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Why do we care? 
• Single-processor speed has more or less flat-lined.  

•  Multi-core machines ubiquitous.  

• Unfortunately, throwing more hardware does not always 
translate into speedup.  
•  A lot of code is written sequentially, or with parallelism as an 

afterthought. 

• Need to understand how to effectively utilize the 
hardware. 



What we are not covering 
• We’ll focus on techniques for shared memory multi-

processor machines  
•  N processors, each can read/write to the same shared memory. 

•  This is a different set of techniques than those for 
programming multiple machines (which usually do not 
have shared memory).  
•  This is also a very interesting area in computer science with a 

different set of hard problems, i.e. independent failures, lost 
messages, network partitions, adversarial nodes.  



Alright, let’s write some code… 
 
 

Not so fast! 



Cache-Coherence Primer 
•  An oversimplification of modern shared memory machines 

•  For performance, almost all modern CPU caches are write-
back: the value in the cache is the most up-to-date version.  

CPU0 CPU1 

Shared DRAM 

Cache Cache 



Real example: Intel Sandy Bridge 

http://mechanical-sympathy.blogspot.co.uk/2013/02/cpu-cache-flushing-fallacy.html 



Cache-Coherence Protocol 
•  If caches are write-back, then how do we make a write to 

memory by CPU0 visible to CPU1? 
•  One answer is to punt- this isn’t necessarily bad since many 

variables are not intended to be shared between multiple CPUs, 
like each CPU’s stack.  

• Straw-man solution: have CPU0 send CPU1 the contents 
of every memory write, so CPU1 can keep its local cache 
synchronized. 
•  Not desirable because CPU1 probably does not care about most of 

CPU0’s writes.  
•  Would cause a lot of unnecessary bus traffic on the interconnect. 



Cache-Coherence Protocol 
• Commonly deployed solution: multiple readers, single 

writer per cache-line (MSI protocol) 
•  Recall that a cache-line is the unit of transfer between memory and 

cache, sort of like a disk block between disk and memory.  
•  Each cache-line can be in one of three states: 

•  Modified: the contents no longer equals that of main memory 
•  Shared: the contents equals that of main memory 
•  Invalid: does not contain valid contents 

•  Only a single cached copy of a cache-line can be in the Modified 
state (single writer). Multiple cached copies of a cache-line can be 
in the Shared state (multiple readers).  



Cache-Coherence Protocol 
• Read path (I-State): 

•  Request the M-state cache-line, if any, downgrade to S-state, and 
write back dirty cache-line to memory. 

•  Obtain copy of cache-line and transition to S-state. 

• Read path (S-State): 
•  No-op. 

• Read path (M-State): 
•  No-op. 



Cache-Coherence Protocol 
• Write path (I-State): 

•  Either: (A) request the M-State cache-line downgrade to I-State 
and write-back, or (B) request all S-State cache-lines to downgrade 
to I-State. 

•  Obtain copy of cache-line and transition to M-State. 

• Write path (S-State): 
•  Request all other S-State cache-lines downgrade to I-State. 
•  Transition to M-State. 

• Write path (M-State): 
•  No-op. 



Why care about cache-coherence? 
• Cache-coherence seems like some hardware detail that 

programmers do not need to care about… 
•  Mostly true, unless we want to write scalable programs on multi-

core 

•  Take-away: Multiple CPUs updating a shared cache-line 
is inherently a scalability bottleneck! 
•  Now you know why: the CC protocol must continuously issue 

invalidation requests to move the cache-line between multiple 
CPUs, causing a “ping-pong” effect and high bus traffic.  

•  The secret sauce of implementing scalable data 
structures is avoiding this kind of contention.  
•  Easier said than done, of course.  



An aside: out-of-order execution 
• Another aspect which makes concurrent programming 

tricky is out-of-order instruction execution.  
•  For performance reasons, no modern processor executes 

instructions in program order! 
•  The only guarantee given is that a single thread cannot observe out-of-

order execution. But other threads can.  
•  This results in surprising behavior. For example, this is observable 

on x86 [Sewell 10]:  

 
• Could spend an entire workshop alone talking about OoO 

execution and relaxed memory models! 
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ABSTRACT
Exploiting the multiprocessors that have recently become
ubiquitous requires high-performance and reliable concur-
rent systems code, for concurrent data structures, operat-
ing system kernels, synchronisation libraries, compilers, and
so on. However, concurrent programming, which is always
challenging, is made much more so by two problems. First,
real multiprocessors typically do not provide the sequentially
consistent memory that is assumed by most work on seman-
tics and verification. Instead, they have relaxed memory
models, varying in subtle ways between processor families,
in which different hardware threads may have only loosely
consistent views of a shared memory. Second, the public
vendor architectures, supposedly specifying what program-
mers can rely on, are often in ambiguous informal prose (a
particularly poor medium for loose specifications), leading
to widespread confusion.

In this paper we focus on x86 processors. We review sev-
eral recent Intel and AMD specifications, showing that all
contain serious ambiguities, some are arguably too weak to
program above, and some are simply unsound with respect
to actual hardware. We present a new x86-TSO program-
mer’s model that, to the best of our knowledge, suffers from
none of these problems. It is mathematically precise (rig-
orously defined in HOL4) but can be presented as an intu-
itive abstract machine which should be widely accessible to
working programmers. We illustrate how this can be used to
reason about the correctness of a Linux spinlock implemen-
tation and describe a general theory of data-race-freedom for
x86-TSO. This should put x86 multiprocessor system build-
ing on a more solid foundation; it should also provide a basis
for future work on verification of such systems.

1. INTRODUCTION
Multiprocessor machines, with many processors acting on

a shared memory, have been developed since the 1960s; they
are now ubiquitous. Meanwhile, the difficulty of program-
ming concurrent systems has motivated extensive research
on programming language design, semantics, and verifica-
tion, from semaphores and monitors to program logics, soft-
ware model checking, and so forth. This work has almost al-
ways assumed that concurrent threads share a single sequen-
tially consistent memory [21], with their reads and writes
interleaved in some order. In fact, however, real multipro-
cessors use sophisticated techniques to achieve high perfor-
mance: store buffers, hierarchies of local cache, speculative

execution, etc. These optimisations are not observable by
sequential code, but in multithreaded programs different
threads may see subtly different views of memory; such ma-
chines exhibit relaxed, or weak, memory models [6, 17, 19,
7].

For a simple example, consider the following assembly lan-
guage program (SB) for modern Intel or AMD x86 multipro-
cessors: given two distinct memory locations x and y (ini-
tially holding 0), if two processors respectively write 1 to
x and y and then read from y and x (into register EAX on
processor 0 and EBX on processor 1), it is possible for both
to read 0 in the same execution. It is easy to check that this
result cannot arise from any interleaving of the reads and
writes of the two processors; modern x86 multiprocessors do
not have a sequentially consistent semantics.

SB

Proc 0 Proc 1
MOV [x]←1 MOV [y]←1
MOV EAX←[y] MOV EBX←[x]
Allowed Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0

Microarchitecturally, one can view this particular example
as a visible consequence of store buffering: if each proces-
sor effectively has a FIFO buffer of pending memory writes
(to avoid the need to block while a write completes), then
the reads from y and x could occur before the writes have
propagated from the buffers to main memory.

Other families of multiprocessors, dating back at least to
the IBM 370, and including ARM, Itanium, POWER, and
SPARC, also exhibit relaxed-memory behaviour. Moreover,
there are major and subtle differences between different pro-
cessor families (arising from their different internal design
choices): in the details of exactly what non-sequentially-
consistent executions they permit, and of what memory bar-
rier and synchronisation instructions they provide to let the
programmer regain control.

For any of these processors, relaxed-memory behaviour ex-
acerbates the difficulties of writing concurrent software, as
systems programmers cannot reason, at the level of abstrac-
tion of memory reads and writes, in terms of an intuitive
concept of global time.

Still worse, while some vendors’ architectural specifica-
tions clearly define what they guarantee, others do not,
despite the extensive previous research on relaxed memory
models. We focus in this paper on x86 processors. In Sec-
tion 2 we introduce the key examples and discuss several
vendor specifications, showing that they all leave key ques-
tions ambiguous, some give unusably weak guarantees, and

1

[Sewell 10] Sewell et al. x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors. CACM 2010. 



Correctness Conditions 
• We need a way to argue about correctness for concurrent 

data structures. 
• We are used to reasoning about correctness in sequential 

data structures. But what happens when we have 
concurrent operations? 

• Suppose the following code was executed concurrently: 

• Most would probably agree that the only valid outcomes 
are enumerated as: 
•  q = [1, 2, 3, 4], q = [1, 3, 4, 2], q = [1, 3, 2, 4],  
   q = [3, 1, 2, 4], q = [3, 1, 4, 2], q = [3, 4, 1, 2] 

T1: 
q.push_back(1) 
q.push_back(2) 

T2: 
q.push_back(3) 
q.push_back(4) 



Correctness Conditions 
• Why would we think that q = [2, 1, 3, 4] is not correct? 

•  T1 executes q.push_back(1) before q.push_back(2), so we know 
this violates a “happens-before” relation.  

• Why do we allow both q = [1, 2, 3, 4] and q = [1, 3, 2, 4]? 
•  Arguably, T1 executes q.push_back(2) at “roughly” the same time 

as T2 executes q.push_back(3), so both are “OK”.  

•  Linearizability [Herlihy 90] is a way to formalize this 
intuition.  

[Herlihy 90] – Herlihy and Wing. Linearizability: a correctness condition for concurrent objects. ACM TOPLAS 1990.   



Linearizability: Definition 
•  Let q be an object. We break up a method call on q into a 

request event (when the method starts executing) and a 
response event (when the method returns with a result).  

•  Let an execution history H be defined as a sequence of 
method requests and responses on q by various threads.  

• An execution history H is called linearizable if the 
following conditions hold: 
•  There exists some permutation of H, call it H’, such that each 

method request is immediately followed by its corresponding 
response (H’ is sequential). 

•  If a method response precedes a method request in H, then it also 
does in H’ (all happens-before relations are preserved).  

•  H’ is a legal history. That is, if we were to execute H’ sequentially, 
then we would get the same history back.  



Linearizability in practice 
•  Informally, it is sufficient to think of linearizability as such: 

•  Every method call appears to take place “instantaneously” at some 
point between its request and response. This point is called the 
linearization point.  

•  In other words, no other thread can partially observe the effects of a 
method call. Furthermore, we have some real time guarantee.  

•  For example, the linearization point of a critical section protected by a 
lock is when the lock is released.  

•  Once again, why do we care? 
•  This might seem like an academic exercise, but identifying linearization 

points is a very useful way to reason about correctness.  
•  Suppose you have n methods in a concurrent data structure. Without 

identifying linearization points, then you have to reason about all 
possible O(n^2) concurrent interactions.  
•  With linearization points, you only need to do O(n) work to identify those 

points. 



Enough of this background, let’s see some code 



Concurrent Singly Linked List 
• Why are we studying linked lists? Shouldn’t we have 

mastered this already? 
•  While you might be able to whip out a sequential implementation in 

your sleep, turns out a concurrent implementation requires some 
thought. 

•  Great way to demonstrate the techniques (since we are all 
intimately familiar with the data structure).  

• Code snippets online: https://github.com/stephentu/scalex 
•  Snippets written in the new C++11 standard, for x86_64. I 

recommend using g++ >= 4.7 for compilation.  
•  Sorry, no Mac OSX support.  



Solution One: Single global lock 
•  The most obvious (perhaps too obvious) place to start is 

by acquiring a global lock before each method call. 
• Has some really desirable properties: 

•  Trivially linearizable – correctness is easy.  
•  Easy to read/maintain 

•  For infrequently used data-structures, this is a completely 
reasonable approach. 

• Okay, but let’s do better… 



Solution Two: Per-node locks 
•  Instead of having a single lock over the entire list, let’s 

place a lock in each list node.  
•  An example of fine-grained locking. 

  typedef spinlock /* spinlock.hpp */ lock_type;!
  typedef std::unique_lock<lock_type> unique_lock;!
  typedef std::shared_ptr<node>       node_ptr;!
!
  struct node {!
      node() : value_(), next_() {}!
      node(const T &value, const node_ptr &next)!
        : value_(value), next_(next) {}!
!
      // Note: mutex_ must be held in order to access next_!
      mutable lock_type mutex_;!
      T value_;!
      node_ptr next_;!
  }; !



Reference counting 
• Since we are working with C++, we cannot ignore memory 

management. We use reference counting 
(std::shared_ptr) to make the code cleaner.  
•  Could be explicit about memory management. 

•  std::shared_ptr is not thread-safe. Multiple threads cannot 
modify the same std::shared_ptr instance concurrently 
without explicit synchronization. 
•  We avoid this problem because by holding a mutex any time we 

access a shared_ptr instance.  

• More on reference counting later… 



Per-node locks: Traversal 
•  Invariant: Holding on a node’s lock prevents it from being 

mutated.  
• So list traversal must be pretty simple, right? Simply lock 

a node, read its next pointer, release the current node’s 
lock, and move on.  

• Consider the following race condition: 
T2: 
 
 
 
// remove node1 from list 

T1: 
node0->mutex_->lock(); 
node1 = node0.next_; 
node0->mutex_->unlock(); 
 
node1->mutex_->lock(); // oops 



Solution: hand-over-hand locking 
• We need a way to ensure that the action of reading a next 

pointer and locking the next node is atomic. Otherwise, 
we could end up reading removed nodes. 

• Hand over hand locking to the rescue: Lock the next node 
before releasing the lock on the current node.   
•  remove() also needs to follow this protocol. Coming soon.  



Code snippet 
• Here is how size() is implemented, with HOH locking: 
  size_t!
  size() const!
  {!
      size_t ret = 0;!
      node_ptr prev = head_;!
      head_->mutex_.lock();!
      node_ptr cur = head_->next_;!
      while (cur) {!
          cur->mutex_.lock();    // acquire next lock first!
          prev->mutex_.unlock(); // then release cur lock!
          ret++;!
          prev = cur;!
          cur = cur->next_;!
      }!
      prev->mutex_.unlock();!
      return ret;!
  }!



Per-node locks: Removals 
•  In order for the HOH locking to work, we need remove() to 

obey the protocol.  
•  Invariant: If either lock on a node or a node’s 

predecessor is held, then a node cannot be unlinked.  
• Given that we specified that a node’s next value can only 

be accessed with a node’s mutex held, it should be clear 
that we need to hold both locks on removal: 
•  prev->next_ = cur->next_; // unlink cur!



Code snippet 
• Here’s how remove() is implemented: 
  void!
  remove(const T &val)!
  {!
      node_ptr prev = head_;!
      prev->mutex_.lock();!
      node_ptr cur = prev->next_;!
      while (cur) {!
          cur->mutex_.lock();!
          if (cur->value_ == val) {!
              prev->next_ = cur->next_; // unlink cur!
              cur->mutex_.unlock();!
              cur = prev->next_;!
          } else {!
              prev->mutex_.unlock();!
              prev = cur; cur = cur->next_;!
          }!
      }!
      prev->mutex_.unlock();!
  }!



What did we give up? 
• Suppose we are traversing size(), and are currently in the 

middle of the list. Now suppose pop_front() is called, 
followed by push_back().  
•  This execution cannot possibly be linearizable. Proof:  
•  We did not observe the removal of the front of the list, so our 

linearization point must come before the request of pop_front().  
•  We will observe the insertion of the element by push_back(), so our 

linearization point must come after the response of push_back().  
•  But pop_front() happens-before push_back(), so we cannot 

construct a legal serial history.  
•  remove() has similar issues.  



Linearizability vs. performance  
• Often in practice, only certain operations can be made to 

be both linearizable and scalable.  
•  This is usually limited to those that mutate a single element, 

instead of perform scans like size() and remove().  

• By using finer-grained locking, we allow for more 
concurrency at the cost of linearizability.  

• Possible irrelevant. It is very important that we have 
linearizable push_back() and pop_front() (which we do), 
but consistent size() is probably not as important.  

• Can use optimistic techniques, if we expect modifications 
to be infrequent.  
•  See [Kung 81] for an overview on the idea of OCC.  

[Kung 81] – Kung and Robinson. On optimistic methods for concurrency control. ACM TODS 1981. 



Locks are so 1980s. Show me some of these 
lock-free data structures that all the cool kids are 

talking about nowadays. Get with the times! 



Hardware primitives 
• Modern processors usually support a variety of atomic 

primitives.  
• Atomic primitive #1: load/store 

•  You might not realize, but even mov is atomic on x86*.  
•  Without this, you pretty much cannot do anything.  

• Atomic primitive #2: compare-and-swap (CAS) 
•  CMPXCHG on x86 (with a LOCK prefix).  
template <typename T>!
bool compare_and_swap(T *dst, T exp, T desired)!
{   // do atomically !
    if (*dst == exp) {!
        *dst = desired;!
        return true;!
    }!
    return false;!
}!



The power of CAS 
•  It turns out that compare-and-swap, while seemingly 

trivial, is actually a really powerful primitive. 
•  Can be used to solve the infinite consensus problem- see Herily 

and Shavit – The Art of Multiprocessor Programming for a proof.  
•  In other words, any concurrent data structure which is 

implementable on a Turing machine can be implemented in a wait-
free manner using CAS. 
•  Once again, see Herily and Shavit for a proof. This follows as a 

consequence of being able to solve the infinite consensus problem.  



Lock-free linked list 
• We’ll remove all locks from our nodes. 
• We’ll have a deleted bit on all nodes, which is true if the 

node was logically removed (but not physically).  
•  This allows us to be lazy about cleaning up nodes. Our LL can 

have a bunch of deleted nodes within it.  

•  In practice, we steal the lowest bit from the next pointer 
for the deleted bit. 
•  Desirable, because we can set the deleted bit and next pointer in 

one atomic CAS.  
•  Is safe, because malloc() must return an aligned address [C99 

Section 7.20.3]. 
•  atomic_ref_ptr is our reference counting implementation (like 

std::shared_ptr), with the ability to mark the low bit.  



Reference counting again 
• Before, we noted std::shared_ptr was not thread-safe, but 

we were free from data races because we protected all 
accesses with a lock. 

• Now, with no lock, we switch to atomic_ref_ptr (our own 
construction) which is thread-safe… 
•  But we had to use a mutex internally. So our “lock-free” 

implementation becomes not lock free.  
•  More on how to fix this later. 

• Why don’t we just explicitly manage memory instead of 
doing reference counting?  
•  Can’t anymore! Before, reference counting was simply a 

convenience. Now it’s actually a requirement for correctness... 
•    



Why reference counting is necessary* 
• Because we no longer have any locks, there is no way to 

ensure that a node is not removed while holding onto a 
reference to that node.  

•  This is also why we need the deleted bit- at any point in 
time, a node could be concurrently removed while we still 
hold a reference to it.  

• We’ll see later on how to do reference counting in a less 
invasive way.  
•  No, the answer is not to use a general garbage collector. 



Lock-free node 
  struct node;!
  typedef atomic_ref_ptr<node> node_ptr; // atomic_reference.hpp!
  struct node : public RefCountImpl {!
      node() : value_(), next_() {}!
      node(const T &value, const node_ptr &next)!
        : value_(value), next_(next) {}!
!
      ~node()!
      {!
          assert(next_.get_mark()); // sanity check!
      }!
!
      T value_;!
      node_ptr next_;!
!
      inline bool!
      is_marked() const!
      {!
          return next_.get_mark();!
      }!
  };!



Lock-free traversal  
•  Traversal is actually pretty straight-forward. No need to do 

HOH locking. 
    size_t!
  size() const!
  {!
      size_t ret = 0;!
      node_ptr cur = head_->next_;!
      while (cur) {!
          if (!cur->is_marked()) {!
              ret++;!
          } else {!
              // reap cur for garbage collection!
          }!
          cur = cur->next_;!
      }!
      return ret;!
  }!



Lock-free removal 
• Removal of a node proceeds in two phases.  
•  First, logically remove the node from the data structure by 

setting the deleted bit. At this point, any subsequent reads 
of the node will skip over the node.  
•  For push_back()/pop_front(), marking the node to remove is the 

linearization point.  

• Second, physically unlink the node from the list, by using 
CAS on the predecessor’s next pointer. 



Lock-free removal 
  void !
  remove(const T &val)!
  {!
    node_ptr prev = head_;!
    node_ptr p = head_->next_, *pp = &head_->next_;!
    while (p) {!
      if (p->value_ == val) {!
        if (p->next_.mark()) { // logically remove p from list!
          // try to physically unlink!
          if (pp->compare_exchange_strong(p, p->next_)) !
            ; // successful unlink, reap p for GC!
        } !
        // advance the current ptr, keep prev the same!
        p = p->next_;!
      } else {!
        prev = p;!
        pp = &p->next_;!
        p = p->next_;!
      }!
    }!
  }!



Improving reference counting 
• As mentioned before, thread-safe manipulation of 

reference counting pointers requires a lock 
•  Fundamentally, there is no way to do a load (read the pointer) and 

store (increase reference count) atomically between two different 
cache lines, so we need a lock. 

•  Otherwise, there’s always a race between the load of the pointer 
and the increase of the reference count, during which the count 
could drop to zero.  

•  Furthermore, reference counting is a scalability 
bottleneck! 
•  Increment/decrement a shared reference count between different 

threads is exactly what causes cache-line ping-pong-ing. 



Epoch based garbage collection 
• Key insight 1: we do not care about the actual value of 

the reference count, just when it drops to zero. 
• Key insight 2: we do not have to garbage collect 

immediately when the reference count drops to zero, can 
delay collection. 

•  These two insights combine to create a technique known 
as epoch based garbage collection. 
•  This idea is known as “read-copy-update” (RCU) in the linux 

community. 
•  RCU is used widely within the linux kernel.  

• Many different variants, we’ll talk about the simplest. 
 



Epoch based garbage collection 
•  Idea: divide time into epochs (say 10ms).  
• Run a background task which runs the following loop: 

•  last_epoch = current_epoch++; // advance the current epoch by 1  
•  Wait for all outstanding threads to finish last_epoch 
•  Garbage collect all references freed in last_epoch  

• Why this works: By freeing a reference (including 
unlinking it from any data structures) in epoch e, by the 
time epoch e+1 comes around, we are guaranteed that no 
outstanding references exist anymore (because all 
threads finished epoch e).  



Epoch based garbage collection 
• Readers/writers must only touch RCU-protected 

references while within an RCU region.  
•  For scalex, this looks something like: 

#include “rcu.hpp”!
void do_work()!
{!
    scoped_rcu_region r;!
    // do work with x!
  !
    // free x!
    r.release(x);!
}!



Epoch based garbage collection 
•  The GC loop is actually really simple: 
 for (;;) {!
    nanosleep(&t, NULL); // sleep an epoch!
    const epoch_t cleaning_epoch = global_epoch.load();!
    global_epoch.store(cleaning_epoch + 1); !
!
    delete_queue elems;!
    for (size_t i = 0; i < NSyncs; i++) { // loop over all threads!
      sync &s = syncs[i].elem;!
      {!
        lock_guard<spinlock> l(s.local_critical_mutex);!
      }!
      // now the next time the thread enters a critical section, it!
      // *must* get the new global_epoch, so we can now claim its!
      // deleted pointers from cleaing_epoch = global_epoch - 1!
      delete_queue &q = s.local_queues[cleaning_epoch % 2];!
      elems.insert(elems.end(), q.begin(), q.end());!
      q.clear();!
    }!
!
    // free elems!
  }!



What does this gain us? 
• Recall with reference counting, every pointer access 

requires modifying shared cache-lines to manipulate the 
reference count. 

• With RCU, pointer access is just a load. In the absence of 
mutations, all threads will hold a shared copy (S-State) in 
their caches, making access fast.  
•  Of course, when the GC loop runs, other threads will share cache-

lines with the GC thread, but we amortize the cost of this by 
sharing in bulk, and relatively infrequently (10ms is a lot of time in 
CPU cycles).  



Memory allocation 
• Another big scalability bottleneck: memory allocator.  
•  libc’s built-in memory allocator essentially uses a global 

lock to protect its internal data structures.  
•  So all this hard work we put in scaling our linked list is effectively 

nullified by calling malloc().  

•  Luckily, scalable memory allocators exist and are fairly 
robust. Examples include Jason Evan’s jemalloc, and 
Google’s tcmalloc. 
•  Both are used extensively: jemalloc is used in FreeBSD’s memory 

allocator, Firefox, and internally by Facebook. tcmalloc is used in 
WebKit and internally by Google.  



The big bakeoff 
• So how do these implementations perform in practice? 
•  Two simple benchmarks: 

•  Read only benchmark: N threads concurrently iterate over a small 
(100 elements) list.  

•  Queue benchmark: N/2 threads concurrently append to the tail of a 
list, while N/2 threads concurrently remove from the head of the list. 

•   Machine specs: 
•  8x6 2.4GHz AMD Opteron 
•  64GB RAM 
•  Linux 3.8 



Read only benchmark 



Queue benchmark 



Conclusion 
• Concurrent data structure programming is a very exciting 

and challenging area of computer science.  
•  Things that we often take for granted suddenly become very 

important to think about. 

• We barely scratched the surface today. Many more 
directions to go: 
•  More formal reasoning about correctness and liveness. 
•  More advanced data structures. 
•  More primitive support from hardware, such as transactional 

memory.  
•  Techniques and tools for debugging concurrent data structures. 



Thanks! Questions? 


