Differentially private random projections
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1 Background

We extend the work of releasing differentially private random projections in Kenthapadi et al. [2] to handle row level
user privacy instead of attribute level privacy. We use their same notation to keep the derivations consistent.

2 Derivation

For this section, let ||-|| denote the Lo norm, let ||-||  denote the matrix Frobenius norm, and let (-, -) denote the usual
Euclidean inner product.

Let P be arandom d x k Gaussian matrix with each entry drawn independently from N (0, O’Z). Let X and X' be
two n x d matrices of user data, such that X and X’ only differ in one row ¢, and || X; — X/|| < B.

2.1 Directly bounding the output

Lemma 1. With probability at least 1 — 0, we have | X P — X'P||, < Bap\/k: +2y/klog(1/8) + 21log(1/9).
Proof. Since X and X' only differ in row ¢, we have (X P — X'P),,,, = 0 for m # ¢, and that
(XP - X'P)ij = (X, Pj) — (X}, Pj) = (X; = X[, Pj)

where P; is the j-th column of P. Let z = X; — X|. Then by the scaling properties of Gaussians (e.g. if a,b
are constants, X ~ N(0,03), and Y ~ N(0,07), then aX + bY ~ N(0,a%02 + b?07)), we know (z, P;) ~
N(O, 2|2 02). LetY; ~ N(0,1) and xj, denote a random variable drawn from a chi-squared distribution with &
degrees of freedom. We now bound the matrix norm as follows

k k
IXP = X'Pllp= | > (. P)? = | D (2l 0pY)? = ||zl 0/ X3

j=1 =1

where the second equality follows since if X ~ N(0,0?), then X/o ~ N(0,1). From Laurent and Massart (Lemma
1, [3]), we have the following tail bound on a random variable X drawn from a k degrees of freedom chi-squared
distribution

Pr[X > k + 2Vkx + 21] < exp(—x)

The claim now follows by setting = = log(1/6). O

Let f : D™ — R be a function with L sensitivity bounded by As(f). Then from Kenthapadi et al. [2], we have
the following differentially private mechanism construction using Gaussian noise

Lemma 2. (Lemma 1, [2]) The mechanism given by M (D) = f(D) + G, where G is a random Gaussian vector with
entries drawn from N'(0,205(f)?(log(1/20) + €)/€?) satisfies (e, §)-differential privacy provided § < .

By combining Lemma 1 and Lemma 2, we have the following (e, §)-differentially private algorithm for releasing
randomized projections



Theorem 1. Let ¢ > 0 and 0 < § < 1/2. Fix a randomized gaussian projection matrix P. Then the mechanism
Mp(X) = XP + G, where G is an n X k random gaussian matrix with entries drawn from N (0, 02) with

o = Boy\/k +2y/kTog(2/0) + 210g(2/8)y/2(10g(1/20) + ) /¢
is (€, 0)-differentially private.
Proof. The claim follows immediately by invoking both Lemma 1 and Lemma 2 with 6/2. O

2.2 Composition approach
We can derive another algorithm by utilizing the following composition theorem from Dwork et al. [1]

Lemma 3. (Theorem S.3, [1]) Suppose we have k mechanisms which are each (e, §)-differentially private. Let §' > 0.
Then the composition of the k mechanisms is (€', ké + 6')-differentially private for

e =+/2klog(1/8)e + ke(exp(e) — 1)

Lemmad. Let H = X P—X'P, and H; denote the i-th column of H. Then we have Pr[||H;| > Bo,\/2log(1/d)] <
0 for all i.

Proof. From Lemma 1, we know that || H;|| = (z, P,) ~ N(0, ||z° 07). Standard Gaussian tail bounds tell us that if
X ~ N(0,0?), then Pr[|X| > 01/2log(1/0)] < 6. Plugging || H; || into the bound yields the claim. O

Theorem 2. Let 0 < € < 1 and 0 < 6 < 1/2. Fix a randomized gaussian projection matrix P. Then the mechanism
Mp(X) = XP + G, where G is an n x k random gaussian matrix with entries drawn from N'(0, 0%) with

o= %\/4 log2(k/5) + 2¢; log(2k/9)
€1

where

_ /2klog(2/6) + 8ke — \/2klog(2/9)
B Ak

€1

is (¢, 0)-differentially private.

Proof. By invoking Lemma 4 and Lemma 2, the mechanism Mp;(X) = (XP); + G, where (X P); denotes the
i-th column of X P and G is an n x 1 random gaussian vector with entries drawn from N'(0,0%) with o7 =

Bop \/4 log?(1/201) + 2¢; log(1/6y) is (e1, 1 )-differentially private. Also, by setting 6, = 6/2k and &' = §/2

and invoking Lemma 3, we have that the composition is (¢’, §)-differentially private with ¢/ = /2klog(2/d)e1 +
ke (exp(e;) —1). Noting that exp(e1) < 14 2¢; if 0 < €5 < 1, then solving for €; using the quadratic formula yields
the result. O
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