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1 Overview

This lecture aims to provide a very broad introduction to the topic of differential privacy. Generally
speaking, differential privacy is an area of research which seeks to provide rigorous, statistical
guarantees against what an adversary can infer from learning the results of some randomized
algorithm. The definition was first proposed in Cynthia Dwork’s ICALP paper [5]. Since then,
differential privacy has become an increasingly popular area of research, with many contributions
in terms of both theoretical analysis and practical instantiations.

2 Threat model

Recall the various adversarial scenarios discussed in lecture. Differential privacy addresses the
case when a trusted data curator wants to release some statistic over its data without revealing
information about a particular value itself.

As a concrete example, suppose a hospital has a database of patient records, each record containing
a binary value indicating whether or not the patient has some form of cancer. Presumably, patients
would not want others to find out whether or not they have cancer. However, say the hospital wishes
to release the total number of patients with a particular form of cancer (a summation over these
binary values) for scientific reasons. Differential privacy address the question of, given the total
number of patients with cancer, whether or not an adversary can learn if a particular individual
has cancer.

In this example, we have assumed that the hospital can be trusted; that is, (a) the hospital’s
database is secure from the outside (so the adversary cannot simply hack the database to get the
answer) and (b) it is in the interest of the hospital to protect individual patient privacy.

3 Previous efforts

Differential privacy is not the first framework which tries to address this question. Indeed, there
have been many previous efforts which we will not discuss in more detail other than to say that
they are mostly considered to be “broken” in the sense there are well known attacks. An example of
this is k-anonymity [14]. The success of differential privacy stems a lot from its rigorous definition,
which we will now discuss.
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4 Definition

Let A : Dn → Y be a randomized algorithm. Let D1, D2 ∈ Dn be two databases that differ in at
most one entry (we call these databases neighbors).

Definition 1. Let ε > 0. Define A to be ε-differentially private if for all neighboring databases
D1, D2, and for all (measurable) subsets Y ⊂ Y, we have

Pr[A(D1) ∈ Y ]

Pr[A(D2) ∈ Y ]
≤ exp(ε)

where the probability is taken over the coin tosses of A.

By convention, if both values in the numerator and denominator are 0, we say the ratio is 1. It is
clear from the definition that lower values of ε correspond to more “privacy”.

Observation 2. Because we can switch D1 and D2 interchangeably, Definition 1 implies that

exp(−ε) ≤ Pr[A(D1) ∈ Y ]

Pr[A(D2) ∈ Y ]
≤ exp(ε)

Since exp(ε) ≈ 1 + ε for small ε, then we have roughly

1− ε . Pr[A(D1) ∈ Y ]

Pr[A(D2) ∈ Y ]
. 1 + ε

Intuition. We can think of differential privacy as a game between two parties Alice and Bob.
For simplicity, assume that A is permutation invariant (order of inputs does not matter) and the
space D is finite (say |D| = m). Alice picks an arbitrary D ∈ Dn. Let D¬n = (d1, ..., dn−1), and let
Dn,m = (d1, ..., dn−1, dn = m), where dn = m means dn takes on the m-th value of D. Then Alice
gives Bob the tuple (D¬n, y = A(D)). Bob must then guess correctly the value of dn. Assuming
Alice draws dn uniformly at random, Bob’s best guess for dn is

argmax
j∈[m]

Pr[A(Dn,j) = y]

That is, for each possible value j of dn, Bob can learn the distribution induced by A(Dn,j), and
then pick the value of j which assigns highest probability to y. But if A satisfies ε-differential
privacy, then we have for all i, j ∈ [m]

|Pr[A(Dn,i) = y]− Pr[A(Dn,j) = y]| . ε

In other words, (a) Bob will have very low confidence in his estimate of dn,m and (b) Bob will not
be able to win much better than random guessing.

To make this more concrete, let us take a simple example and bound the probability of Bob willing.
Suppose both D = Y = {0, 1}. Then Alice will pick dn = 0 with probability 1/2 and dn = 1 with
probability 1/2. Suppose that Pr[A(Dn,0) = 0] > Pr[A(Dn,1) = 0] (the other cases are similar).
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Then the probability of Bob winning is given by

Pr[Bob wins] = Pr[pick dn = 0 ∧ dn = 0] + Pr[pick dn = 1 ∧ dn = 1]

=
1

2
Pr[pick dn = 0|dn = 0] +

1

2
Pr[pick dn = 1|dn = 1]

=
1

2
Pr[A(Dn,0) = 0] +

1

2
Pr[A(Dn,1) = 1]

=
1

2
Pr[A(Dn,0) = 0] +

1

2
(1− Pr[A(Dn,1) = 0])

≤ Pr[A(Dn,1) = 0]

2
(exp(ε)− 1) +

1

2

≤ exp(ε)

2
.

1

2
+
ε

2

Thus, given every data point but the n-th point plus an outcome of A on all of the data, Bob can
barely do better than random guessing when trying to learn the remaining data point.

Note that, on the other hand, suppose we do not enforce differential privacy. Consider the function
f(D) given by

f(D) =

1 if
n∑
i=1

I(di = 1) >
n∑
i=1

I(di = 0)

0 otherwise

where I(·) is the indicator function. If we restrict ourselves to cases where |D| is odd and have
Alice and Bob play the game described above, then Pr[Bob wins] = 1.

4.1 Statistical guarantees

Now that we have a definition of what it means to be private, it is natural to ask what statistical
guarantees are provided by an algorithm which satisfies the definition. Naturally, we might hope
that the information learned about an individual by the output of some algorithm is no more than
the information we can learn about that individual without access to the output. Informally, we
will call this pure semantic privacy. Unfortunately, external information makes such a privacy
definition impossible (without destroying all utility).

As a silly contrived example, suppose we know (already) that Alice is a chain smoker. Then suppose
we release the results of a study which indicates that chain smokers have a much greater chance of
getting lung cancer (pretend we did not know this already). Then we have just learned that Alice
is predisposed to lung cancer, even though Alice did not even participate in the study!

Given this intuition, we therefore must aim for more relaxed definitions of privacy than pure
semantic privacy. In this section, we provide intuition that differential privacy achieves a relaxed
version of semantic privacy. Informally, differential privacy states (which we saw previously in a
specific example) that an adversary with access to the output of an algorithm will learn roughly the
same information whether or not a single user’s data was included or not. So if a user is conflicted
about whether or not to participate in a statistical database, the user can be assured that her
participation will not drastically affect the outcome of functions run on the database.

We now seek to formalize this argument. Suppose Alice participates in a statistical database.
Mathematically, we need to bound the statistical difference between the posterior beliefs b1, b2,
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where b1 is a posterior on the values in the database given an output y = A(D) where D includes
Alice’s data, and b2 is a posterior on the database given the same output y = A(D′), where D′

does not include Alice’s data.

Differential privacy implies (relaxed) semantic privacy. The development of this section
is a very simplified presentation of [10]. Here, for simplicity we restrict ourselves to finite D and
Y. As a preliminary, let us define the statistical difference between two distributions X,Y on the
same discrete probability space Ω as

SD(X,Y ) = max
ρ∈Ω
|X(ρ)− Y (ρ)|

Let us assume our randomized algorithm A satisfies ε-differential privacy, and once again that it
is permutation invariant. Let b(D) denote an adversary’s prior belief on databases D ∈ Dn, and
b(D|y) denote the posterior belief on databases, given an output y ∈ Y. Let D¬n denote a database
where we keep the first n− 1 values of D, but replace the n-th value with some arbitrary dn ∈ D.
Consider an alternate world where we use a different randomized algorithm A′(D) = A(D¬n), and
let b′(D|y) denote the posterior belief in the alternate world.

We will now argue that for all D ∈ Dn and for all y ∈ Y

SD(b(D|y), b′(D|y)) ≤ exp(2ε)− 1

Intuitively, this means that the adversary’s posterior belief, upon seeing an output y, is insensitive
to the n-th value in the computation, because it is very close statistically in both worlds (that
consider and “ignore” the n-th value).

Theorem 3. (ε-differential privacy implies semantic privacy) Let A be an ε-differentially private
algorithm. For all D ∈ Dn and y ∈ Y, we have

SD(b(D|y), b′(D|y)) ≤ exp(2ε)− 1

Proof. By Bayes rule, we know that

b(D|y) =
µ(y|D)b(D)∑

E∈Dn

µ(y|E)b(E)

This yields

b(D|y)− b′(D|y) =
µ(y|D)b(D)∑
E

µ(y|E)b(E)
− µ′(y|D)b(D)∑

E

µ′(y|E)b(E)

Applying the inequalities of Definition 1, we get that |b(D|y)− b′(D|y)| ≤ exp(2ε)− 1.

5 Laplace mechanism

Now that we have discussed what differential privacy guarantees, the question remains, how do
we realize differentially private algorithms? The most general mechanism is known as the Laplace
mechanism [6].
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First, let f : Dn → Rk, and let ‖·‖1 be the usual L1 norm. Define GS(f), the global sensitivity of
f , for all neighboring databases D1, D2 as

GS(f) = sup
D1,D2∈Dn

‖f(D1)− f(D2)‖1

Theorem 4. (Laplace Mechanism [6]) Let f be defined as before and ε > 0. Define randomized
algorithm A as

A(D) = f(D) + Lap

(
GS(f)

ε

)k
where the one-dimensional (zero mean) Laplace distribution Lap(b) has density p(x; b) = 1

2b exp(− |x|b ),

and Lap(b)k = (l1, ..., lk) where each li
iid←− Lap(b). Then A is ε-differentially private.

Proof. Let y ∈ Rk and D1, D2 be neighboring databases. It is sufficient to bound the ratio
p(y−f(D1))
p(y−f(D2)) , where p(·) denotes probability density (once the densities are bounded, integrating

over a subset and applying the bound yields the requirement for differential privacy). Let f(D)i
denote the i-th coordinate of f(D).

p(y − f(D1))

p(y − f(D2))
=

k∏
i=1

p(yi − f(D1)i)

k∏
i=1

p(yi − f(D2)i)

=

k∏
i=1

exp (−ε |yi − f(D1)i| /GS(f))

k∏
i=1

exp (−ε |yi − f(D2)i| /GS(f))

= exp


ε

(
k∑
i=1
|yi − f(D2)i| − |yi − f(D1)i|

)
GS(f)



≤ exp


ε

(
k∑
i=1
|f(D2)i − f(D1)i|

)
GS(f)


≤ exp(ε)

where the first equality is because the noise is drawn independently on each coordinate, the first
inequality is triangle inequality, and the second inequality comes from the definition of GS(f).

Note that if z ∼ Lap(b), then E[z] = 0 and Var[z] = 2b2. So the Laplace mechanism adds noise
with variance 2GS(f)2/ε2 along each coordinate. This agrees with our intuition, that (a) functions
which have higher sensitivity require more noise to obtain a fixed ε of privacy, and (b) as we increase
ε we can get away with adding less noise.
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Noisy summation. Suppose f(D) =
n∑
i=1

di, where each di ∈ {0, 1}. Then clearly GS(f) = 1, so

A(D) =
n∑
i=1

di + Lap(1/ε) is an ε-differentially private version of sum. A natural question is, how

much error does this approximate answer introduce? Since the Laplace distribution has zero mean,
E[A(D)] = f(D), so we can apply Chebyshev’s inequality to get

Pr [|A(D)− f(D)| ≥ k] ≤ 2

ε2k2

So if ε = 0.1, then we can be 95% sure that A(D) does not deviate from the actual answer by
roughly 14.5. For large values of n, this seems quite reasonable.

Noisy average. Suppose f(D) = 1
n

n∑
i=1

di, where each di ∈ [0,M ] for some constant M ∈ R.

Then GS(f) = M/n, so A(D) = 1
n

n∑
i=1

di + Lap(Mnε ). Note that GS(f) = O(1/n), which translates

into another intuitive notion that adding more data yields more privacy.

Noisy linear regression. Suppose we have a dataset D = {(xi, yi)}ni=1, where each xi ∈ Rk and
yi ∈ R. Consider the least squares minimization function f : D → H

fH(D) = argmin
θ∈H

1

2n

n∑
i=1

(yi − 〈θ, xi〉)2 = argmin
θ∈H

L̂(θ;D)

where 〈·, ·〉 is the standard inner product. Computing the exact global sensitivity of f is tricky, but
we can derive an upper bound for it. Let ‖·‖2 denote the standard L2 norm. To make the analysis
easier, we restrict ourselves to the case where ‖xi‖2 ≤M , |yi| ≤ N , and H = {θ ∈ Rk : ‖θ‖2 ≤ P}.
Assuming we set P large enough such that fRk(D) ∈ H for all D, we can apply the following fact
from Chaudhuri et al. [3].

Theorem 5. (Chaudhuri et al. [3]) If G and g are two strongly convex functions which are
differentiable at all points, and if θ1 = argminθG(θ) and θ2 = argminθG(θ) + g(θ), then

‖θ1 − θ2‖2 ≤ ‖∇g(θ2)‖2

LetD1, D2 be two neighboring databases. Note that if we setG(θ) = L̂(θ;D1) and g(θ) = L̂(θ;D2)−
L̂(θ;D1), then θ1 = f(D1) and θ2 = f(D2). We can now argue the following.

Theorem 6. Let fH be the least squares minimizer as above with all the given assumptions. Then
GS(fH) ≤ 2M

√
k(N + PM)/n.

Proof. We bound ‖∇g(θ)‖2. Suppose wlog that D1, D2 differ in only the n-th element, and let
(xn, yn) ∈ D1 and (x′n, y

′
n) ∈ D2. Then we have

∇g(θ) =
1

n

[
(yn − 〈θ, xn〉)xn − (y′n − 〈θ, x′n〉)x′n

]
=

1

n

[
ynxn − y′nx′n + 〈θ, x′n〉x′n − 〈θ, xn〉xn

]
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Taking the norm, we get

‖∇g(θ)‖2 =

∥∥∥∥ 1

n

[
ynxn − y′nx′n + 〈θ, x′n〉x′n − 〈θ, xn〉xn

]∥∥∥∥
2

≤ 2NM

n
+

1

n

∥∥〈θ, x′n〉x′n∥∥2
+

1

n
‖〈θ, xn〉xn‖2

≤ 2NM

n
+

2PM2

n

Noting that ‖·‖1 ≤
√
k ‖·‖2 and applying Theorem 5 yields the result.

Note: This mechanism is overly pessimistic in the amount of noise it adds to achieve ε-differential
privacy. See [3] for more sophisticated techniques to achieve the same level of privacy while providing
better utility. The basic idea is to perturb the objective function instead of adding noise at the end.
[3] also outlines a better ways to add noise for vector-valued functions which uses global sensitivity
with respect to the L2 norm instead of L1.

6 Composition

One nice property of differential privacy that makes it much more practical is composibility.

Sequential composibility. The idea behind sequential composibility is that if we have k algo-
rithms which are each independently differentially private, we would like to be able to feed the
results from the first into the second, and so on, without completely sacrificing privacy. Sequential
composibility allows us to do this.

More specifically, suppose we have k algorithms Ai(D; zi), where the zi represents some auxiliary
input. Furthermore, suppose that each of the Ai’s are ε-differentially private for any auxiliary input
zi. Consider a sequence of computations {z1 = A1(D), z2 = A2(D; z1), z3 = A3(D; z1, z2), ...}, and
suppose A(D) = zk.

Theorem 7. (Sequential composibility [13]) A(D) is kε-differentially private.

Proof. Let D1, D2 be two neighboring databases. Then

Pr[A(D1) = zk] = Pr[A1(D1) = z1] Pr[A2(D1; z1) = z2]...Pr[Ak(D1; z1, ..., zk−1) = zk]

≤ exp(kε)

k∏
i=1

Pr[Ai(D2; z1, ..., zi−1) = zi]

= exp(kε) Pr[A(D2) = zk]

Sequential composibility is very useful for iterative algorithms which run over the same dataset
multiple times. If we can make each iteration differentially private, and we can bound the number
of iterations needed, then we can appeal to sequential composibility to argue the entire process is
differentially private.
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Parallel composibility. Now consider the situation where we have a single database D parti-
tioned into k disjoint subsets, Di. Once again, suppose we have k algorithms Ai(Di; zi) which are
each ε differentially private. Once again, suppose A(D) = zk.

Theorem 8. (Parallel composibility [13]) A(D) is ε-differentially private.

Proof. Let D1, D2 be two neighboring databases. Suppose that the j-th partition contains the
differing element. Then

Pr[A(D1) = zk] =

k∏
i=1

Pr[Ai(D1i ; z1, ..., zi−1) = zi]

≤ exp(ε) Pr[Aj(D2j ; z1, ..., zj) = zj ]
k∏
i 6=j

Pr[Aj(D1i ; z1, ..., zi−1) = zj ]

= exp(ε) Pr[A(D2) = zk]

7 Beyond the basics

We have barely begun to scratch the surface of all the work done in the area of differential privacy.
Below are the broad areas of research people are doing in differential privacy, with a few (not at
all comprehensive) sample papers

Relaxed definitions. ε-differential privacy is a very strong, worst case definition. A lot of
researchers have considered various relaxations to the definition to allow for algorithms to achieve
better utility. See e.g. [10, 1, 11].

Applying differential privacy to algorithms. A lot of clever techniques have been used to
produce algorithms which achieve differential privacy without having to add worst case noise. Vari-
ous machine learning algorithms, such as decision trees, SVMs, logistic regression have differentially
private variants which are practical. See e.g. [3, 12, 7, 9].

Theoretical noise requirements and utility bounds. A lot of theoretical analysis has also
been done to answer questions such as how much noise must be added to classes of algorithms to
achieve differential privacy, and how much utility must differentially private algorithms give up?
See e.g. [8, 4, 2].
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