Derivation of Baum-Welch Algorithm for Hidden Markov Models

Stephen Tu

1 Introduction

This short document goes through the derivation of the Baum-Welch algorithm for learning model parameters of a
hidden markov model (HMM). For more generality, we treat the multiple observations case. Note that Baum-Welch is
simply an instantiation of the more general Expectation-Maximization (EM) algorithm.

2 Setup

Let us consider discrete (categorical) HMMs of length T' (each observation sequence is 1" observations long). Let the
space of observations be X = {1,2,..., N}, and let the space of underlying states be Z = {1,2,..., M}. An HMM
6 = (w, A, B) is parameterized by the initial state matrix 7, the state transition matrix A, and the emission matrix B;
m = P(z1 =1), Aijj = P(2¢41 = jlz = 1), and B;(j) = P(z¢ = j|2¢ = ). See [1] for a more detailed treatment of
HMMs.

We study the problem of learning the parameterization of 6 from a dataset of D observations. Let X = (X W, .., x® ),

where each X = (xgi), xéi), e m(jf)) We assume each observation is drawn iid. The learning problem is non-
trivial because we are not given the latent variables Z() for each X *), otherwise we could directly compute 6* =
argmax, P(X, Z;0). Without Z, the naive solution would be to directly compute * = argmax, > . P(X, z;0).
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This is not tractable, since there are DT different values of z to try.

3 Baum-Welch

Baum-Welch is an iterative procedure for estimating 8* from only X. It works by maximizing a proxy to the log-

likelihood, and updating the current model to be closer to the optimal model. Each iteration of Baum-Welch is guar-

anteed to increase the log-likelihood of the data. But of course, convergence to the optimal solution is not guaranteed.
Baum-Welch can be described simply as repeating the following steps until convergence:

1. Compute Q(0,0°) = > log [P(X, z;0)] P(z|X;6%).
zEZ

2. Set §°T = argmax Q(6, 6%).
0

Without justifying why this works, the rest of this document will focus on deriving the necessary update steps to run
this algorithm. First, noting that P(z, X') = P(X)P(z|X), we can write

argmax Z log [P(X, z;0)] P(z|X;0°) = argmax Z log [P(X, 2;0)] P(z, X;6°) = argmax Q(6, 0°)
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since P(X) is not affected by choice of §. Now P(z, X'; 0) is easy to write down
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Taking the log gives us
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Plugging this into Q(6, 6*), we get
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This is a nice form which we can optimize analytically with Lagrange multipliers. We need Lagrange multipliers
because we have equality constraints which come from requiring that 7, A;. and B;(+) form valid probability distribu-

tions. Let L(#, ) be the Lagrangian
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First let us focus on the 7;’s
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The second step is simply the result of marginalizing out, for each d, all zt( 721 and z(d 74 for all . We use this style of
trick extensive throughout the remainder of the document. Some algebra yields
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We now follow a similar process for the A;;’s.
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This yields
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The final thing is the B;(j)’s, which are slightly trickier. Let I(z) denote an indicator function which is 1 if z is true,
0 otherwise.
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This should come as no surprise by now
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To summarize, the update steps are
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Note that P(z¢|X;6) and P(z:—1, 2¢|X; 8) are both quantities which can be computed efficiently for HMMs by the
forward-backwards algorithm. Once again, see [1] for more details.
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