
MINO: Data-driven approximate type inference for Python
Stephen Tu

stephentu@csail.mit.edu
MIT CSAIL

1 INTRODUCTION
Dynamic programming languages, such as Python and Ruby, are
becoming the languages of choice for many developers. The lack
of strict compile-time type checking is often cited as making de-
velopment cycles faster. However, a big drawback to dynamically
typed languages is that it is impossible to know the exact type of
a given variable at compile time; it is a well known result that this
problem is undecidable for such languages.

Considerable effort has been spent by the programming lan-
guages community [2, 3, 5, 7] to develop systems which attempt
to mitigate this problem for Python. These solutions rely on formal
logic to prove type assertions for variables throughout the program.
In many cases, such techniques can effectively reason about types
statically. However, such approaches are necessarily conservative,
and usually make certain restrictive assumptions about the program.

MINO takes a radically different approach to the problem of static
type inference for dynamic languages, specifically Python. Instead
of relying on formal semantics, MINO takes a data-driven approach
based on machine learning techniques. The main intuition is that
there are many aspects of a program which provide information
about types, beyond formal semantics. For instance, properties
like variable names and certain usage patterns all collectively pro-
vide hints as to a variable’s type. As a concrete example, variables
named i are usually index variables or counters and thus integers.
While this kind of data-driven approach is only an approximation,
we believe such a system has several potential strong use cases.

Our envisioned use case is for optimizing the generation of native
machine code. For instance, many modern dynamic language inter-
preters implement a form of just-in-time (JIT) compilation, where
instead of interpreting programs solely based on abstract syntax
trees (ASTs) or high level bytecode, certain fragments of the pro-
gram are compiled to equivalent native machine code. These frag-
ments are often generated with a fast-path case where a variable is
assumed to hold a certain type, and a slow-path case which serves as
a fallback if the fast-path assumption does not hold. Thus, predict-
ing a type incorrectly here does not sacrifice correctness, but rather
incurs a performance penalty. Therefore, as long as MINO’s type
predictions are mostly correct, then we believe that such a system
can provide performance gains for native code generation, beyond
what a traditional type inference system can. This is the advantage
of not being overly conservative with predictions.

The remainder of this paper will focus on the design and im-
plementation of MINO, which to the best of our knowledge is the
first system which uses machine learning to perform type inference
for programs written in a dynamically typed language. We present
an evaluation which shows that MINO is able to achieve reasonable
predictive performance on a wide variety of different programs.

2 RELATED WORK
To the best of our knowledge, MINO is the first system which at-
tempts to use machine learning techniques to perform static type
inference for Python programs.

There is, however, a wide body of work on using traditional
programming language techniques to perform static type inference

for Python programs. In this section, we outline a few of the ap-
proaches:

Cannon [3] presents modifications to the cPython interpreter,
which check for statements that guarantee a variable take on a
certain type, such as equality checks and assignment to literals.
Cannon’s algorithm is based on propagating these type guarantees
across control flow boundaries. This approach is necessarily con-
servative, however, because unless the system sees direct assign-
ments or other equality-like checks to a variable, it is unable to
make any specific type assertions about that variable.

Aycock [2] proposes type inference for a restricted subset of
Python. Specifically, Aycock relies on flow insensitivity and type
consistency within a scope. These two rules together disallow pro-
grams to change types via control flow. The drawback of this ap-
proach is that it requires restricting the functionality of Python to
make type inference more tractable.

Rees [7] takes advantage of the pre-defined interface of builtin
Python functions, and builds a type system around these inter-
faces. For instance, a variable passed to builtin len() must have
a __len__() method which takes zero arguments and returns an
integer. Type inference works by gathering as many facts about
variables as is possible statically, and applying Rees’s type system
rules to reach type conclusions.

Maia [5], like [2], performs type inference on a restricted subset
of Python called RPython, which is the restricted language which
the PyPy [1] interpreter is written in. RPython, while being quite
a powerful subset, still has a number of limitations, such as not
allowing nested functions or any operator overloading.

It is important to note that the systems described above are all
complementary to MINO. Combining both traditional type infer-
ence techniques with MINO’s techniques is an interesting direction
for future work, and in §3.3 we describe one place in MINO where
this combination could take place.

3 DESIGN
This section discusses the high level design of MINO. MINO works
by using machine learning techniques to train type classifiers based
on pre-existing Python programs, which are given to MINO as input
during the training phase.

To make the system feasible to implement, we made a few sim-
plifying assumptions, which we outline below.

3.1 Simplifying assumptions
Restricting the possible types. In MINO, we restrict the possi-
ble types we can classify to the builtin primitive types (int, str,
list, dict, etc.) and object. We treat int and long as the
same (integer) type, and we also treat str and unicode as the
same (string) type. Finally, we treat user-defined objects as be-
longing to the type object. There are several reasons for this
restriction. First, we wanted a finite number of types (there are an
infinite number of user-defined object types), so that training a clas-
sifier would be feasible. Second, we wanted MINO to extend to new
programs which MINO’s classifiers were not trained on.

We believe that predicting specific object types can be solved
in the following two-level approach: First, run MINO to determine

1



whether or not a variable belongs to the base object type. Sec-
ond, if it does, run a separate algorithm to determine which specific
object type is most likely. We believe this second algorithm is much
simpler to design, because a straightforward scheme such as match-
ing method calls using whole program analysis would most likely
perform well. Furthermore, the benefits to predicting user types is
less clear for our envisioned use case; specialized native instruc-
tions exist for primitive types such as integers and strings, but not
so much for custom user types.

Program correctness. We assume that input programs are well-
typed. While MINO can still take as input a program which has type
errors, it will most likely not perform as well.

3.2 Labelled data and feature generation
MINO relies on analyzing pre-existing Python programs to train its
type classifiers. Here we describe how we take an existing Python
program and generate labelled data points for training. Our main
approach for generating labelled data points is to run the training
programs and collect type information as the program executes. Be-
fore executing the training programs, we re-write each program’s
AST to wrap every load of a variable with an instrumentation func-
tion, which records the variable’s name, location in source code,
and its runtime type. While this imposes a performance overhead
during execution, this is acceptable since training is an infrequently
performed task.

This information alone, however, is insufficient. We need to be
able to map each occurrence of a variable to the scope it belongs
to. This is because MINO keeps track of features on a per-scope
level. To deal with this, we uniquely number each scope within a
file and keep track of the mapping between source code location
and the scope which the symbol is defined in. This allows us to
generate features on a per-scope level. This is best illustrated with
the example show in Figure 1.

1 def fib(n):
2 if n == 1 or n == 2:
3 return 1
4 return fib(n - 1) + fib(n - 2)

Figure 1: fib.py

For fib.py, MINO records the following mapping information,
assuming the scope of fib() has been assigned a scope id of 0:

(var=n, file=fib.py, line=2, col=7)→ (file=fib.py, scope=0)
(var=n, file=fib.py, line=2, col=17)→ (file=fib.py, scope=0)
(var=n, file=fib.py, line=4, col=15)→ (file=fib.py, scope=0)
(var=n, file=fib.py, line=4, col=28)→ (file=fib.py, scope=0)

The decision to keep track of features on a per-scope basis is
a compromise. On the one hand, per-scope tracking allows us to
record more observations for a particular variable. However, be-
cause Python scopes are, unlike C/C++/Java, per function instead
of per block, it causes us to perform poorly in situations like those
shown in Figure 2. In Figure 2, all occurrences of x belong to the
same scope, but the type of x is dependent on which branch is taken.
This kind of programming is mostly a consequence of developers
used to C-style lexical scoping, which would place each instance
of x within its own private scope. It is worth noting, however, that
most, if not all, of the systems described in §2 perform poorly on or
disallow switchtype.py.

One additional complication with this approach has to deal with
object attributes, i.e. what scope do we tie x in self.x to? We
deal with this problem by associating x with self in self’s

1 def switchtype(t):
2 if t == "int":
3 x = 123
4 elif t == "string":
5 x = "hello"
6 else:
7 x = [1, 2, 3]
8 return x

Figure 2: switchtype.py

scope. This does not allow us to handle chains with method invoca-
tions, however. For instance, in the expression self.x.y().z,
we would be able to bind variables self, x, and y to a scope, but
not variable z.

3.3 Feature selection
We now turn to the question of what features to assign to each sym-
bol in a scope. Since our goal is to build a system which works at
compile time, we can only consider features based on the AST and
the results of any static program analysis. Note that the features we
used are mostly binary, with a few categorical features. We do not
use any real valued features.

Features based on symbol name. We explore a variety of dif-
ferent features based on the name of the variable only. Some of the
features we considered were detecting the use of Hungarian nota-
tion 1 and extracting type based on the prefix, whether or not the
name was in all capital letters, whether or not the name began with
a set of common prefixes (is_, has_, etc.), and whether or not
the name matched a set of common variable names (i, n, f, self,
etc.) Ultimately we decided on only using the last feature, since we
found very little usage of Hungarian notation in the programs we
trained on, and the common prefixes were usually used for member
functions.

Features based on AST. Most of the interesting features un-
surprisingly come from this category. We consider all of the AST
nodes in Python, and during an AST traversal we emit the cor-
responding features. For example, for the following expression
x[i], we emit a feature called is_subscriptable for variable x, and
a feature called is_subscript_index for variable i. Figure 3 shows a
summary of the different kinds of features we consider. Below, we
discuss a few of the more interesting feature selection choices we
made.

Expression Features generated
x op y x: used_in_op, y: used_in_op

x[i] x: is_subscriptable, i: is_subscript_index
x() x: is_callable

while x:, if x: x: used_in_truth_test
for e in elems: e: is_loop_target, elems: is_loop_iter

x in y: x: is_search_key, y: is_searchable
x.y: x: used_as_object

x, y = z z: used_as_multiassign_rhs
x = literal x: assigned_type_literal

print x x: used_in_print
return x x: is_return_value
yield x x: is_yield_value

{ x : y } x: used_as_dict_key
def f(x): x: is_func_arg0

builtin_function(x): x: used_as_builtin_func_arg0

Figure 3: Summary of features generated by MINO

1https://en.wikipedia.org/wiki/Hungarian_notation

2



Binary operations turned out to generate the most interesting fea-
tures, so we specialize the features further depending on constants
in the expression. For example, the expression x == y generates
a feature used_in_eq for both variables x and y, whereas the ex-
pression x == 1 generates a more specific feature used_in_eq_int
for variable x. We use a similar set of features for the other binary
operators, such as <, +, **, etc.

Like [7], we also take advantage of the pre-defined builtin func-
tions such as len(), range(), min(), etc. For builtin func-
tions, we emit a feature if a variable is used as an argument
to a builtin. For example, for len(x), we emit the feature
used_as_builtin_len_arg0 for x. Note that we are different from [7]
in that we do not explicitly encode any type rules about the builtin
functions into MINO. Instead, we learn these type rules from the
training data.

Finally, we handle assignments specially. In the simple case, if
we see x = literal, we emit a feature assigned_type_literal.
However, certain functions are known to return specific types.
For instance, hash() and id() always return integer types, and
open() always returns a file object. Thus, we treat x = 10 the
same as x = hash(o); both are equivalent to assigning x to an
int literal. This is the one part of MINO where we do specifically
encode knowledge of the builtin API.

MINO does a very simple form of assignment type propagation.
We keep track, per symbol, of any literal type assignments. Any
subsequent expressions which reference the variable can lookup its
assigned literal type, in order to generate more specialized type fea-
tures. For example, in the statement x = 10; y = x, we would
generate assigned_int_literal features for both x and y. We do not
implement any constant folding of type assignments, although do-
ing so would be straightforward. More generally, we do not propa-
gate features among symbols. That is, if we see x = y, we could
in principle copy, share, or merge the features between x and y.
Exploring these kinds of ideas is an example of combining MINO’s
approach to type inference with the more traditional programming
language techniques mentioned in §2, and is an interesting direction
for future work.

A simple example. To illustrate these ideas, consider the Python
snippet shown in Figure 4.

1 def argmax(elems):
2 """Pre-condition: elems is not empty"""
3 min_pos, min_elem = 0, elems[0]
4 for i in range(1, len(elems)):
5 if elems[i] < min_elem:
6 min_pos, min_elem = i, elems[i]
7 return min_pos

Figure 4: argmax.py

For the argmax.py snippet, the following features are gener-
ated (assuming argmax is assigned scope id 0). Note we abbrevi-
ated the feature names for conciseness:

(var=elems, scope=0) : [farg0, subscript_int, subscript, len_arg0]
(var=min_pos, scope=0) : [assign_int, return_value]

(var=min_elem, scope=0) : [binop_compare]
(var=i, scope=0) : [name_is_i, loop_target, subscript_index]

The features generated from Figure 4 illustrate another point: we
currently do not merge features together. That is, for the variable
elems, subscript_int is a stronger feature than subscript, but we

currently keep both features around. Whether or not discarding
weaker features would be helpful is something that we have not
explored.

3.4 Learning type classifiers
§3.3 outlines how MINO generates labelled data from Python pro-
grams. In this section we explore how MINO transforms labelled
data into classifiers for type inference. For this section, let X =
[x(1), ..., x(d)] represent the labelled data feature vectors, and let
Y = [y(1), ..., y(d)] represent the labelled classes.

Naïve Bayes (NB) classifier. We start with a classic Naïve Bayes
classifier, because we believe that for this problem domain, the NB
assumption of feature independence given a class is quite reason-
able. Given the type of a variable, the probability that a certain
feature is present is, intuitively, mostly independent of the other
features present. For instance, if an integer variable is used in bit-
shifts, that does not really give more or less evidence as to whether
or not that variable will be used as a list index. Of course, there
are cases where this is not true; observing an integer variable in a
bit-shift might give more probability for observing it in an addition,
for example.

Recall that the NB decision function is given by:

argmax
y

logP (y) +

n∑
i=1

logP (xi|y)

This is another reason why NB is appealing for this problem, be-
cause it is inherently a multi-class classifier. To train a NB classifier,
we learn the class priors P (y) and feature conditional probabilities
P (xi|y) by doing frequency counting on the training data, using
some form of α-smoothing.

Support Vector Machine (SVM) classifier. In addition to a
NB classifier, we also explored using a multi-class SVM classifier.
Recall that the standard SVM formulation is a binary classifier, with
a decision function given by:

sign

[ ∑
i∈SV

yiαiK(xi, x) + w0

]
There are various strategies for extending a binary SVM to do

multi-class classification, including one-vs-one [4] and one-vs-all
(OVA) [9]. We use the strategy of OVA, which trains a binary SVM
for each class, and picks the class corresponding to the binary SVM
which assigned the greatest margin for the query point. OVA is
preferable because it allows us to train less classifiers (exactly |y|)
than the one-vs-one strategy (O(|y|2) classifiers). We use the stan-
dard procedure of k-fold cross-validation to pick the appropriate
hyper-parameters.

To deal with class imbalance, we use the strategy found in [6]
which scales the regularization term C for a class’s binary SVM to
be inversely proportional to the frequency of the class in the train-
ing data. Intuitively, this penalizes the more frequently occurring
classes by increasing the regularization for these classes relative to
the less frequent classes.

Other options explored. NB and SVM were the two classi-
fiers which gave us the best results. We also tried a wide variety
of different parametric learning strategies. We did not explore non-
parametric approaches, due to the high dimensionality of the fea-
ture vectors (we believe that k-nearest-neighbor and decision tree
approaches would perform very poorly on our dataset).

One interesting approach we tried, which turned out to have poor
performance, was an approach based on 1-Class-SVMs [8]. The
idea was to treat the problem as a outlier detection problem. For
each class, we trained a 1-Class-SVM using only the labelled points

3



for that class. A prediction was done by querying each class’s 1-
Class-SVM, and assigning a label to the class which indicates that
the query point was not an outlier. We broke ties arbitrarily, though
in principle one could look at distance from the separating hyper-
plane. We believe this approach did not perform well because there
were too few data points with respect to the feature space dimen-
sionality for some classes, and thus their 1-Class-SVMs were not
very useful.

We also tried to use linear discriminant analysis (LDA), which,
like NB, is appealing because it is inherently multi-class. However,
LDA also performed quite poorly. We believe this is because the
Gaussian assumption for the distribution of P (xi|y) is a very poor
assumption for binary/categorical features. NB avoids this issue be-
cause it constructs a binomial/multinomial distribution for P (xi|y).

4 IMPLEMENTATION
MINO is implemented in two separate modules.

The first module is responsible for extracting the information
described in §3 out of unmodified Python programs. We do this
by modifying PyPy [1], the popular open-source Python interpreter
(written in Python itself). We chose to build on top of PyPy be-
cause it is simpler to modify and more extensible than cPython,
the official Python implementation. We implement feature extrac-
tion and variable instrumentation as a series of AST traversals and
transformations within the PyPy interpreter. This allows us to take
advantage of PyPy’s semantic analysis functionality, which gives us
access to symbol tables and scope information. Overall, we added
a modest ∼ 1, 000 lines of code to PyPy.

The second module is responsible for taking the labelled data
generated by the first module, and training a set of type classifiers.
To do this, we use scikit-learn [6], a powerful open-source Python
library for machine learning.

We plan to release both modules as open-source software.

5 EVALUATION
This section presents a thorough evaluation of MINO on a collection
of open-source Python projects. Here, we evaluate the success of
the various classifiers discussed in §3.4.

5.1 Training and validation projects
We made a best-effort attempt to collect a non-biased sample of
open-source Python projects. That is, we tried to vary the domain
of projects so as to not introduce any specific biases (authors of
projects in a particular domain might have specific coding prac-
tices, or a particular domain might be biased towards certain types
of operations). Unfortunately, we could not include any GUI based
programs, because we were unable to get PyPy’s Tkinter support to
work properly.

Figure 5 and Figure 6 show a summary of the open-source
projects we used for training and validation, respectively. For each
project, we instrumented its code base and ran the project’s test
suite. We had 20 projects in total, and we trained on 15 of the
projects.

5.2 Experimental methodology
Our experimental methodology is as follows. We evaluate both the
NB classifier and the SVM classifier described in §3.4. For each
classifier, we run k = 5 cross-fold validation in a grid search to
find the best hyper-parameter values. We use the F1 score metric,
which combines both precision and recall, as the scoring metric
to optimize. Within the training data, we also set aside 25% of the
data points for validation. Thus, §5.4 shows results for two different
validation sets: one set of points which is sampled from the same

Project Version Short Description LOC
flask 0.9 Web framework 5,581
nzmath 1.2 Number theory library 22,363
rocket 1.2.4 Threaded web server 2,954
twisted 12.2.0 Event-driven library 156,160
aima-python - Algorithms from AIMA 3,501
beautifulsoup4 4.1.3 HTML parser 4,405
hsautotag 1.1.1 Metadata extraction 1,485
httplib2 0.7.7 HTTP client library 5,010
mpmath 0.17 Multiprecision library 29,098
pyDatalog 0.11.2 Logic programming 2,310
spambayes 1.1a6 Spam filtering 46,715
sympy 0.7.2 Symbolic math 186,809
tfidf 1.1 TF-IDF 135
tornado 2.4.1 Non-blocking web server 12,866
wheezy.template 0.1 Templating library 1,816

Figure 5: Projects used by MINO for training

Project Version Short Description LOC
biopython 1.60 Comp-bio libraries 117,003
pychecker 0.8.18 Python linter 9,680
pyparsing 1.5.6 Parser library 11,093
python-markdown 2.2.1 Port of Markdown 10,032
pytz 2012h Timezone library 2,491

Figure 6: Projects used by MINO for validation

projects which the training data comes from, and another set of
points which is sample from never seen before projects. We will
call the former V 1, and the latter V 2.

For the NB classifier, the only hyper-parameter is the smooth-
ing parameter α. Here, our grid search consists of α =
[0.0001, 0.001, 0.01, 0.1, 1.0].

The SVM classifier has, unfortunately, quite a few hyper-
parameters. There is the C hyper-parameter, which controls the
hardness of the SVM. Additionally, there are several different stan-
dard kernels to choose from, each with a different set of parameters.
In the interest of simplicity, we only consider a linear kernel with a
grid search of C = [10−1, 1, 10, 100, 1000].

We also compare our classifiers to a baseline classifier which
always predicts the most frequently occurring class. This is in-
teresting because there is a class imbalance skew in favor of type
object (see Figure 8).

Finally, we do not consider, in both training and validation, data
points which have no feature values. For instance, consider the
snippet shown in Figure 7. In this snippet, myvar has no features,
since its only observation in the code is being stored with the return
value of an unknown type or function. If a variable has no features,
then MINO will not be able to make any reasonable decisions. These
cases are not common, however, since variables are usually created
to be used. For instance, in our validation dataset, this occurred
roughly ∼ 5% of the time.

1 def foo():
2 myvar = bar()

Figure 7: nofeatures.py

5.3 Data preprocessing
Collecting data points by running the training programs introduces
a slight complication with repeated points. Loops and multiple in-
vocations of the same function (very common with library code)
can cause the same data point to be generated repeatedly. Because
we do not want this to bias our training data, we only allow each
data point to appear at most once per source code location.

4



Furthermore, because our training projects vary in complexity
and code coverage of test suites, a simple merging of all labelled
data from the training projects would heavily bias the data points
towards a few particular projects. To control for this, we do not al-
low any particular project to contribute more than 5, 000 data points
to the training data. If a project has more than 5, 000 data points,
we uniformly sample from it. Otherwise, we take all the data points
from the project. 5, 000 was picked empirically, since it is a rea-
sonable number that most projects can achieve. For the validation
data, we simply include all the data points.

After pre-processing, our training dataset had∼ 20, 000 labelled
data points.

5.4 Results
In this section, we report the precision, recall, and F1 scores for the
best hyper-parameter values for both the NB and SVM classifier,
on both of the validation datasets (V 1 and V 2). Recall that F1 is
the harmonic mean of precision and recall. Because of the class
imbalance (see Figure 8), we do not report accuracy scores.

We also show the confusion matrix for each classifier on the V 2
validation dataset. Recall that for a confusion matrix C, Cij is the
number of points belonging to class i, but predicted to belong to
class j. The ideal confusion matrix is a diagonal matrix. Rows in
confusion matrices represent the recall of a class, whereas columns
represent the precision of a class.

5.4.1 Baseline
Figure 8 shows the prior distribution of class types from the training
data.

Type Frequency Type Frequency
object .656 tuple .025

int .099 bool .017
str .097 float .008
list .050 set .004
dict .042 file .001

Figure 8: Prior distribution of types from training data

Given the prior distribution, the baseline classifier always pre-
dicts type object. Figure 9 shows the classification scores for the
baseline classifier. We omit the breakdown of results by types here
and only report an aggregate, since this classifier only predicts one
class. Here we see that the baseline classifier only achieves a F1
score of roughly 0.5 on the validation data.

Dataset Precision Recall F1
V 1 0.44 0.67 0.53
V 2 0.40 0.64 0.49

Figure 9: Scores for the baseline classifier

5.4.2 NB results
For the NB classifier, the optimal grid search value was at α =
0.001. Figure 10 shows the classification scores for the NB clas-
sifier. Figure 11 shows the confusion matrix. Here, we see very
reasonable F1 scores for both the V 1 and V 2 datasets.

5.4.3 SVM results
For the SVM classifier, the optimal grid search value was at C =
10. Figure 12 shows the classification scores for the SVM classifier,
and Figure 13 shows the confusion matrix. Comparing F1 scores
with the NB classifier, we see that the SVM classifier just slightly
out-performs. We believe these scores between NB and SVM are
similar enough that the differences are just noise; NB and SVM are
both reasonable classifiers to use in MINO.

Dataset Type Precision Recall F1 Support
V 1 bool 0.52 0.85 0.65 75

dict 0.74 0.83 0.78 190
file 0.40 0.33 0.36 6
float 0.36 0.36 0.36 50
int 0.72 0.80 0.76 419
list 0.74 0.75 0.74 238

object 0.98 0.88 0.92 3112
set 0.36 0.25 0.30 16
str 0.53 0.84 0.65 417

tuple 0.54 0.45 0.49 143
- 0.86 0.83 0.84 4666

V 2 bool 0.55 0.94 0.70 279
dict 0.70 0.82 0.75 682
file 0.55 0.28 0.37 61
float 0.76 0.30 0.43 241
int 0.56 0.70 0.62 1111
list 0.76 0.75 0.76 1221

object 0.97 0.86 0.91 11208
set 0.38 0.74 0.50 19
str 0.61 0.79 0.69 2587

tuple 0.23 0.43 0.30 206
- 0.85 0.81 0.82 17615

Figure 10: Scores for the NB classifier



bool dict file float int list object set str tuple
b 263 0 0 0 4 0 1 0 11 0
d 1 556 0 0 0 32 42 2 34 15
f 1 0 17 0 0 2 33 0 8 0
flt 1 0 0 73 142 0 2 0 20 3
int 43 0 0 18 773 0 11 0 222 44
l 27 84 0 1 14 921 19 10 109 36
obj 67 118 11 3 329 122 9592 6 873 87
set 1 1 0 0 0 2 1 14 0 0
str 68 21 3 1 117 70 145 4 2048 110
tup 2 12 0 0 6 68 0 1 28 89


Figure 11: Confusion matrix for the NB classifier

5.4.4 Analysis
To provide some intuition for which features are the most predic-
tive for type inference for each class, we show the top three features
for each class that the NB classifier has assigned the highest con-
ditional probability P (xi|y) to. Figure 14 summarizes the results,
showing a representative expression for variable x which results in
the feature being emitted.

From Figure 14, we immediate see why MINO has trouble dis-
tinguishing say, integers from floats, or tuples from lists. This is
because the most likely features are sometimes shared amongst dif-
ferent types. For example, both integers and floats are often (not
surprisingly) used in multiplication and addition. This is compli-
cated by the fact that Python allows for implicit type promotion, so
integers and floats are often mixed in arithmetic expressions.

To better understand the predictive capabilities of MINO amongst
different classes, it helps to look at confusion matrices. Figure 11
and Figure 13 are the confusion matrices for the NB and SVM clas-
sifiers, respectively. In analyzing the confusion matrices, we gain
a better understand of exactly which types are hard to distinguish
from other types.

For instance, consider the str type. We see, by looking at the
str columns in the confusion matrices, that it suffers from pre-
cision issues when it predicts type string when the actual type is
either integer or list. This makes sense in the context of Python.
Both integers and strings support the binary addition operator, and
both strings and lists can be use very similarly (i.e. iteration with
for loops, passed to len(), subscripted and sliced).

5



Dataset Type Precision Recall F1 Support
V 1 bool 0.38 0.87 0.53 75

dict 0.70 0.84 0.76 190
file 0.12 0.33 0.17 6
float 0.20 0.48 0.28 50
int 0.77 0.71 0.74 419
list 0.76 0.70 0.73 238

object 0.99 0.87 0.93 3112
set 0.30 0.50 0.37 16
str 0.55 0.79 0.65 417

tuple 0.50 0.50 0.50 143
- 0.87 0.82 0.84 4666

V 2 bool 0.33 0.95 0.49 279
dict 0.68 0.83 0.75 682
file 0.33 0.26 0.29 61
float 0.28 0.52 0.37 241
int 0.63 0.60 0.62 1111
list 0.76 0.73 0.75 1221

object 0.99 0.86 0.92 11208
set 0.17 0.79 0.28 19
str 0.67 0.79 0.72 2587

tuple 0.25 0.49 0.33 206
- 0.86 0.81 0.83 17615

Figure 12: Scores for the SVM classifier



bool dict file float int list object set str tuple
b 264 0 1 0 3 1 1 0 8 1
d 3 563 1 0 0 34 15 11 41 14
f 1 0 16 0 0 5 23 0 16 0
flt 3 6 2 125 71 0 5 0 21 8
int 58 2 5 130 669 1 5 0 191 50
l 28 94 2 13 5 892 10 17 110 50
obj 302 117 14 118 204 117 9613 34 614 75
set 1 1 0 0 0 2 0 15 0 0
str 127 24 8 49 107 67 51 12 2035 107
tup 4 15 0 5 1 53 3 1 23 101


Figure 13: Confusion matrix for the SVM classifier

Another example comes from the tuple type. By looking at
the tuple row in the confusion matrices, it is clear that tuple
types have recall issues particularly with list types. Once again,
this is not surprising, since tuples and lists can be used almost inter-
changeably, with the only major difference between that tuples are
immutable. Thus, only when MINO sees a list/tuple-like variable
being mutated, can it detect that the variable is a list instead of a
tuple. In the absence of such mutation, MINO prefers to predict list,
because list is more commonly used than tuple (see Figure 8).

6 FUTURE WORK
There are a lot of possible areas of future work for MINO-like sys-
tems. The first set of improvements involve further fine-tuning of
the classifiers via a combination of better feature selection and fea-
ture space reduction. Being able to distinguish between similar

Type 1st ranking 2nd ranking 3rd ranking
bool if x: x = True x or y
dict x["hello"] x.get(k) x[k]
file x = open(...) x.close() variable named f
float x * y x == 1 x + y
int x * y x « y x + y
list x[10] x.append(e) x = []

object x.attr x.meth() variable named self
set x.add(e) for e in x: x = set()
str x.join(...) def f(y, x): for c in x:

tuple x == y x[10] x = (...)

Figure 14: Features with the highest class conditional probabilities

types such as lists and tuples would greatly improve the predictive
power of MINO.

As mentioned previously in §3.3, there is also another direction
of improvements which try to incorporate more traditional program
analysis techniques during feature generation. MINO is designed
to be mostly agnostic to the language semantics. For instance,
nowhere do we encode that assignment of a variable to a literal
value allows us to immediately deduce the type of the variable; we
only emit a literal assignment feature, and the correlation with the
actual variable type is learned during training. Whether or not this
kind of agnostic approach is the best approach to this problem is an
open question.

Another possibility of future work involves integrating MINO
into a Python JIT compiler, such as PyPy. It remains to be seen
whether or not MINO’s predictive power is sufficient enough for JIT
compilers to actually benefit from. For example, it may be the case
that the time spent in generating type predictions offsets any poten-
tial performance gains. This is yet another reason we limited our
classifiers to simple classifiers. Exploring the trade-offs between a
more powerful classifier and the computational resources required
is an interesting problem.

7 CONCLUSION
This paper presents MINO, a new system for performing static type
inference on Python programs. MINO approaches the problem of
type inference by treating type inference as a multi-class classifica-
tion problem, and applies machine learning techniques to construct
classifiers trained on a wide variety of open-source Python projects.
We demonstrate that such an approach is practical and performs
well, achieving a F1 score around ∼ 0.8 on various Python pro-
grams.

REFERENCES
[1] Pypy. URL http://pypy.org/.
[2] J. Aycock. Aggressive type inference, 2001. URL

http://www.python.org/workshops/2000-01/
proceedings/papers/aycock/aycock.html.

[3] B. Cannon. Localized type inference of atomic types in python.
Master’s thesis, 2005.

[4] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learn-
ing revisited: A stepwise procedure for building and training a
neural network. In Neurocomputing: Algorithms, Architectures
and Applications, 1990.

[5] E. Maia, N. Moreira, and R. Reis. A static type inference for
python. In Proc. of DYLA, 2012.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python . Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[7] G. Rees. Type inference for python, 2002. URL http://
garethrees.org/2002/02/26/type-inference.

[8] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the support of a high-
dimensional distribution. Neural Comput., 13(7):1443–
1471, July 2001. ISSN 0899-7667. doi: 10.1162/
089976601750264965. URL http://dx.doi.org/10.
1162/089976601750264965.

[9] V. Vapnik. The Nature of Statistical Learning Theory. 1995.

6


