Derivation of Baum-Welch Algorithm for Hidden Markov Models

Stephen Tu

1 Introduction

This short document goes through the derivation of the Baum-Welch algorithm for learning model parameters of a
hidden markov model (HMM). For more generality, we treat the multiple observations case. Note that Baum-Welch is
simply an instantiation of the more general Expectation-Maximization (EM) algorithm.

2 Setup

Let us consider discrete (categorical) HMMs of length T' (each observation sequence is 1" observations long). Let the
space of observations be X = {1,2,..., N}, and let the space of underlying states be Z = {1,2,..., M}. An HMM
6 = (w, A, B) is parameterized by the initial state matrix 7, the state transition matrix A, and the emission matrix B;
m = P(z1 =1), Aijj = P(2¢41 = jlz = 1), and B;(j) = P(z¢ = j|2¢ =). See [1] for a more detailed treatment of
HMMs.

We study the problem of learning the parameterization of 6 from a dataset of D observations. Let X = (X W, .., x®),

where each X = (xgi), xéi), e m(jf)) We assume each observation is drawn iid. The learning problem is non-
trivial because we are not given the latent variables Z() for each X *), otherwise we could directly compute 6* =
argmax, P(X, Z;0). Without Z, the naive solution would be to directly compute * = argmax, > . P(X, z;0).

; z2€EZ
This is not tractable, since there are DT different values of z to try.

3 Baum-Welch

Baum-Welch is an iterative procedure for estimating 8* from only X. It works by maximizing a proxy to the log-

likelihood, and updating the current model to be closer to the optimal model. Each iteration of Baum-Welch is guar-

anteed to increase the log-likelihood of the data. But of course, convergence to the optimal solution is not guaranteed.
Baum-Welch can be described simply as repeating the following steps until convergence:

1. Compute Q(0,0°) = > log [P(X, z;0)] P(z|X;6%).
zEZ

2. Set §°T = argmax Q(6, 6%).
0

Without justifying why this works, the rest of this document will focus on deriving the necessary update steps to run
this algorithm. First, noting that P(z, X') = P(X)P(z|X), we can write

argmax Z log [P(X, z;0)] P(z|X;0°) = argmax Z log [P(X, 2;0)] P(z, X;6°) = argmax Q(6, 0°)
2EZ o 2EZ o

since P(X) is not affected by choice of §. Now P(z, X'; 0) is easy to write down

D T
P(Z, X 9) = H <'/ngd) Bzgd) (l‘(ld)) H Azt(i)lzt(d)th(d) (x@))
d=1 t=2

Taking the log gives us

T T

D
log P(z,X;0) = Z log @ + Zlog Az@lzt(d) + Zlog Bzf(d) (mgd))
d=1 t=2 t=1)

Plugging this into Q(6, 6*), we get

Q(0,6°%) ZZlogw @ Pz, X;0°)+> ZZlogA @ @ P(z,X;6°) +ZZZlogB @ (2P (z, X;6°)

z€EZ d=1 z€EZ d=1t=2 z€Z d=1t=1

This is a nice form which we can optimize analytically with Lagrange multipliers. We need Lagrange multipliers
because we have equality constraints which come from requiring that 7, A;. and B;(+) form valid probability distribu-

tions. Let L(#,) be the Lagrangian

A M M M N
L(0,6°) = Q(8,6°) (Zm—1> =D A [DA =1 =) s [D Bil) -
i=1 =1 i=1 i=1

First let us focus on the 7;’s

oL(0,6°) 9
371'1' o aﬂi <z€ZZ
M
2

T

d=1
OL(0,6°) M B
B - (Zl mol)=

The second step is simply the result of marginalizing out, for each d, all zt(721 and z(d 74 for all . We use this style of
trick extensive throughout the remainder of the document. Some algebra yields

D
S P =i, x:6°) P((? =i, X;0%)
o d=1 _d=1
i = M D d - D M d
> P =4, x;6%) pIPIR P = j, x;09)
j=1ld=1 d=1j5=1
D D
N PEAY =i xi00) Y P(AY =i, X:0%)
_ d=1 _ d=
- D X@s
$ P(a;6%) (4:6°)
d=1
D (d)
S P(X;0°)P(z" = i|X;0°) D
d=1
= — X
DP(X;0°) ; ;0

We now follow a similar process for the A;;’s.

D T

oL(0,0°) 9 .
0Aij 0Ay (ZZZIogA @ Lo Pz, x50)) — A4, =0

z€Z d=1t=2
a M M D T
S log A P(2) = 4.2 =k, X10%) | = Aa, =0
t=2

P(zﬁjl = i,zid) =j,X;6%)

—Aa, =0

This yields

(d)l =1 zt(=7,X;0%)

Mo
M=
E

Il
-
o~
I|

Mzl
Mo
=)™

P =i, 2" = j, X;6%)

<
Il
—_
U
=
~+
||
(V)

P = i,24Y = j,x;6%)

Mo
M=

Q.
Il
—
~
Il
N

> P2 =i, X;6%)

t=2

R

X:0°)P(2\?) =i, 2" = jlx;6°)

Mo
M=
E

1Y
Il

-
~

P(X;0%)P (zt 1 = 1|X;0%)

N SIE
M=

~
Il
N

R
Mo 19~

M=

d) s
P(zt L =1 zt() —]|X(d);9)

P, = i|X(@; 9%)

Y
Il
-
~
U
N

The final thing is the B;(j)’s, which are slightly trickier. Let I(z) denote an indicator function which is 1 if z is true,
0 otherwise.

oL(9,0°) 0 - @) p |
~— = - log B T 2,X;0°) | —Ap, =0
9Bi(j) 0Bi(j) (;;; g B @ (z;7) P() B
a N D T
= (33N 10g Bi(a{) P =i, x:60%) | = Ap, =0
aBl (‘7) i=1d=1t=1
D T . . .
_ ZZ P(z,gd) = @,X§95)I($Ed) =) A =0
d=11=1 Bi(j) !
dL(6,6%) al
- Bi(j)—1]| =
ONg, ; Z(]) 0

This should come as no surprise by now

=5)))I(mt -])
233 P =i X501 =)
J=ld=1t=
D T
X 5P =i X001 =)
D T @
dzlt;P(z =1,X;0%)
D T
d . o d .
5 3 PG =X 030160 =)
N D (d) : (d). gs
§1tz—:1p(2t = 3| X (d); %)
To summarize, the update steps are
1 2
,n_l(s-i-l) _ 5 ZP(ng) _ i|X(d);05)
d=1
D T
d . (d . R
(s+1) dX—:I t; P(Zt(_)l - Z’Z]E) B]|X(d)’9)
A” - 2 & (d) X (d
;UZ_IQP(ZH = i|X(@); %)
D T
> 3 Pl =il X D001 (2f” = j)
(s+1) /. _ d=1t=1
B; (J) = D T @ _ . po
dX_:ltZ:lP(zt = 4| X (d); %)

Note that P(z¢|X;6) and P(z:—1, 2¢|X; 8) are both quantities which can be computed efficiently for HMMs by the
forward-backwards algorithm. Once again, see [1] for more details.
References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). 2006.

