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Summary. We investigate the use of hybrid techniques as a defensive mechanism against tar-
geted attacks and introduce Shadow Honeypots, a novel hybrid architecture that combines the
best features of honeypots and anomaly detection. At a high level, we use a variety of anomaly
detectors to monitor all traffic to a protected network/service. Traffic that is considered anoma-
lous is processed by a “shadow honeypot” to determine the accuracy of the anomaly predic-
tion. The shadow is an instance of the protected software that shares all internal state with
a regular (“production”) instance of the application, and is instrumented to detect potential
attacks. Attacks against the shadow are caught, and any incurred state changes are discarded.
Legitimate traffic that was misclassified will be validated by the shadow and will be handled
correctly by the system transparently to the end user. The outcome of processing a request by
the shadow is used to filter future attack instances and could be used to update the anomaly
detector.

Our architecture allows system designers to fine-tune systems for performance, since false
positives will be filtered by the shadow. Contrary to regular honeypots, our architecture can
be used both for server and client applications. We also explore the notion of using Shadow
Honeypots in Application Communities in order to amortize the cost of instrumentation and
detection across a number of autonomous hosts.

1.1 Introduction

Due to the increasing level of malicious activity seen on today’s Internet, organiza-
tions are beginning to deploy mechanisms for detecting and responding to new at-
tacks or suspicious activity, called Intrusion Prevention Systems (IPS). Since current
IPS’s use rule-based intrusion detection systems (IDS) such as Snort [37] to detect
attacks, they are limited to protecting, for the most part, against already known at-
tacks. As a result, new detection mechanisms are being developed for use in more
powerful reactive-defense systems. The two primary such mechanisms are honey-
pots [32, 13, 62, 45, 20, 6] and anomaly detection systems (ADS) [53, 57, 52, 8, 19].
In contrast with IDS’s, honeypots and ADS’s offer the possibility of detecting (and
thus responding to) previously unknown attacks, also referred to as zero-day attacks.



Honeypots and anomaly detection systems offer different tradeoffs between ac-
curacy and scope of attacks that can be detected, as shown in Figure 1.1. Honeypots
can be heavily instrumented to accurately detect attacks, but depend on an attacker
attempting to exploit a vulnerability against them. This makes them good for de-
tecting scanning worms [2, 3, 13], but ineffective against manual directed attacks or
topological and hit-list worms [48, 47]. Furthermore, honeypots can typically only
be used for server-type applications. Anomaly detection systems can theoretically
detect both types of attacks, but are usually much less accurate. Most such systems
offer a tradeoff between false positive (FP) and false negative (FN) rates. For ex-
ample, it is often possible to tune the system to detect more potential attacks, at an
increased risk of misclassifying legitimate traffic (low FN, high FP); alternatively, it
is possible to make an anomaly detection system more insensitive to attacks, at the
risk of missing some real attacks (high FN, low FP). Because an ADS-based IPS can
adversely affect legitimate traffic (e.g., drop a legitimate request), system designers
often tune the system for low false positive rates, potentially misclassifying attacks
as legitimate traffic.
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Fig. 1.1. A simple classification of honeypots and anomaly detection systems, based on
attack detection accuracy and scope of detected attacks. Targeted attacks may use lists of
known (potentially) vulnerable servers, while scan-based attacks will target any system
that is believed to run a vulnerable service. AD systems can detect both types of attacks,
but with lower accuracy than a specially instrumented system (honeypot). However, hon-
eypots are blind to targeted attacks, and may not see a scanning attack until after it has
succeeded against the real server.

We propose a novel hybrid approach that combines the best features of honey-
pots and anomaly detection, named Shadow Honeypots. At a high level, we use a
variety of anomaly detectors to monitor all traffic to a protected network. Traffic that
is considered anomalous is processed by a shadow honeypot. The shadow version



is an instance of the protected application (e.g., a web server or client) that shares
all internal state with a “normal” instance of the application, but is instrumented to
detect potential attacks. Attacks against the shadow honeypot are caught and any
incurred state changes are discarded. Legitimate traffic that was misclassified by the
anomaly detector will be validated by the shadow honeypot and will be transparently
handled correctly by the system (i.e., an HTTP request that was mistakenly flagged
as suspicious will be served correctly). Our approach offers several advantages over
stand-alone ADS’s or honeypots:

• First, it allows system designers to tune the anomaly detection system for low
false negative rates, minimizing the risk of misclassifying a real attack as legiti-
mate traffic, since any false positives will be weeded out by the shadow honeypot.

• Second, and in contrast to typical honeypots, our approach can defend against
attacks that are tailored against a specific site with a particular internal state.
Honeypots may be blind to such attacks, since they are not typically mirror im-
ages of the protected application.

• Third, shadow honeypots can also be instantiated in a form that is particu-
larly well-suited for protecting against client-side attacks, such as those directed
against web browsers and P2P file sharing clients.

• Finally, our system architecture facilitates easy integration of additional detection
mechanisms.

In addition to the server-side scenario, we also investigate a client-targeting
attack-detection scenario, unique to shadow honeypots, where we apply the detec-
tion heuristics to content retrieved by protected clients and feed any positives to
shadow honeypots for further analysis. Unlike traditional honeypots, which are idle
whilst waiting for active attackers to probe them, this scenario enables the detection
of passive attacks, where the attacker lures a victim user to download malicious data.

Finally, we explore the combination of Shadow Honeypots with Application
Communities to create a distributed collaborative environment where detection and
the processing cost incured by the use Shadow Honeypots is shared across a large
number of hosts.

Paper Organization

The remainder of this paper is organized as follows. Section 1.2 discusses the shadow
honeypot architecture in greater detail. Some of the limitations of our approach are
briefly discussed in Section 1.3. We give an overview of related work in Section 1.4,
and conclude the paper with a summary of our work and plans for future work in
Section 1.5.

1.2 Architecture

The Shadow Honeypot architecture is a systems approach to handling network-based
attacks, combining filtering, anomaly detection systems and honeypots in a way that



exploits the best features of these mechanisms, while shielding their limitations. We
focus on transactional applications, i.e., those that handle a series of discrete requests.
Our architecture is not limited to server applications, but can be used for client-side
applications such as web browsers, P2P clients, etc. As illustrated in Figure 1.2, the
architecture is composed of three main components: a filtering engine, an array of
anomaly detection sensors and the shadow honeypot, which validates the predictions
of the anomaly detectors. The processing logic of the system is shown graphically in
Figure 1.3.

The filtering component blocks known attacks. Such filtering is done based ei-
ther on payload content [56, 1] or on the source of the attack, if it can be identified
with reasonable confidence (e.g., confirmed traffic bi-directionality). Effectively, the
filtering component short-circuits the detection heuristics or shadow testing results
by immediately dropping specific types of requests before any further processing is
done.

Traffic passing the first stage is processed by one or more anomaly detectors.
There are several types of anomaly detectors that may be used in our system, includ-
ing payload analysis [57, 42, 18, 52] and network behavior [16, 60]. Although we
do not impose any particular requirements on the AD component of our system, it
is preferable to tune such detectors towards high sensitivity (at the cost of increased
false positives). The anomaly detectors, in turn, signal to the protected application
whether a request is potentially dangerous.
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Fig. 1.2. Shadow Honeypot architecture.
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Fig. 1.3. System workflow.

Depending on this prediction by the anomaly detectors, the system invokes either
the regular instance of the application or its shadow. The shadow is an instrumented
instance of the application that can detect specific types of failures and rollback any
state changes to a known (or presumed) good state, e.g., before the malicious request
was processed. Because the shadow is (or should be) invoked relatively infrequently,
we can employ computationally expensive instrumentation to detect attacks. The
shadow and the regular application fully share state, to avoid attacks that exploit
differences between the two; we assume that an attacker can only interact with the
application through the filtering and AD stages, i.e., there are no side-channels. The
level of instrumentation used in the shadow depends on the amount of latency we
are willing to impose on suspicious traffic (whether truly malicious or misclassified
legitimate traffic). In our reference implementation, described in [5], we focus on
memory-violation attacks, but any attack that can be determined algorithmically can
be detected and recovered from, at the cost of increased complexity and potentially
higher latency.

If the shadow detects an actual attack, we notify the filtering component to block
further attacks. If no attack is detected, we update the prediction models used by the
anomaly detectors. Thus, our system could in fact self-train and fine-tune itself using



verifiably bad traffic and known mis-predictions, although this aspect of the approach
is outside the scope of the present paper.

As we mentioned above, shadow honeypots can be integrated with servers as
well as clients. In this work, we focus our attention on tight coupling with both
server and client applications, where the shadow resides in the same address space
as the protected application.

• Tightly coupled with server This is the most practical scenario, in which we
protect a server by diverting suspicious requests to its shadow. The application
and the honeypot are tightly coupled, mirroring functionality and state. We have
implemented this configuration with the Apache web server, described in [5].

• Tightly coupled with client Unlike traditional honeypots, which remain idle
while waiting for active attacks, this scenario targets passive attacks, where the
attacker lures a victim user to download data containing an attack, as with the
recent buffer overflow vulnerability in Internet Explorer’s JPEG handling. In this
scenario, the context of an attack is an important consideration in replaying the
attack in the shadow. It may range from data contained in a single packet to an
entire flow, or even set of flows. Alternatively, it may be defined at the application
layer. For our testing scenario, specifically on HTTP, the request/response pair is
a convenient context.

• Loosely coupled with server In this scenario, we detect novel attacks against
protected servers by diverting suspicious requests to shadow honeypots. The ap-
plication is not tightly coupled with the shadow honeypot system, so multiple
versions of the application may have to be maintained, and its exact configura-
tion is not known. The requests are captured using passive monitoring and no
attempt is made to prevent the attack. This approach has the benefit of being able
to “outsource” the detection of vulnerabilities to third entities, potentially taking
advantage of economies of scale.

• Loosely coupled with client For this approach, suspicious flows are redirected to
loosely coupled (do not share state or configuration) versions of an application.
One can envision protected client farms where suspicious traffic is tested against
multiple versions of the application one is trying to protect.

Tight coupling assumes that the application can be modified. The advantage of
this configuration is that attacks that exploit differences in the state of the shadow
vs. the application itself become impossible. However, it is also possible to deploy
shadow honeypots in a loosely coupled configuration, where the shadow resides on a
different system and does not share state with the protected application. The advan-
tage of this configuration is that management of the shadows can be “outsourced” to
a third entity as a service.

Note that the filtering and anomaly detection components can also be tightly
coupled with the protected application, or may be centralized at a natural aggregation
point in the network topology (e.g., at the firewall).

Finally, it is worth considering how our system would behave against different
types of attacks. For most attacks we have seen thus far, once the AD component
has identified an anomaly and the shadow has validated it, the filtering component
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Fig. 1.4. Application Community workflow

will block all future instances of it from getting to the application. However, we
cannot depend on the filtering component to prevent polymorphic or metamorphic
[51] attacks. For low-volume events, the cost of invoking the shadow for each attack
may be acceptable. For high-volume events, such as a Slammer-like outbreak, the
system will detect a large number of correct AD predictions (verified by the shadow)
in a short period of time; should a configurable threshold be exceeded, the system can
enable filtering at the second stage, based on the unverified verdict of the anomaly
detectors. Although this will cause some legitimate requests to be dropped, this could
be acceptable for the duration of the incident. Once the number of (perceived) attacks
seen by the ADS drop beyond a threshold, the system can revert to normal operation.



Application Communities

Using shadow honeypots in a collaborative distributed environment presents another
set of interesting tradeoffs and deployment configurations. For this purpose, we ex-
plore the use of shadow honeypots with Application Communities [21].

Application Communities (AC) are a collection of almost-identical instances of
the same application running autonomously across a wide area network. Members
of an AC collaborate in identifying previously unknown (zero day) flaws/attacks and
exchange information so that such failures are prevented from re-occurring. Individ-
ual members may succumb to new flaws; however, over time the AC should converge
to a state of immunity against that specific fault. The system learns new faults and
adapts to them, exploiting the AC size to achieve both coverage (in detecting faults)
and fairness (in distributing the monitoring task).

Shadow honeypots, in collaboration with Application Communities, provides a
systemic framework where the cost of validating false positives is amortized across
a large number of hosts and collaboration in anomaly detection can result in more
robust vulnerability sensing. Shadow honeypots and AC’s can be used in both tightly
and loosely coupled configurations. As illustrated in 1.4, each host in an application
community participates in protecting portions of an application. For example, if an
AC is comprised of four nodes, one (naive) way to split the monitoring cost would
be to assign each node responsibility for 25% of the code. For a detailed analysis
on work distribution mechanisms and fairness measures, refer to [21]. AC hosts are
solely responsible for dealing with their traffic. Traffic that is tagged suspicious by
the local AD is processed either by the local instance of the shadow code in a tightly
coupled scenario or forwarded to a third party in loosely coupled configuration.

In the tightly coupled scenario, suspicious requests are processed locally by a
shadow version of the code that monitors a subset of the application code. This
translates into a lower per host cost for processing false positives but relies on col-
laboration and the size of an AC to achieve both coverage and low overhead. If a
vulnerability is detected, it is first processed locally and then information pertinent
to the attack is propagated to the AC. In more detail, given a fault, the application
is modified so that it can both detect and recover from any future manifestations of
the specific fault and the anomaly detectors are updated with signatures derived from
the attack vector. This information, along with the attack vector, is then dispatched
to the rest of the AC, where hosts can independently validate the vulnerability.

Similarly, for the loosely couple configuration, suspicious requests to a host are
sent to a remote sensor that is responsible for monitoring one portion of the appli-
cation. If the remote sensor detects a fault, the vulnerability specific information is
reported back to the host that will, in turn, update the anomaly detector filters and
update the application with a version that is protected against the specific fault. At
that point, information derived from the remote sensor is communicated to the rest
of the AC.



1.3 Limitations

There are three limitations of the shadow honeypot design presented in this paper
that we are aware of. First, the effectiveness of the rollback mechanism depends on
the detection and recovery capabilities of the vulnerability sensor, and the latency
of the detector. The detector used in [5] can instantly detect attempts to overwrite a
buffer, and therefore the system cannot be corrupted. Other detectors [41], however,
may have higher latency, and the placement of commit calls is critical to recovering
from the attack. Depending on the detector latency and how it relates to the cost of
implementing rollback, one may have to consider different approaches. The trade-
offs involved in designing such mechanisms are thoroughly examined in the fault-
tolerance literature (c.f. [15]).

Second, the loosely coupled client shadow honeypot is limited to protecting
against relatively static attacks. The honeypot cannot effectively emulate user be-
havior that may be involved in triggering the attack, for example, through DHTML
or Javascript. The loosely coupled version is also weak against attacks that depend
on local system state on the user’s host that is difficult to replicate. This is not a prob-
lem with tightly coupled shadows, because we accurately mirror the state of the real
system. In some cases, it may be possible to mirror state on loosely coupled shadows
as well, but we have not considered this case in the experiments presented in this
paper.

Finally, we have not explored in depth the use of feedback from the shadow
honeypot to tune the anomaly detection components. Although this is likely to lead
to substantial performance benefits, we need to be careful so that an attacker cannot
launch blinding attacks, e.g., “softening” the anomaly detection component through
a barrage of false positives before launching a real attack.

1.4 Related Work

Much of the work in automated attack reaction has focused on the problem of net-
work worms, which has taken truly epidemic dimensions (pun intended). For exam-
ple, the system described in [60] detects worms by monitoring probes to unassigned
IP addresses (“dark space”) or inactive ports and computing statistics on scan traffic,
such as the number of source/destination addresses and the volume of the captured
traffic. By measuring the increase on the number of source addresses seen in a unit
of time, it is possible to infer the existence of a new worm when as little as 4% of the
vulnerable machines have been infected. A similar approach for isolating infected
nodes inside an enterprise network [46] is taken in [16], where it was shown that as
little as 4 probes may be sufficient in detecting a new port-scanning worm. [58] de-
scribes an approximating algorithm for quickly detecting scanning activity that can
be efficiently implemented in hardware. [38] describes a combination of reverse se-
quential hypothesis testing and credit-based connection throttling to quickly detect
and quarantine local infected hosts. These systems are effective only against scan-
ning worms (not topological, or “hit-list” worms), and rely on the assumption that



most scans will result in non-connections. As such, they as susceptible to false pos-
itives, either accidentally (e.g., when a host is joining a peer-to-peer network such
as Gnutella, or during a temporary network outage) or on purpose (e.g., a malicious
web page with many links to images in random/not-used IP addresses). Furthermore,
it may be possible for several instances of a worm to collaborate in providing the il-
lusion of several successful connections, or to use a list of known repliers to blind
the anomaly detector. Another algorithm for finding fast-spreading worms using 2-
level filtering based on sampling from the set of distinct source-destination pairs is
described in [54].

[59] correlates DNS queries/replies with outgoing connections from an enterprise
network to detect anomalous behavior. The main intuition is that connections due to
random-scanning (and, to a degree, hit-list) worms will not be preceded by DNS
transactions. This approach can be used to detect other types of malicious behavior,
such as mass-mailing worms and network reconnaissance.

[18] describes an algorithm for correlating packet payloads from different traffic
flows, towards deriving a worm signature that can then be filtered [24]. The tech-
nique is promising, although further improvements are required to allow it to operate
in real time. Earlybird [42] presents a more practical algorithm for doing payload
sifting, and correlates these with a range of unique sources generating infections and
destinations being targeted. However, polymorphic and metamorphic worms [51] re-
main a challenge; Spinelis [44] shows that it is an NP-hard problem. Buttercup [28]
attempts to detect polymorphic buffer overflow attacks by identifying the ranges of
the possible return memory addresses for existing buffer overflow vulnerabilities.
Unfortunately, this heuristic cannot be employed against some of the more sophis-
ticated overflow attack techniques [30]. Furthermore, the false positive rate is very
high, ranging from 0.01% to 1.13%. Vigna et al. [55] discuss a method for testing de-
tection signatures against mutations of known vulnerabilities to determine the quality
of the detection model and mechanism. Polygraph [27] attempts to detect polymor-
phic exploits by identifying common invariants among the various attack instances,
such as return addresses, protocol framing and poor obfuscation. Toth and Kruegel
[52] propose to detect buffer overflow payloads (including previously unseen ones)
by treating inputs received over the network as code fragments. The use restricted
symbolic execution to show that legitimate requests will appear to contain relatively
short sequences of valid x86 instruction opcodes, compared to attacks that will con-
tain long sequences. They integrate this mechanism into the Apache web server,
resulting in a small performance degradation. STRIDE [4] is a similar system that
seeks to detect polymorphic NOP-sleds in buffer overflow exploits. [29] describes a
hybrid polymorphic-code detection engine that combines several heuristics, includ-
ing NOP-sled detector and abstract payload execution.

HoneyStat [13] runs sacrificial services inside a virtual machine, and monitors
memory, disk, and network events to detect abnormal behavior. For some classes
of attacks (e.g., buffer overflows), this can produce highly accurate alerts with rela-
tively few false positives, and can detect zero-day worms. Although the system only
protects against scanning worms, “active honeypot” techniques [62] may be used
to make it more difficult for an automated attacker to differentiate between Hon-



eyStats and real servers. FLIPS (Feedback Learning IPS) [22] is a similar hybrid
approach that incorporates a supervision framework in the presence of suspicious
traffic. Instruction-set randomization is used to isolate attack vectors, which are used
to train the anomaly detector. Shadow honeypots [5] combine the best features found
in anomaly detectors and honeypots to create what an application-aware network in-
trusion detection system. The anomaly detectors differentiate between trusted and
untrusted traffic; trusted traffic is processed normally whilst untrusted traffic is for-
warded to a protected instance of the application, its “shadow.” The system provides
an elegant way to deal with false positives, since all requests are processed albeit
some incur additional latency. The authors of [14] propose to enhance NIDS alerts
using host-based IDS information. Nemean [63] is an architecture for generating
semantics-aware signatures, which are signatures aware of protocol semantics (as
opposed to general byte strings). Shield [56] is a mechanism for pushing to work-
stations vulnerability-specific, application-aware filters expressed as programs in a
simple language. These programs roughly mirror the state of the protected service,
allowing for more intelligent application of content filters, as opposed to simplistic
payload string matching.

The Internet Motion Sensor [6] is a distributed blackhole monitoring system
aimed at measuring, characterizing, and tracking Internet-based threats, including
worms. [11] explores the various options in locating honeypots and correlating their
findings, and their impact on the speed and accuracy in detecting worms and other
attacks. [33] shows that a distributed worm monitor can detect non-uniform scanning
worms two to four times as fast as a centralized telescope [25], and that knowledge of
the vulnerability density of the population can further improve detection time. How-
ever, other recent work has shown that it is relatively straightforward for attackers to
detect the placement of certain types of sensors [7, 39]. Shadow Honeypots [5] are
one approach to avoiding such mapping by pushing honeypot-like functionality at
the end hosts.

The Worm Vaccine system [40] proposes the use of honeypots with instrumented
versions of software services to be protected, coupled with an automated patch-
generation facility. This allows for quick (< 1 minute) fixing of buffer overflow vul-
nerabilities, even against zero-day worms, but depends on scanning behavior on the
part of worms.

The HACQIT architecture [17, 36, 34, 35] uses various sensors to detect new
types of attacks against secure servers, access to which is limited to small numbers
of users at a time. Any deviation from expected or known behavior results in the
possibly subverted server to be taken off-line. A sandboxed instance of the server is
used to conduct “clean room” analysis, comparing the outputs from two different im-
plementations of the service (in their prototype, the Microsoft IIS and Apache web
servers were used to provide application diversity). Machine-learning techniques are
used to generalize attack features from observed instances of the attack. Content-
based filtering is then used, either at the firewall or the end host, to block inputs
that may have resulted in attacks, and the infected servers are restarted. Due to the
feature-generalization approach, trivial variants of the attack will also be caught by
the filter. [53] takes a roughly similar approach, although filtering is done based



on port numbers, which can affect service availability. Cisco’s Network-Based Ap-
plication Recognition (NBAR) [1] allows routers to block TCP sessions based on
the presence of specific strings in the TCP stream. This feature was used to block
CodeRed probes, without affecting regular web-server access. Porras et al. [31] ar-
gue that hybrid defenses using complementary techniques (in their case, connection
throttling at the domain gateway and a peer-based coordination mechanism), can be
much more effective against a wide variety of worms.

DOMINO [61] is an overlay system for cooperative intrusion detection. The sys-
tem is organized in two layers, with a small core of trusted nodes and a larger col-
lection of nodes connected to the core. The experimental analysis demonstrates that
a coordinated approach has the potential of providing early warning for large-scale
attacks while reducing potential false alarms. A similar approach using a DHT-based
overlay network to automatically correlate all relevant information is described in
[9]. Reference [64] describes an architecture and models for an early warning sys-
tem, where the participating nodes/routers propagate alarm reports towards a central-
ized site for analysis. The question of how to respond to alerts is not addressed, and,
similar to DOMINO, the use of a centralized collection and analysis facility is weak
against worms attacking the early warning infrastructure.

Suh et al. [49], propose a hardware-based solution that can be used to thwart
control-transfer attacks and restrict executable instructions by monitoring “tainted”
input data. In order to identify “tainted” data, they rely on the operating system. If
the processor detects the use of this tainted data as a jump address or an executed
instruction, it raises an exception that can be handled by the operating system. The
authors do not address the issue of recovering program execution and suggest the
immediate termination of the offending process. DIRA [43] is a technique for auto-
matic detection, identification and repair of control-hijaking attacks. This solution is
implemented as a GCC compiler extension that transforms a program’s source code
adding heavy instrumentation so that the resulting program can perform these tasks.
The use of checkpoints throughout the program ensures that corruption of state can
be detected if control sensitive data structures are overwritten. Unfortunately, the
performance implications of the system make it unusable as a front line defense
mechanism. Song and Newsome [26] propose dynamic taint analysis for automatic
detection of overwrite attacks. Tainted data is monitored throughout the program ex-
ecution and modified buffers with tainted information will result in protection faults.
Once an attack has been identified, signatures are generated using automatic seman-
tic analysis. The technique is implemented as an extension to Valgrind and does
not require any modifications to the program’s source code but suffers from severe
performance degradation. One way of minimizing this penalty is to make the CPU
aware of memory tainting [10]. Crandall et al. report on using a taint-based system
for capturing live attacks in [12].

The Safe Execution Environment (SEE) [50] allows users to deploy and test un-
trusted software without fear of damaging their system. This is done by creating a
virtual environment where the software has read access to the real data; all writes
are local to this virtual environment. The user can inspect these changes and de-
cide whether to commit them or not. We envision use of this technique for unrolling



the effects of filesystem changes in our system, as part of our future work plans. A
similar proposal is presented in [23] for executing untrusted Java applets in a safe
“playground” that is isolated from the user’s environment.

1.5 Conclusion

We have described a novel approach to dealing with zero-day attacks by combining
features found today in honeypots and anomaly detection systems. The main advan-
tage of this architecture is providing system designers the ability to fine tune systems
with impunity, since any false positives (legitimate traffic) will be filtered by the
underlying components.

We have implemented this approach in an architecture called Shadow Honeypots.
In this approach, we employ an array of anomaly detectors to monitor and classify
all traffic to a protected network; traffic deemed anomalous is processed by a shadow
honeypot, a protected instrumented instance of the application we are trying to pro-
tect. Attacks against the shadow honeypot are detected and caught before they infect
the state of the protected application. This enables the system to implement policies
that trade off between performance and risk, retaining the capability to re-evaluate
this trade-off effortlessly. We also explore the use of Shadow Honeypots in Appli-
cation Communities where, the cost of instrumentation is spread across numerous
hosts and anomaly detector models can be updated to reflect the findings of hosts
that service a variety of different traffic flows.

Finally, the preliminary performance experiments indicate that despite the con-
siderable cost of processing suspicious traffic on our Shadow Honeypots and over-
head imposed by instrumentation, our system is capable of sustaining the overall
workload of protecting services such as a Web server farm, as well as vulnerable
Web browsers. In the future, we expect that the impact on performance can be min-
imized by reducing the rate of false positives and tuning the AD heuristics using
a feedback loop with the shadow honeypot. Our plans for future work also include
evaluating different components and extending the performance evaluation.
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