Differentially private random projections

Stephen Tu

1 Background

We extend the work of releasing differentially private random projections in Kenthapadi et al. [2] to handle row level user privacy instead of attribute level privacy. We use their same notation to keep the derivations consistent.

2 Derivation

For this section, let $\|\cdot\|$ denote the L_2 norm, let $\|\cdot\|_F$ denote the matrix Frobenius norm, and let $\langle \cdot, \cdot \rangle$ denote the usual Euclidean inner product.

Let P be a random $d \times k$ Gaussian matrix with each entry drawn independently from $\mathcal{N}(0, \sigma_p^2)$. Let X and X' be two $n \times d$ matrices of user data, such that X and X' only differ in one row i, and $||X_i - X'_i|| \leq B$.

2.1 Directly bounding the output

Lemma 1. With probability at least $1 - \delta$, we have $||XP - X'P||_F \le B\sigma_p \sqrt{k + 2\sqrt{k\log(1/\delta)} + 2\log(1/\delta)}$.

Proof. Since X and X' only differ in row i, we have $(XP - X'P)_{mn} = 0$ for $m \neq i$, and that

$$(XP - X'P)_{ij} = \langle X_i, P_j \rangle - \langle X'_i, P_j \rangle = \langle X_i - X'_i, P_j \rangle$$

where P_j is the *j*-th column of *P*. Let $z = X_i - X'_i$. Then by the scaling properties of Gaussians (e.g. if *a*, *b* are constants, $X \sim \mathcal{N}(0, \sigma_x^2)$, and $Y \sim \mathcal{N}(0, \sigma_y^2)$, then $aX + bY \sim \mathcal{N}(0, a^2\sigma_x^2 + b^2\sigma_y^2)$), we know $\langle z, P_j \rangle \sim \mathcal{N}(0, ||z||^2 \sigma_p^2)$. Let $Y_j \sim \mathcal{N}(0, 1)$ and χ_k^2 denote a random variable drawn from a chi-squared distribution with *k* degrees of freedom. We now bound the matrix norm as follows

$$\|XP - X'P\|_F = \sqrt{\sum_{j=1}^k \langle z, P_j \rangle^2} = \sqrt{\sum_{j=1}^k (\|z\| \, \sigma_p Y_j)^2} = \|z\| \, \sigma_p \sqrt{\chi_k^2}$$

where the second equality follows since if $X \sim N(0, \sigma^2)$, then $X/\sigma \sim N(0, 1)$. From Laurent and Massart (Lemma 1, [3]), we have the following tail bound on a random variable X drawn from a k degrees of freedom chi-squared distribution

$$\Pr[X \ge k + 2\sqrt{kx} + 2x] \le \exp(-x)$$

The claim now follows by setting $x = \log(1/\delta)$.

Let $f: D^n \to \mathbb{R}^d$ be a function with L_2 sensitivity bounded by $\Delta_2(f)$. Then from Kenthapadi et al. [2], we have the following differentially private mechanism construction using Gaussian noise

Lemma 2. (Lemma 1, [2]) The mechanism given by M(D) = f(D) + G, where G is a random Gaussian vector with entries drawn from $\mathcal{N}(0, 2\Delta_2(f)^2(\log(1/2\delta) + \epsilon)/\epsilon^2)$ satisfies (ϵ, δ) -differential privacy provided $\delta < \frac{1}{2}$.

By combining Lemma 1 and Lemma 2, we have the following (ϵ, δ) -differentially private algorithm for releasing randomized projections

Theorem 1. Let $\epsilon > 0$ and $0 < \delta < 1/2$. Fix a randomized gaussian projection matrix P. Then the mechanism $M_P(X) = XP + G$, where G is an $n \times k$ random gaussian matrix with entries drawn from $\mathcal{N}(0, \sigma^2)$ with

$$\sigma = B\sigma_p \sqrt{k + 2\sqrt{k\log(2/\delta)} + 2\log(2/\delta)}\sqrt{2(\log(1/2\delta) + \epsilon)}/\epsilon$$

is (ϵ, δ) -differentially private.

Proof. The claim follows immediately by invoking both Lemma 1 and Lemma 2 with $\delta/2$.

2.2 Composition approach

We can derive another algorithm by utilizing the following composition theorem from Dwork et al. [1]

Lemma 3. (*Theorem S.3, [1]*) Suppose we have k mechanisms which are each (ϵ, δ) -differentially private. Let $\delta' > 0$. Then the composition of the k mechanisms is $(e', k\delta + \delta')$ -differentially private for

$$e' = \sqrt{2k \log(1/\delta')\epsilon} + k\epsilon(\exp(\epsilon) - 1)$$

Lemma 4. Let H = XP - X'P, and H_i denote the *i*-th column of H. Then we have $\Pr[||H_i|| > B\sigma_p \sqrt{2\log(1/\delta)}] \le \delta$ for all *i*.

Proof. From Lemma 1, we know that $||H_i|| = \langle z, P_i \rangle \sim \mathcal{N}(0, ||z||^2 \sigma_p^2)$. Standard Gaussian tail bounds tell us that if $X \sim \mathcal{N}(0, \sigma^2)$, then $\Pr[|X| > \sigma \sqrt{2\log(1/\delta)}] \leq \delta$. Plugging $||H_i||$ into the bound yields the claim.

Theorem 2. Let $0 < \epsilon < 1$ and $0 < \delta < 1/2$. Fix a randomized gaussian projection matrix P. Then the mechanism $M_P(X) = XP + G$, where G is an $n \times k$ random gaussian matrix with entries drawn from $\mathcal{N}(0, \sigma^2)$ with

$$\sigma = \frac{B\sigma_p}{\epsilon_1} \sqrt{4\log^2(k/\delta) + 2\epsilon_1\log(2k/\delta)}$$

where

$$\epsilon_1 = \frac{\sqrt{2k\log(2/\delta) + 8k\epsilon} - \sqrt{2k\log(2/\delta)}}{4k}$$

is (ϵ, δ) -differentially private.

Proof. By invoking Lemma 4 and Lemma 2, the mechanism $M_{P,i}(X) = (XP)_i + G$, where $(XP)_i$ denotes the *i*-th column of XP and G is an $n \times 1$ random gaussian vector with entries drawn from $\mathcal{N}(0, \sigma_1^2)$ with $\sigma_1 = \frac{B\sigma_p}{\epsilon_1}\sqrt{4\log^2(1/2\delta_1) + 2\epsilon_1\log(1/\delta_1)}$ is (ϵ_1, δ_1) -differentially private. Also, by setting $\delta_1 = \delta/2k$ and $\delta' = \delta/2$ and invoking Lemma 3, we have that the composition is (ϵ', δ) -differentially private with $\epsilon' = \sqrt{2k\log(2/\delta)}\epsilon_1 + k\epsilon_1(\exp(\epsilon_1) - 1)$. Noting that $\exp(\epsilon_1) \leq 1 + 2\epsilon_1$ if $0 < \epsilon_1 < 1$, then solving for ϵ_1 using the quadratic formula yields the result.

References

- [1] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential privacy. FOCS, 2010.
- [2] Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, and Nina Mishra. Privacy via the johnsonlindenstrauss transform. *Journal of Privacy and Confidentiality*, 5, 2013.
- [3] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. *Annals of Statistics*, 28, 2000.