certain
consistency constraints. The computation therefore performs
sanity checks that determine if the input unit satisfies these con-
straints. If a sanity check fails, the application skips the input
unit, performs any required cleanup (see below), and proceeds
on to process the next input unit.

• Local Resource Allocation: The computation for each input
unit allocates resources (such as memory) required to perform
the computation. The lifetimes of these resources are contained
within the computation for that input unit (so the resources
should be deallocated when the computation finishes).

• Process Input Unit: Using the allocated local resources, the
computation processes the input unit.

• Updates: Using the computed results, the computation appro-
priately updates any shared data structures and/or produces any
required externally visible output.

• Cleanup: The computation for the input unit finishes by per-
forming any required local resource deallocation operations.

Viewing the error, the patch, and the RCV recovery mechanisms
through the prism of this pattern can provide significant insight into
why RCV works and how well our results are likely to generalize
to other errors in other applications.

4.2.2 Analysis Result Summary
Table 2 summarizes the results of our analysis. The table contains
a row for each error. Note that we omit the analysis of CVE-2012-
4233 because the source code of the library where the error occurs
is not available. The first column of Table 2 (CVE ID) presents the
CVE ID of the error; the second column (Input Unit) identifies the
input units for the application that contains the corresponding error.
Missing Sanity Checks. Our analysis indicates that eight of the 18
errors are caused by missing sanity checks. The error is triggered
when the missing sanity check causes the computation to attempt
to process a malformed input unit that does not satisfy one or more
of the required consistency constraints. The third column of Table 2
(Missing Sanity Check) presents, for each error, whether the error
was caused by a missing sanity check (Yes) or not (No).
Patch Skips Computation. For 12 of the 18 errors, our analysis
indicates that the patch causes the application to skip the computa-
tion for the input unit if the unit would trigger the error, in effect
turning that computation into a noop. These 12 errors include all
of the errors that were caused by a missing sanity check as well
as CVE-2011-4153, CVE-2011-3182, CVE-2011-3083 and CVE-
2012-1128. CVE-2011-4153 and CVE-2011-3182 are caused by
a failure to check for a null return value from a (failed) memory
allocation operation. CVE-2011-3083 is caused by a failure to an-
ticipate a case associated with a null ftp link (see Section 2). CVE-
2012-1128 is caused by a logical error that causes the computation
to incorrectly attempt to execute one iteration of a specific loop in-
stead of zero iterations (see Section 4.3). The fourth column of Ta-
ble 2 (Patch Skips Computation) presents whether the patch skips
the computation and turns it into a noop (Yes) or not (No).



CVE ID Input Unit Missing Patch Skips RCV Nullifies RCV Hits Anticipated Cleanup Patched vs. RCV,
Sanity Check Computation Computation Error Check Required All Inputs

CVE-2013-2483 Network Packets Yes Yes Yes No Yes Identical
CVE-2012-4286 Network Packets No No No Yes Yes Different
CVE-2012-4285 Network Packets Yes Yes Yes Yes Yes Equivalent
CVE-2012-1143 Font Yes Yes Yes No Yes Different
CVE-2012-5668 Font No No No No Yes Identical
CVE-2012-4507 Emails in Inbox Yes Yes Yes Yes Yes Identical
CVE-2012-4233 Data Sheets Source code is not available
CVE-2012-3236 Images Yes Yes Yes Yes Yes Equivalent
CVE-2012-1593 Network Packets No No Yes No Yes Acceptable
CVE-2012-1128 Font No Yes Yes No Yes Identical
CVE-2012-0781 PHP Statements Yes Yes No No No Acceptable
CVE-2011-4153 PHP Statements No Yes Yes Yes Yes Acceptable
CVE-2011-3182 PHP Statements No Yes Yes No Yes Different
CVE-2011-3083 Web Pages No Yes Yes Yes Yes Identical
CVE-2011-2849 Web Pages No No Yes No No Identical
CVE-2011-1956 Network Packets No No Yes No No Identical
CVE-2011-1691 Web Pages Yes Yes Yes No Yes Identical
CVE-2011-0421 PHP Statements Yes Yes Yes Yes No Identical

Table 2. Source Code Analysis Summary Table.

RCV Nullifies Computation. For 14 of the 18 errors, RCV nul-
lifies the computation for the input unit that triggers the error, in
effect turning that computation into a noop. The fifth column of
Table 2 (RCV Nullifies Computation) indicates whether RCV nul-
lifies the computation (Yes) or not (No). Unlike the corresponding
patches, which skip the computation, RCV causes the computation
to continue along the standard execution path. But for one or more
of the following reasons, this continued execution has no effect:

• Anticipated Error Check: For seven of the 18 errors, the con-
tinued execution always encounters a check for an anticipated
error case that the application is coded to handle correctly. The
sixth column of Table 2 (RCV Hits Anticipated Error Check)
indicates whether the continued execution always encounters
such a check (Yes) or may not encounter such a check (No).
Three of these seven checks are sanity checks designed to de-
tect malformed inputs. Two of these three sanity checks (CVE-
2012-4507, CVE-2012-3236) are influenced by RCV manufac-
tured values, the other (CVE-2012-4285) is not.
The remaining four checks are designed to catch a variety of
internal errors such as failed memory allocations (CVE-2011-
4153), assertions (CVE-2012-4286, but see Section 4.3), and
null objects (CVE-2011-3083, CVE-2011-0421). Two (CVE-
2011-3083, CVE-2011-0421) are influenced by RCV manufac-
tured values, two (CVE-2012-4286, CVE-2011-4153) are not.
As these results illustrate, one of the benefits of RCV is that it
can enable applications to survive long enough to encounter an
anticipated error check, execute recovery code, and continue its
execution instead of crashing with an error.

• Discarded Writes via Null Pointers: CVE-2012-1593, CVE-
2012-1128, and CVE-2011-1956 use a null pointer to update
the shared data structures with the results of the computation.
Because RCV discards writes via null pointers, it nullifies these
updates and converts the computation into a noop even though
the update code executes.

• Discarded Calls via Null Pointers: CVE-2011-3083 and
CVE-2011-2849 invoke methods on null objects. RCV nullfies
the invoked method by skipping the method invocation.

• Zero Loop Count: CVE-2011-1691 uses a null pointer to fetch
the iteration count for the loop that performs all of the externally
visible updates. The RCV manufactured value (zero) nullifies
the computation by causing the loop to execute zero iterations.

• Zero Input Field: CVE-2013-2483 and CVE-2012-4285 use
an input field that contains zero as the divisor in a length or
size calculation. In both cases the computation is coded to be

a noop if the input field is zero (in which case the computation
never uses the manufactured RCV values). So the net effect of
RCV is to enable the computation to survive the divide-by-zero
and continue on to perform the computation, which is correctly
coded to handle the zero input field.

Cleanup Required. For 13 of the 18 errors, our analysis indicates
that the computation, even if skipped or nullified, must perform
some cleanup of allocated resources to avoid a resource leak. When
execution hits an anticipated error check (except CVE-2012-4286),
the application’s recovery code correctly performs this cleanup.
Otherwise (except CVE-2012-4233), RCV enables the computa-
tion to execute through the errors to reach the cleanup code at the
end of the computation. The seventh column of Table 2 indicates
whether cleanup is required (Yes) or not (No).
Patched Versus RCV, All Inputs. For all of the errors except CVE-
2012-4233 (for which source code is not available), we analyzed
the source code to determine the differences (if any) between the
patched and RCV versions of the computation. The eighth column
of Table 2 (Patched vs. RCV, All Inputs) presents whether the
patched and RCV versions produce identical results on all inputs
(Identical, nine of 18 errors), equivalent results on all inputs, i.e,
the same except that the patched and RCV versions may generate
different error messages (Equivalent, two of 18 errors), acceptable
results, i.e., the patched and RCV versions may produce different
results, but both are acceptable (Acceptable, three of 18 errors) , or
different results (Different, three of 18 errors).

4.3 Analysis of Individual Errors
We next discuss relevant aspects of the RCV recovery for each of
the errors. For CVE-2011-3083, see Section 2.
CVE-2013-2483: A malformed ACN packet with a zero value
in the acn_count field triggers a divide-by-zero error when
Wireshark-1.8.5 uses the acn_count field to compute the length
of a packet fragment (see packet-acn.c:1045). The error oc-
curs when Wireshark processes the Device Management Protocol
(DMP) information in the ACN packet. The patch checks if the
acn_count field is zero, in which case it skips the computation
for the DMP information. The RCV version continues through the
error to execute the loop that processes the DMP information. Be-
cause the iteration count of this loop is the value in the acn_count
field, the loop executes zero iterations, in effect nullifying the com-
putation for the DMP information to produce identical results as
the patched version.



CVE-2012-4286: A PCAP Next Generation Dump (PCAPNG)
file with a malformed interface description block (IDB)
causes Wireshark-1.8.1 to invoke the unknown block handler
(pcapng_read_unknown_block()) instead of the IDB block han-
dler (pcapng_read_if_descr_block()) for the malformed IDB
block. The invoked handler writes unknown block information into
a union data structure. If the application subsequently processes a
packet that references the malformed IDB block, it interprets the
union data structure as containing information for an IDB block.
This misinterpretation/corruption eventually triggers a divide-by-
zero error. The patch rewrites the handler dispatch code to check
for a malformed interface description block. If it encounters a mal-
formed block, it discards the malformed block and any remaining
unprocessed interface description blocks. The patched version then
proceeds on to process the packets in the file. If it encounters a
packet that references the malformed block (or any of the unpro-
cessed interface description blocks), it generates an error message
and skips any any remaining packets in the input file.

The RCV version processes the malformed block along with
any remaining interface description blocks. If the application en-
counters a packet that references the malformed block, RCV en-
ables the application to execute through the resulting divide-by-
zero error, but the application as released then encounters a fatal
assertion violation. Disabling assertions enables the application to
finish processing the packet and (empirically) continue on to suc-
cessfully process any remaining packets in the input file. Note that
the patched version would not process any of these remaining pack-
ets. The RCV version therefore provides more robust and resilient
execution than the patched version.

We note that when the RCV version closes the input file, data
corruption in the union data structure causes the application to
attempt to free memory that it did not allocate. Configuring libc to
ignore such attempts enables the application to, depending on user
interaction, either exit gracefully or continue on to process another
input file (as opposed to terminating with an error inside libc).
CVE-2012-4285: A malformed DCP-ETSI packet with a zero pay-
load length triggers a divide-by-zero error when Wireshark-1.8.1
uses this length to compute a minimum number of required frag-
ments (see packet-dcp-etsi.c:4285). The patch checks if the
payload length is zero, in which case it generates an error message
and skips the computation for the packet. The RCV version exe-
cutes through the error to eventually encounter a subsequent an-
ticipated packet format check. Because the packet does not satisfy
the check, the application generates an error message and skips the
computation for the packet. The check occurs before the computa-
tion performs any externally visible updates. The patched and RCV
versions differ only in the error messages that they generate.
CVE-2012-1143: A malformed font file can trigger a divide-
by-zero error in the utility division routine FT_DivFix() in the
FreeType-2.4.8 library. The patch checks if the denominator pa-
rameter in this utility routine is zero, in which case it skips the
division and returns 0x7fffffff as the result of the division. The
RCV version continues through the error and returns zero as the
result of the division. These values are eventually stored in the data
structures that represent the font and are flushed from the system
when these data structures are deallocated. It is not clear to us how
or even if the difference in these two values may potentially affect
the behavior of the client of the font.
CVE-2012-5668: A malformed Bitmap Distribution Format (BDF)
font with a large props_size field (which controls the number
of properties in the font) triggers a null-dereference error in the
cleanup routine of the FreeType-2.4.8 library. The program allo-
cates an array of props_size pointers (see bdflib.c:2164) and
then fills in the allocated pointer array with references to additional
allocated memory. If the allocation of the pointer array fails, a null-

dereference error occurs when a loop in the FreeType library iter-
ates over the null pointer array attempting to deallocate the addi-
tional allocated memory blocks (see bdflib.c:2475).

The patch sets the props_size variable to zero if the allocation
of the pointer array fails, which nullifies the deallocation loop (it
performs zero iterations). The RCV version executes the dealloca-
tion loop six times (it then jumps out of the loop, see Section 3.2),
but nullifies each iteration by passing the manufactured value of
zero into the invoked free() operation (which is a noop when
passed a zero pointer to free()). Therefore the patched and RCV
versions produce identical results on all inputs.
CVE-2012-4507: An email triggers a null-dereference error when
Claws Mail-3.8.1 processes an unsupported MIME header param-
eter (either a content type, content disposition, or content trans-
fer parameter). The hashset lookup of the parameter returns a null
pointer (for supported parameters, this lookup returns a string that
encodes the value of the parameter). As part of the computation that
attempts to extract the value of the parameter from the string, the
application passes this (null) pointer into strchr(), which deref-
erences the pointer when it attempts to access the string.

The patch checks if the hashset lookup attempt failed, in which
case it skips the unsupported parameter. The RCV version con-
tinues through the error, returns from strchr(), and checks if
strchr() found the desired character. The check fails and the
RCV version skips the unsupported parameter. The patched and
RCV versions produce identical results on all inputs.
CVE-2012-4233: A malformed spreadsheet triggers a null-
dereference error when LibreOffice-3.5.5.2 opens the spreadsheet.
The error occurs within the shared library libscfiltlo.so. The
source code of this library is not available.

For the error-triggering input, the RCV version generates a
warning message that it cannot display part of the spreadsheet. The
RCV version then proceeds on to display the properly formed part
of the spreadsheet, with results identical to the patched version of
LibreOffice on the same input. All values influenced by the RCV
manufactured values are flushed from the state at the end of the
spreadsheet parsing phase.
CVE-2012-3236: A FITS image with a malformed or miss-
ing XTENSION field triggers a null-dereference error when
the GIMP FITS plugin (in GIMP-2.8.0) parses the image (see
fits-io.c:1059). The error occurs when the application attempts
to dereference the (null) pointer to the object that holds data from
the parsed XTENSION field. The patch checks if the function that
parses the XTENSION field returns null (indicating a malformed
or missing XTENSION field), in which case it aborts the parse,
sends an error message to the main process, and gracefully exits
the plugin (which runs in a separate process from the main GIMP
process). The RCV version continues through the error. Before it
performs any externally visible updates, it encounters an antici-
pated error check for a malformed GCOUNT/PCOUNT subfield in
the XTENSION field. The check indicates that the subfield is mal-
formed. The RCV version performs the same error handling actions
as the patched version, aborts the parse, sends a slightly different
error message to the main process, and gracefully exits the plugin.

If the RCV error containment system is turned on, it blocks
the transmission of the error message from the plugin back to the
parent. With the error containment system turned off, the RCV
version displays a slightly different error message than the patched
version. In either case, the patched and RCV versions differ only in
the error messages they generate.
CVE-2012-1593: A malformed ANSI Mobile Application Pact
(MAP) packet with an abnormal fragment order may trigger a null-
dereference error in Wireshark-1.6.5, which depends on input pack-
ets occurring in an expected order to properly initialize a shared
pointer variable g_pinfo in packet-ansi_a.c. g_pinfo refer-



ences a data structure that holds information that is displayed in
the rightmost column of the Wireshark GUI. If the fragments oc-
cur out of the expected order, g_pinfo is null when the application
processes the first out of order fragment.

The patch removes the g_pinfo variable and rewrites the func-
tion interfaces in packet-ansi_a.c to pass the data structure as a
parameter to the fragment processing functions. The RCV version
continues through the error to discard all updates to the shared data
structure via the null g_pinfo pointer when it processes out of or-
der fragments. The only difference between the patched and RCV
versions is the contents of the shared information data structure (in
the RCV version, this data structure is missing the updates from the
out of order fragments). The only visible difference is the contents
of the rightmost column in the Wireshark GUI.
CVE-2012-1128: A TrueType font causes the FreeType-2.4.8 li-
brary to incorrectly calculate the iteration count of the loop at
ttinterp.c:5867, which eventually triggers a null-dereference
error inside the loop. The patch corrects the iteration count calcu-
lation so that the loop will not execute any iterations for inputs
that trigger the error. The RCV version executes the loop itera-
tions, but nullifies them by discarding writes via the null pointer
(the loop performs no other externally visible updates). The patched
and RCV versions produce identical results on all inputs.
CVE-2012-0781: A PHP program calls the diagnose method with a
null Tidy object. The PHP interpreter (PHP-5.3.8) maintains a data
structure associated with this null object. This data structure con-
tains a null reference to the corresponding Tidy document, which
the PHP interpreter attempts to dereference. The patch checks if the
Tidy object is null, in which case it skips the diagnose method.

The RCV version continues through the error to append a diag-
nose message to an error buffer in the data structure associated with
the null Tidy object. The application can observe the difference be-
tween the two versions only if it uses Tidy object APIs to query the
modified error buffer of the null Tidy object.
CVE-2011-4153: A PHP program that invokes str_repeat()
may trigger a null-dereference error in the PHP interpreter (PHP-
5.3.8) when a memory allocation in strndup() fails. In this case,
strndup() returns null (see zend_builtin_function.c:685);
the error occurs when the PHP interpreter attempts to deference the
returned null reference. The patched version checks if the returned
reference is null, in which case it skips the computation for the cur-
rent PHP statement.1 The RCV version continues through the error
to encounter another failed memory allocation. This is an antici-
pated error case that the application is coded to handle correctly,
specifically by printing an error message and gracefully exiting the
PHP program execution.
CVE-2011-3182: A PHP program that invokes strtotime()
without sufficient available memory triggers a null-dereference er-
ror in the PHP interpreter (PHP-5.3.6) when the memory alloca-
tion operation malloc() at parse_date.c:24674 fails and the
application attempts to dereference the returned null reference. The
patched version checks if the returned value is null, in which case it
skips the computation for the current PHP statement and returns the
PHP boolean value false as the result of strtotime(), which in-
dicates that an error occurred in strtotime().1 The RCV version
continues through the error and returns the PHP value zero from
strtotime() (indicating a time of Jan. 1, 1970, 00:00:00 UTC).
CVE-2011-2849: A malicious web page triggers a null-dereference
error in Chromium-12.0.742.112 when it causes Chromium to use
a Chromium WebSocketJob object to generate repetitive communi-

1 Because the developer of the PHP interpreter declined to integrate a
patch that corrects this error, the current version of PHP (PHP-5.3.28) still
contains this error. We therefore use the patch suggested in the CVE error
report.

cation between the browser and the web server that serves the page.
The code in the WebSocketJob object that handles the communica-
tion contains a data race. This data race can cause the object to
enter an inconsistent state in which the underlying SocketStream
object has been released but the state flag in the WebSocketJob ob-
ject indicates that the connection is still active. This inconsistency
triggers a null-dereference error at websocket_job.cc:495 when
the application, in an attempt to send data, invokes the SendData()
method on the released SocketStream object.

The patch rewrites the code to eliminate the data race. The
RCV version continues through the error by skipping the invoked
SendData() method. This repair turns the communication request
into a noop. Chromium then retries the communication until it
succeeds (the inconsistent state is transient, when the inconsistency
resolves the communication will succeed).
CVE-2011-1956: When Wireshark-1.4.5 processes a TCP packet
that contains data, it passes a null start_ptr parame-
ter to the proto_tree_add_bytes_format() function (see
packet-tcp.c:1888). The null-dereference error occurs when
the function attempts to copy the raw TCP payload data from
start_ptr into another data structure (see proto.c:1740).

The patch passes the correct start_ptr parameter (this
correct parameter points to the raw payload data) to the
proto_tree_add_bytes_format() function. The RCV version
continues through the null pointer dereferences, returning zero as
the result of the reads from the null start_ptr parameter (as if the
payload were all zeros). Because Wireshark never uses the copied
raw TCP payload data, the patched and RCV versions produce
identical results on all inputs.
CVE-2011-1691: A malicious web page that operates on an empty
Computed Style Sheet (CSS) declaration object triggers a null-
dereference error in Chromium-12.0.717.0. The web page includes
a script that looks up the counter increment attribute of the empty
CCS declaration object. Such attributes are stored in the counter
derivative map, but because the CSS declaration object is empty,
the map is null. The null-dereference occurs when the application
attempts to iterate over the elements in the null map.

The patch checks if the counter derivative map of the CSS
declaration object is null, in which case it returns zero indicat-
ing that the attribute was not found. The RCV version nullifies
the attribute lookup loop (the loop executes zero iterations, see
CSSComputedStyleDeclaration.cpp:769) and eventually re-
turns zero again indicating that the attribute was not found. The
patched and RCV versions produce identical results on all inputs.
CVE-2011-0421: A PHP program that invokes nameLocate()
to look up a file in a null PHP ZIP archive object triggers
a null-dereference error in the PHP interpreter (PHP-5.3.5) at
zip_name_locate.c:64. The PHP interpreter maintains a data
structure that represents the null PHP ZIP archive object. This data
structure contains a reference to a data structure that the PHP inter-
preter uses to represent the PHP ZIP archive object. This reference
is null if the PHP ZIP archive object is null. The error occurs when
the nameLocate() function in the PHP interpreter attempts to use
this null reference to access the directory information for the null
PHP ZIP archive object.

The patch checks whether the PHP ZIP archive object is null,
in which case it skips the lookup and returns an error code in-
dicating that the file was not found. The RCV version continues
through error to execute the loop that looks up the file. Because
RCV returns zero as the result of all reads via null references (see
zip_name_locate.c:65-83), the PHP interpreter does not find the
file. The RCV version then returns the same file not found error
code as the patched version.



5. Related Work
Runtime Program Recovery: Failure-Oblivious Computing
(FOC) [25] discards out of bounds writes, manufactures values
for out of bounds reads, and (like RCV) enables applications to
continue along their normal execution path. FOC leverages exist-
ing bounds checks in safe languages (e.g., Java) or adds bounds
checks for unsafe languages (e.g., C). Instead of relying on soft-
ware bounds checks to detect errors, RCV relies on signals, which
are generated by hardware exceptions. RCV therefore entails little
to no error detection overhead even for unsafe languages. FOC was
evaluated on five errors in five server applications.

SRS [21] suppresses memory corruption errors in servers that
process a sequence of requests — when it detects such an error, it
enters a crash suppression mode in which instructions that access
corrupted values do not execute. It exits this mode when it returns
back to process the next request. SRS relies on user annotations to
identify the start of request processing code and on profiling runs to
identify shared memory locations that may transmit corrupted data
between requests. Even during normal execution, SRS adds binary
instrumentation to every store instruction to maintain a record of
the user request id of the request that generated the write. SRS was
evaluated on four errors from four server applications.

RCV, in contrast, requires no user annotations and no profiling
runs, does not rely on any particular application structure, and
imposes no binary instrumentation during normal execution. RCV
also detects when the recovery effects have been flushed from the
process state, no matter how or when these effects are flushed.
We also evaluate RCV on a larger, more comprehensive set of
errors and therefore obtain more insight into how well the RCV
techniques will generalize to other applications and other classes
of errors. We also evaluate RCV on client applications and find that
RCV provides two benefits in this context: 1) the continued RCV
execution enables the developer to save any pending changes even
in the presence of otherwise fatal errors, and 2) in comparison with
approaches that terminate and then restart the client application,
RCV provides efficient continued execution with no interruption.

Because they tend to nullify the associated computations, RCV,
FOC, and SRS all work well with programs (such as servers) that
process a sequence of largely or completely independent input units
or requests. Previous research also shows that discarding tasks
with errors can enable applications to survive errors to produce
acceptably accurate results even when the application obtains the
final result by combining the results that the tasks produce [26, 27].

APPEND [10] is a compile-time tool that inserts null-
dereference checks into Java programs. If a check detects a null-
dereference, it executes error-handling code that may, for example,
allocate a default object or skip the computation and continue. AP-
PEND was evaluated on three null dereference errors in three Java
programs. RCV, in contrast, operates directly on x86 binaries, does
not insert any null checks into the program, was evaluated on a
more comprehensive set of errors, applies a recovery strategy that
does not allocate memory but, in effect, interprets null references
as references to an object containing all zeros, and detects when
recovery effects have been flushed from the system.

Jolt [7] and Bolt [16] enable applications to survive infinite loop
errors. When an infinite loop error occurs, they jump out of the
loop or the enclosing function to escape the error. RCV targets a
different set of errors, but could easily be combined with Jolt or
Bolt to obtain a unified system for infinite loop, divide-by-zero,
and null-dereference errors.

ClearView [23] learns a set of runtime invariants from train-
ing runs. It then collaboratively patches errors by enforcing the
learned invariants at runtime. RCV has no learning phase and (un-
like ClearView) does not apply expensive binary instrumentation
during normal execution.

DieHard [5] provides probabilistic memory safety in the pres-
ence of memory errors. In stand-alone mode, DieHard replaces the
default memory manager with a memory manager that places ob-
jects randomly across a heap to reduce the possibility of memory
overwrites due to buffer overflows. In replicated mode, DieHard
obtains the final output of the application based on the votes of
multiple replications. Unlike RCV, DieHard does not attempt to
enable the program to survive null-dereference errors. It instead
treats null-dereference errors as uninitialized reads and will abort
the application execution when uninitialized reads occur.

Rx [24] takes periodic checkpoints. When an error occurs,
Rx reverts back to a previous checkpoint and makes semantically
equivalent system-level changes (e.g, memory allocations, process
scheduling, etc.) to search for executions that do not trigger the er-
ror. ARMOR [8] is a similar checkpoint-based recovery system for
Java applications. ARMOR relies on user-provided specifications
to find semantically equivalent workarounds. It then re-executes the
application with these workarounds when an error occurs.

Error Virtualization [28–31] is a general error recovery tech-
nique that retrofits exception-handing capabilities to legacy soft-
ware. Failures that would otherwise cause a program to crash are
turned into transactions that use a program’s existing error handling
routines to survive from unanticipated faults. ASSURE [30] gen-
eralizes Error Virtualization to enable the system to transactionally
terminate any one of the functions on the call stack at the time of the
error (and not just the function containing the error). Attack replay
on a triage machine enables the system to evaluate which function
to terminate to provide the most successful recovery. The applied
patch takes a checkpoint at the start of the function. It responds to
errors by restoring the checkpoint, then returning an effective error
code to terminate the function and continue execution at the caller.
In contrast, RCV does not depend on checkpointing and is there-
fore applicable to situations where the cost of taking checkpoints is
unaffordable (e.g, client applications).
Static Program Repair: Researchers have also developed tech-
niques to automatically synthesize a program patch for an er-
ror [14, 15, 32]. GenPro [32] is a automatic program repair tool
that uses an evolutionary algorithm to synthesize program patches
from existing source code with a set of mutation rules. PAR [15]
applies patch templates to automatically generate patches for new
errors. Khmelevsky et al. [14] present a source-to-source error re-
pair technique for missing condition checks after a method call.
Unlike these tools, the goal of RCV is to repair the execution of the
application, not the source code — continued execution with RCV
can reduce or eliminate data losses in running applications.
Self-Stabilizing Java: SJava [12] is a Java type system that en-
ables the compiler to prove that the effects of any error will be
flushed from the system state after a fixed number of iterations.
Input Rectification and Filtering: Input rectification [18] empir-
ically learns a set of input constraints from benign training inputs,
then enforces learned constraints on incoming inputs to nullify po-
tential errors. Starting with critical program sites such as memory
allocation or block copy sites, sound input filter generation [19]
statically analyzes the program to generate filters that ensure that
any input passed to the program will not trigger an error at that site.
Data Structure Repair: Data structure repair enables applications
to recover from data structure corruption errors [9].
The Ariane-5 Disaster: The Ariane-5 disaster is one of the most
prominent and widely studied software disasters in history [17].
Shortly after launch, the Ariane-5 control software encountered an
arithmetic overflow error. In response, the exception handler termi-
nated the control software and switched to the backup. The backup
encountered the same arithmetic overflow error. The invoked ex-
ception handler again terminated the execution, leaving the rocket
flying with no control and forcing the launch team to destroy the



rocket. The value whose computation caused the arithmetic over-
flow error was never used. Applying the basic RCV recovery strat-
egy (return a manufactured value as the result of the operation that
generated the exception, then continue execution along the normal
execution path) would have enabled the Ariane-5 to successfully
perform its mission.

6. Conclusion
Divide-by-zero and null-dereference errors cause undesirable ap-
plication crashes. RCV implements a recovery shepherding tech-
nique that attaches to the application process when an error occurs,
repairs the execution, contains the error within the process during
recovery, and detaches from the process when the effect of the re-
covery has been flushed from the system. For the majority of the
benchmark errors in this paper, the RCV versions produce identi-
cal or equivalent results as the subsequent versions with developer-
supplied patches that correct the errors. These results, which are
consistent with previous results for philosophically similar repair
strategies for other kinds of errors [7, 16, 21, 22, 25, 30, 31], con-
tribute to a mounting body of evidence that simple repairs can ef-
fectively unlock the inherent resilience already present in many ap-
plications and enable these applications to successfully survive oth-
erwise fatal errors.

Acknowledgements
We thank Christopher Musco, Deokhwan Kim, Sasa Misailovic,
and the anonymous reviewers for their insightful comments. This
research was supported by DARPA (Grant FA8650-11-C-7192).

References
[1] Chromium’s multi-process architecture. http://blog.chromium.

org/2008/09/multi-process-architecture.html.
[2] Common vulnerabilities and exposures. http://cve.mitre.org/.
[3] The libunwind project. http://www.nongnu.org/libunwind/.
[4] SPEC CPU2006. http://www.spec.org/cpu2006/.
[5] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory safety

for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06’, pages 158–168. ACM, 2006.

[6] B. Buck and J. K. Hollingsworth. An api for runtime code patching.
Int. J. High Perform. Comput. Appl., 14(4):317–329, Nov. 2000.

[7] M. Carbin, S. Misailovic, M. Kling, and M. C. Rinard. Detecting and
escaping infinite loops with jolt. In Proceedings of the 25th European
conference on Object-oriented programming, ECOOP’11, pages 609–
633. Springer-Verlag, 2011.

[8] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezzè.
Automatic recovery from runtime failures. In Proceedings of the 2013
International Conference on Software Engineering, pages 782–791.

[9] B. Demsky and M. C. Rinard. Goal-directed reasoning for
specification-based data structure repair. IEEE Trans. Software Eng.,
32(12):931–951, 2006.

[10] K. Dobolyi and W. Weimer. Changing java’s semantics for handling
null pointer exceptions. 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE), 0:47–56, 2008.

[11] P. Dubroy and R. Balakrishnan. A study of tabbed browsing among
mozilla firefox users. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 673–682. ACM, 2010.

[12] Y. h. Eom and B. Demsky. Self-stabilizing java. In Proceedings of the
33rd ACM SIGPLAN conference on Programming Language Design
and Implementation, PLDI ’12’, pages 287–298. ACM, 2012.

[13] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. Libdft:
Practical dynamic data flow tracking for commodity systems. In
Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments, VEE ’12’, pages 121–132. ACM, 2012.

[14] Y. Khmelevsky, M. Rinard, and S. Sidiroglou. A source-to-source
transformation tool for error fixing. CASCON, 2013.

[15] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13’, pages
802–811. IEEE Press, 2013.

[16] M. Kling, S. Misailovic, M. Carbin, and M. Rinard. Bolt: on-demand
infinite loop escape in unmodified binaries. In Proceedings of the ACM
international conference on Object oriented programming systems
languages and applications, OOPSLA ’12’, pages 431–450. ACM,
2012.

[17] J. Lions. Ariane 5 flight 501 failure: Report by the inquiry board.,
1996.

[18] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard. Au-
tomatic input rectification. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 80–90. IEEE
Press, 2012.

[19] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. C. Rinard. Sound
input filter generation for integer overflow errors. In POPL, pages
439–452, 2014.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’05’, pages 190–200. ACM, 2005.

[21] V. Nagarajan, D. Jeffrey, and R. Gupta. Self-recovery in server pro-
grams. In Proceedings of the 2009 International Symposium on Mem-
ory Management, ISMM ’09’, pages 49–58. ACM, 2009.

[22] H. H. Nguyen and M. Rinard. Detecting and eliminating memory
leaks using cyclic memory allocation. In Proceedings of the 6th
International Symposium on Memory Management, ISMM ’07’, pages
15–30. ACM, 2007.

[23] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patch-
ing errors in deployed software. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, pages
87–102. ACM, 2009.

[24] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx: Treating bugs as
allergies–a safe method to survive software failures. ACM Trans.
Comput. Syst., 25(3), Aug. 2007.

[25] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee. Enhancing server availability and security through failure-
oblivious computing. In OSDI, pages 303–316, 2004.

[26] M. C. Rinard. Probabilistic accuracy bounds for fault-tolerant compu-
tations that discard tasks. In ICS, pages 324–334, 2006.

[27] M. C. Rinard. Using early phase termination to eliminate load imbal-
ances at barrier synchronization points. In OOPSLA, pages 369–386,
2007.

[28] S. Sidiroglou, Y. Giovanidis, and A. Keromytis. A Dynamic Mecha-
nism for Recovery from Buffer Overflow attacks. In Proceedings of
the 8th Information Security Conference (ISC), September 2005.

[29] S. Sidiroglou and A. D. Keromytis. A Network Worm Vaccine Ar-
chitecture. In Proceedings of the IEEE Workshop on Enterprise Tech-
nologies, June 2003.

[30] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis. Assure: Automatic software self-healing using rescue
points. In ASPLOS, pages 37–48, 2009.

[31] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Build-
ing a reactive immune system for software services. In Proceedings
of the general track, 2005 USENIX annual technical conference: April
10-15, 2005, Anaheim, CA, USA, pages 149–161. USENIX, 2005.

[32] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09’, pages
364–374. IEEE Computer Society, 2009.


