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1 Background
We extend the work of releasing differentially private random projections in Kenthapadi et al. [2] to handle row level
user privacy instead of attribute level privacy. We use their same notation to keep the derivations consistent.

2 Derivation
For this section, let ‖·‖ denote the L2 norm, let ‖·‖F denote the matrix Frobenius norm, and let 〈·, ·〉 denote the usual
Euclidean inner product.

Let P be a random d× k Gaussian matrix with each entry drawn independently from N (0, σ2
p). Let X and X ′ be

two n× d matrices of user data, such that X and X ′ only differ in one row i, and ‖Xi −X ′
i‖ ≤ B.

2.1 Directly bounding the output

Lemma 1. With probability at least 1− δ, we have ‖XP −X ′P‖F ≤ Bσp
√
k + 2

√
k log(1/δ) + 2 log(1/δ).

Proof. Since X and X ′ only differ in row i, we have (XP −X ′P )mn = 0 for m 6= i, and that

(XP −X ′P )ij = 〈Xi, Pj〉 − 〈X ′
i, Pj〉 = 〈Xi −X ′

i, Pj〉

where Pj is the j-th column of P . Let z = Xi − X ′
i . Then by the scaling properties of Gaussians (e.g. if a, b

are constants, X ∼ N (0, σ2
x), and Y ∼ N (0, σ2

y), then aX + bY ∼ N (0, a2σ2
x + b2σ2

y)), we know 〈z, Pj〉 ∼
N (0, ‖z‖2 σ2

p). Let Yj ∼ N (0, 1) and χ2
k denote a random variable drawn from a chi-squared distribution with k

degrees of freedom. We now bound the matrix norm as follows

‖XP −X ′P‖F =

√√√√ k∑
j=1

〈z, Pj〉2 =

√√√√ k∑
j=1

(‖z‖σpYj)2 = ‖z‖σp
√
χ2
k

where the second equality follows since if X ∼ N(0, σ2), then X/σ ∼ N(0, 1). From Laurent and Massart (Lemma
1, [3]), we have the following tail bound on a random variable X drawn from a k degrees of freedom chi-squared
distribution

Pr[X ≥ k + 2
√
kx+ 2x] ≤ exp(−x)

The claim now follows by setting x = log(1/δ).

Let f : Dn → Rd be a function with L2 sensitivity bounded by ∆2(f). Then from Kenthapadi et al. [2], we have
the following differentially private mechanism construction using Gaussian noise

Lemma 2. (Lemma 1, [2]) The mechanism given by M(D) = f(D) +G, where G is a random Gaussian vector with
entries drawn from N (0, 2∆2(f)2(log(1/2δ) + ε)/ε2) satisfies (ε, δ)-differential privacy provided δ < 1

2 .

By combining Lemma 1 and Lemma 2, we have the following (ε, δ)-differentially private algorithm for releasing
randomized projections
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Theorem 1. Let ε > 0 and 0 < δ < 1/2. Fix a randomized gaussian projection matrix P . Then the mechanism
MP (X) = XP +G, where G is an n× k random gaussian matrix with entries drawn from N (0, σ2) with

σ = Bσp

√
k + 2

√
k log(2/δ) + 2 log(2/δ)

√
2(log(1/2δ) + ε)/ε

is (ε, δ)-differentially private.

Proof. The claim follows immediately by invoking both Lemma 1 and Lemma 2 with δ/2.

2.2 Composition approach
We can derive another algorithm by utilizing the following composition theorem from Dwork et al. [1]

Lemma 3. (Theorem S.3, [1]) Suppose we have k mechanisms which are each (ε, δ)-differentially private. Let δ′ > 0.
Then the composition of the k mechanisms is (e′, kδ + δ′)-differentially private for

e′ =
√

2k log(1/δ′)ε+ kε(exp(ε)− 1)

Lemma 4. LetH = XP−X ′P , andHi denote the i-th column ofH . Then we have Pr[‖Hi‖ > Bσp
√

2 log(1/δ)] ≤
δ for all i.

Proof. From Lemma 1, we know that ‖Hi‖ = 〈z, Pi〉 ∼ N (0, ‖z‖2 σ2
p). Standard Gaussian tail bounds tell us that if

X ∼ N (0, σ2), then Pr[|X| > σ
√

2 log(1/δ)] ≤ δ. Plugging ‖Hi‖ into the bound yields the claim.

Theorem 2. Let 0 < ε < 1 and 0 < δ < 1/2. Fix a randomized gaussian projection matrix P . Then the mechanism
MP (X) = XP +G, where G is an n× k random gaussian matrix with entries drawn from N (0, σ2) with

σ =
Bσp
ε1

√
4 log2(k/δ) + 2ε1 log(2k/δ)

where

ε1 =

√
2k log(2/δ) + 8kε−

√
2k log(2/δ)

4k

is (ε, δ)-differentially private.

Proof. By invoking Lemma 4 and Lemma 2, the mechanism MP,i(X) = (XP )i + G, where (XP )i denotes the
i-th column of XP and G is an n × 1 random gaussian vector with entries drawn from N (0, σ2

1) with σ1 =
Bσp

ε1

√
4 log2(1/2δ1) + 2ε1 log(1/δ1) is (ε1, δ1)-differentially private. Also, by setting δ1 = δ/2k and δ′ = δ/2

and invoking Lemma 3, we have that the composition is (ε′, δ)-differentially private with ε′ =
√

2k log(2/δ)ε1 +
kε1(exp(ε1)− 1). Noting that exp(ε1) ≤ 1 + 2ε1 if 0 < ε1 < 1, then solving for ε1 using the quadratic formula yields
the result.
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