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High availability is essential to het-
erogeneous computer networks, which are the
basis of many systems ranging from the Inter-
net to fly-by-wire flight controls. Develop-
ment of highly available systems, however, is
constrained by ever shorter times to market
and the availability of off-the-shelf hardware
and software (see the “Examples” box). Con-
sequently, the economic necessity of using
commodity products from different vendors
puts a premium on the products’ fault toler-
ance. The development of fault-tolerant and
portable software, particularly for parallel and
distributed systems consisting of networks of
binary-incompatible machines, continues to
challenge engineers.

In this article, I describe a new approach to
developing fault-tolerant software. This
approach has been validated by a prototype
compiler developed by me and my MIT col-
leagues as part of ongoing research. Our pri-
mary goal is to develop source-to-source
compiler technology that simplifies the process
of adding fault tolerance to a computation.

The programmer precompiles a program
before generating an executable with a native
compiler. The precompilation automatically
generates code to save and recover from
portable checkpoints, which capture the state
of a computation in a machine-independent

format. Portable checkpoints can be saved in
a file or replicated on other machines in a net-
work, and can be used to restore the compu-
tation on a binary-incompatible machine. We
assume that the source program is likely to be
correct, independently of whether it incorpo-
rates software reliability. Checkpointing a
computation enables a restart on another
machine in case of failure, regardless of
whether the hardware or another software
module causes the failure.

Checkpointing for fault tolerance
Well-known existing techniques to imple-

ment highly available systems, whether hard-
ware or software, include replication with
majority voting and analytic redundancy.
Replication with majority voting requires a
set of identical modules, and determines the
set’s output to be that of the majority of mod-
ules. This method is also called N-version pro-
gramming when applied to provide software
reliability. Analytic redundancy employs a less
complex backup system to replace a high-
performance module in case of failure. These
methods are well suited to provide fault tol-
erance in a variety of settings. For computer
networks, less complex and less expensive
methods often suffice, however.
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are inherently redundant, and fault tolerance
can be implemented purely in software.
Checkpointing is a widely used software tech-
nique. A program is supplemented with
checkpointing code, which stores the com-
putation’s state in a checkpoint and recovers
the computation after detecting a failure.
Computations fail if their host machines fail.
In a network of machines, aborted computa-
tions can be recovered on another machine.

From a computation’s point of view, suc-
cessful termination requires shielding itself
from faults of both hardware and other soft-
ware components. To date, software errors
reportedly cause about 90% of computer sys-
tem outage.1 Therefore, adding fault tolerance
to critical computations rather than to the
underlying or surrounding software and hard-
ware layers is justified in the spirit of an end-
to-end argument.

Low-overhead checkpointing implementa-
tions are essential for this technique, because
the overhead lies on the critical path and is
added to the execution time of a computa-
tion. Studies have shown that the overhead of
consistent checkpointing can be just a small
percentage of the overall program execution
time for reasonable checkpointing frequen-
cies.2 Our studies show that incorporating
data representation conversion into the check-
pointing process increases the checkpointing
overhead by only 50%, roughly.3,4 Machine-
independent portable checkpoints, therefore,
represent a promising mechanism for effi-
ciently providing fault tolerance in heteroge-
neous environments.

Portable checkpoints
Portable checkpoints capture a computa-

tion’s state in a machine-independent Uni-
versal Checkpoint Format. The UCF is a
parameterizable format that specifies data rep-
resentations of basic data types, such as int
or float in C. The specification includes size,
alignment, and byte order of all basic data
types, and bit representations of floating-point
numbers. The UCF can match an existing
machine’s format or define some virtual for-
mat. Users choose a particular UCF to trade
off checkpoint size, data representation accu-
racy, and execution time required for data rep-
resentation conversion. In a heterogeneous
computer network, for example, selecting the

UCF to match that of the majority of used
machines is a sensible trade-off.

Most implementation techniques previ-
ously developed for checkpointing systems do
not support heterogeneity. Among these are
transparent methods, which require no explic-
it program changes other than linking a
library. The Libckpt library5 or Manetho6 pro-
vides transparent checkpointing for homoge-
neous environments of binary-compatible
machines. These save the values stored in the
register set and the user address space into a
checkpoint. Various performance optimiza-
tions, such as incremental checkpointing, rely
on the virtual memory system to identify
modified pages and copy-on-write to hide the
latency of saving the checkpoint. 

Some checkpointing systems save the state
that defines the interface between the com-
putation and the external environment,
including file pointers or communication
handles. Most of these systems support check-
pointing only across binary-compatible
machines. Furthermore, they do not support
consistency of the computation and its envi-
ronment, because the interface state itself is
insufficient to implement operations such as
transactions, as explained below.
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Examples
As the time to market for new general-purpose processors shrinks, and as operating sys-

tems become a commodity, custom design of fault-tolerant systems that deliver performance
competitive with that of mainstream commercial products grows unprofitable. The challenge
is to build fault-tolerant systems that harness the market forces by using off-the-shelf hard-
ware and software components, without modification. The Boeing 777, one example of a
successful market-driven embedded design, contains a large embedded computer network
using tens of binary-incompatible microprocessors.1 Another market-driven project is NASA’s
Remote Exploration and Experimentation Project.2 Its goal is to demonstrate the feasibility
of a low-power, scalable, fault-tolerant, high-performance computing system in space using
commercially available components. The NASA project’s research focuses on software-
implemented fault tolerance to protect presumably correct applications from frequent tran-
sient errors in the space environment.
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Support for heterogeneous environments has
been explored in the context of migration of
computations across binary-incompatible
machines. Two recent approaches are the Tui
system and the work on dynamic reconfigura-
tion.7,8 Both systems rely on compile-time and
runtime support to capture the state of a com-
putation and convert the state into the format
of a binary-incompatible machine. The meth-
ods developed for these systems are actually very
similar to those for portable checkpointing.
What distinguishes our approach is how it uses
type information during source-to-source com-
pilation to generate efficient code for saving and
recovering from portable checkpoints.

Type information is a key to portability. It
serves as an invariant for code generated for
data representation conversion between bina-
ry-incompatible machines. A second key is the
checkpointing code generated at the program-
ming-language level. This allows for generat-
ing checkpointing code that accesses variables
by their names and makes the checkpointing
code independent of low-level details, such as
register allocation and stack environment.

It is not clear whether it’s possible in general
to convert the state of a computation from
one system to another using conversion code
at the assembly level. Different systems have
different register set designs, hidden registers,
hardware support for function calls, stack lay-
outs, and so on. Consequently, system-based
approaches such as transparent checkpoint-
ing are generally not suited for transforming
the state of a computation into a machine-
independent format. Portable checkpointing,
however, presents a potential solution.

The Porch compiler
We designed the Porch compiler to explore

the use of automatic code generation for
portable checkpointing.3,4 The Porch com-
piler is a source-to-source compiler that trans-
lates C programs into semantically equivalent
C programs additionally capable of saving and
recovering from portable checkpoints. We
chose the C programming language for our
prototype because it is widely used.

To enable code generation for portable
checkpointing and recovery, we identify
potential checkpoint locations in a C program
by inserting a call to the library function
checkpoint() . These locations are hooks
for program analysis and code generation.
Unlike other approaches that save a check-
point when receiving an asynchronous signal,
computations precompiled with Porch save a
checkpoint when visiting the next potential
checkpoint location after a checkpoint request
is received. Potential checkpoint locations can
be inserted automatically or by a programmer.
In contrast to automatic insertion, a pro-
grammer will generally identify well-suited
checkpointing locations in a program, which
results in lower execution-time overhead.

Figure 1 illustrates Porch used as a pre-
compiler. The user precompiles a C program
with Porch, then uses native C compilers to
generate the object code for different systems.
The Porch compiler parses the input source,
generates an abstract-syntax-tree representa-
tion of the input, and performs type check-
ing. The Porch compiler therefore has access
to the complete source code and to its type
information.

Programmers might view Porch as a quali-
ty-assurance tool. The code analysis per-
formed by Porch at compile time reveals code
fragments that may lead to inconsistent check-
points. Furthermore, the checkpointing code
generated by Porch inspects the entire live
state of a program, when it saves a checkpoint
at runtime. The Porch compiler punishes neg-
ligent programming style (such as dangling
pointers) by refusing to save a checkpoint and
delivering an error message instead. Potential
checkpoint locations in a program are thus
true checkpoints for a thorough programming
style in unsafe languages such as C.

Automatic code generation for saving and
recovering portable checkpoints consists of
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Figure 1. Source-to-source compilation with Porch. The Porch compiler pre-
compiles a C program (src.c) to generate code for saving and recovering
from portable checkpoints. Native C compilers (cc) compile the resulting
program (src.p.c) to generate object codes for different target architectures.
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two conceptually separate, although tightly
integrated, stages. During the first stage, Porch
generates code for saving and recovering a
computation’s internal state. During the sec-
ond stage, Porch generates code for saving and
recovering the computation’s environment.
The second stage preserves consistency
between the internal state and the external
state of a computation.

Stage I: Code generation for internal state
The internal state of a computation con-

sists of the live variables that Porch identifies.
Checkpointing of this state resembles garbage
collection. The computation stops, and the
checkpointing code generated by Porch copies
its internal state into a checkpoint. The Porch
compiler views the checkpoint as a stack.
Porch generates stack operations to push the
values of the internal state onto the stack dur-
ing checkpointing and to pop them from the
stack during recovery. Both push and pop
operations access variables by their name, with
the exception of dynamically allocated vari-
ables, discussed later.

The checkpointing code generated by Porch
converts data representations on the fly while
pushing and popping variables onto the check-
point. The Porch compiler automatically gen-
erates code for basic data type conversion, such
as little endian to big endian or vice versa. The
Porch compiler effects conversion of structures
and unions (complex data types) by means of
a so-called structure metric. Rather than gen-
erating conversion functions for each structure
or union defined in the input program, Porch
generates structure metrics for all declarations
of complex data types. Generic runtime func-
tions are invoked during checkpointing and
recovery to traverse the structure metric and
to convert data representations.

Figure 2 illustrates a simplified example of a
structure metric in C. We assume that
struct X has different layouts on the tar-
get architecture and in the checkpoint. The
difference in the example stems from the align-
ments of the double type, assumed to be a
4-byte boundary on the target architecture in
Figure 2b and an 8-byte boundary 
in the checkpoint in Figure 2c. Thus, two
padding bytes separate the char array and the
double on the target architecture, whereas six
bytes pad the structure in the checkpoint.

The structure metric describes size and
alignments of struct X and contains a
pointer fm to an array of field metrics describ-
ing each individual field. The structure met-
ric contains two pairs of size and alignment
values: one pair for the structure on the tar-
get architecture and one for the structure in
the checkpoint layout. Similarly, each field-
metric component contains two pairs of off-
set and size values: one for the target
architecture and one for the checkpoint lay-
out. The offset denotes the field offset from
the structure’s base. The dimension denotes
the total dimension of a potentially multidi-
mensional array. The type field may also hold
a pointer to another structure metric, allow-
ing for arbitrary nesting of complex data types.

Saving the state of a computation on a stack
and introducing structure metrics to effect
data representation conversion is not sufficient
to implement checkpointing and recovery for
most programming languages. Certain C lan-
guage features require other techniques, three
of which I discuss briefly: pointers, the stack
environment, and dynamically allocated vari-
ables on the heap.
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struct X {
    char x[2];
    double d;
} a;

structmetric_t X_metric = { 2,    fm,    12,    4,   16,   8 };

fieldmetric_t fm[2] = {
    { 0,    1,    0,    1,    2,    char },
    { 4,    8,    8,    8,    1,    double }
};

8
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Figure 2. The compiler-generated structure metric (a) speci-
fies the layout of complex data types for both the target
architecture (b) and the checkpoint format (c) at runtime.
During checkpointing and recovery, the automatically gen-
erated code converts data representations and structure
layouts by traversing their associated structure metric.
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Checkpointing pointers
The checkpointing code generated by Porch

renders pointers portable by translating them
into machine-independent offsets within the
portable checkpoint. Since a pointer’s target
address is generally unknown at compile time,
Porch generates code that enables its runtime
system to perform the pointer translation dur-
ing checkpointing and recovery.

Figure 3 illustrates the problem encountered
when translating pointers into offsets within
the checkpoint. The checkpointing code will
push either a pointer or its target first onto the
checkpoint stack, because pushing variables is
a totally ordered sequential process. Figure 3a
shows two pointers p and q with the same
target in an address space. We assume that
the address space is traversed top down, so that
the order of pushing variables onto the check-
point is p before target before q.

When the checkpointing code generated by
Porch pushes pointer p, its target is not on the
checkpoint stack yet and the desired offset ∆p
cannot be computed. When pushing target ,
the checkpointing code could compute ∆p but
would need further checking to discover if a
variable is in fact a pointer target. Finally, when
pushing q, the code could compute ∆q if it has
the target address in the checkpoint. This is
not the case, however, unless the checkpointing
code performs additional bookkeeping.

To facilitate the offset computation for
pointers, Porch’s runtime system maintains
bookkeeping information during runtime.
Figure 4 shows the bookkeeping data struc-
tures used by Porch’s runtime system. For each
locally or globally declared variable, the run-
time system maintains an object table entry,
and for each dynamically allocated object, an
entry in the used list. The runtime system
updates the entry associated with an object
during checkpointing and recovery. The entry
contains pointers to an object’s address in the
address space and its copy in the checkpoint.
The runtime system integrates the object table
and the used list with a red-black tree9 (an
extended-binary-tree data structure) to facil-
itate fast inserts, deletes, and searches.

With bookkeeping established, Porch’s run-
time system can resolve pointers by a second
traversal through the checkpoint after it has
been filled with the computation’s live state.
During the first traversal, the runtime system
pushes the live state onto the checkpoint
stack. Pointers are merely copied into the
checkpoint. During the second traversal, each
pointer is visited again. The runtime system
searches the pointer’s target object in the red-
black tree and retrieves the target’s address in
the checkpoint from the object table entry.
The address is used to compute the machine-
independent offset within the checkpoint.
The runtime system then replaces the point-
er copy in the checkpoint with the offset.

The structure metric plays a central role
during the offset computation. Since the lay-
out of complex data types may differ on the
target architecture and in the checkpoint,
Porch’s runtime system must compute the
pointer offsets to structure fields accordingly.
For example, a pointer to double d in Fig-
ure 2 has a 4-byte offset from the base of
struct X . It has an 8-byte offset in the
checkpoint. For the offset computation,
Porch’s runtime system retrieves the check-
point format’s offset from the structure met-
ric. Similarly, during recovery, the runtime
system retrieves the offset on the target
machine from the structure metric.

Nonportable pointers—for example, to
hardware-specific addresses—cannot be
checkpointed in this scheme. Such pointers
are not part of the portable portion of a pro-
gram, however. Generally, Porch generates
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Figure 3. The checkpointing code generated by Porch trans-
forms pointers from the address space (a) into machine-
independent offsets in the checkpoint (b). The offset
computation requires runtime bookkeeping, because the
checkpointing code may not have the address of a pointer
target in the checkpoint when pushing the pointer itself.
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code for programs that com-
pile and run on the chosen
target architectures without
modifying the source code.
This approach does not pre-
vent system-specific coding
such as conditionally com-
piled or hardware-specific
code fragments, but it
requires structuring a pro-
gram appropriately. Program-
mers can hide system-specific
details from Porch by struc-
turing the program into mul-
tiple translation units and
functions. The Porch com-
piler employs interprocedur-
al analysis to instrument only
those functions of a program
on the call path to a potential
checkpoint location. Those
functions not on the path
may safely be system-specific. 

A reasonable programming
style would group all system-
specific functions and data
into a translation unit sepa-
rate from the portable code.
Programmers would precom-
pile only the portable code
portion with Porch. The non-
portable portion could be dif-
ferent for different systems,
because it would not affect the state of a com-
putation during checkpointing.

A more detailed description of pointer han-
dling, including optimizations, can be found
elsewhere.4 Opportunities for future research
include minimizing the space overhead result-
ing from the red-black tree implementation.
Other garbage collection techniques could be
used to substitute the bookkeeping data struc-
tures shown in Figure 4.

Checkpointing the stack environment
The runtime-stack environment is deeply

embedded in a system, formed by hardware
support, operating system, and programming
language design. A key design decision was to
implement Porch as a source-to-source com-
piler. We did so to avoid coping with system-
specific state such as register allocation and
runtime-stack layout, or hidden state such as

the program counter.
The challenge in checkpointing the run-

time stack is gaining access to local variables
of active functions on the stack. By definition,
lexical scoping enforces entering the lexical
scope of a function to access its local variables
by their names. The lexical scope of a func-
tion can be entered by redirecting a compu-
tation’s control flow. The only portable
mechanism for visiting function frames on the
runtime stack is the standard function call-
and-return mechanism. 

The Porch compiler transforms a C pro-
gram such that during execution, functions
can be released from automatically generated
exit points and can be resumed via new entry
points.3,4 When entering a function frame, the
Porch-generated checkpointing code pushes
the local variables onto the checkpoint. With-
in the lexical scope of the function, all local
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Figure 4. Internal state after checkpoint assembly. The Porch runtime system pushes the
original address space onto the checkpoint. The bookkeeping data structure (a) integrates a
red-black tree, the used list, and the object table. The dashed arrows point to the object’s
address in the checkpoint (b), and the solid arrows point to the object’s address in the
address space (c).
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variables can be accessed by their names,
which is independent of system-specific reg-
ister allocation. The Porch compiler generates
entry and exit points as well as the code for
control-flow redirection with the standard
function call-and-return mechanism, rather
than modifying system-specific hidden state
including the stack or frame pointer.

Figure 4 shows that the state of the runtime
stack resides in the checkpoint on top of the
global variables of the data/BSS segments of a
typical Unix address space. This illustration
assumes that the checkpoint stack grows
upward. Note that the layout of the check-
point portion containing global variables
remains invariant across different checkpoints.
Consequently, Porch’s runtime system allo-
cates the red-black tree portion for global vari-
ables only once when it saves the first
checkpoint or during recovery. The values of
global variables may change between check-
points, however, and must be copied during
checkpointing. In contrast, the active state on
the runtime stack may change from check-
point to checkpoint.

Checkpointing the heap
Checkpointing dynamically allocated

variables on the heap requires type and size
information to effect data representation con-
version. In contrast to local and global vari-
ables, the size of heap objects is generally
known only at runtime. Thus, for each heap
object, type and size information is main-
tained at runtime. The Porch compiler gen-
erates code to update this runtime
information upon object allocation.

To facilitate checkpointing, Porch’s runtime
system traverses the entire heap. The runtime
system maintains a used list for heap objects

that contains one entry for each heap object.
The entry contains type and size information
as well as the object’s address on the heap. The
used list serves as an object table when resolv-
ing pointers and is integrated with the red-
black tree. Checkpointing a computation
includes garbage collection on the heap. Fig-
ure 4 shows the used list integrated into the
bookkeeping part of the computation’s inter-
nal state.

A disadvantage of our current implemen-
tation of dynamic memory management in
Porch is that it cannot be easily replaced with
application-specific memory management. In
principle, replacement is possible, however,
because the used list data structure is orthog-
onal to the free list used in most memory
management implementations.

Stage II: Code generation for interface state
The second stage in generating code for

portable checkpointing involves the interface
between the internal and external state, such
as files.

The Porch compiler identifies the internal
state of a computation. During checkpoint-
ing and recovery, the internal state is accessi-
ble by Porch’s runtime system. In contrast, the
environment of a computation contains exter-
nal state that may be inaccessible by both the
Porch compiler and its runtime system. Exam-
ples for external state are file contents, mouse
position, and display pixels. External state may
be partly visible to the computation, howev-
er. The cognizant state is the part accessible
during checkpointing and recovery, and is the
intersection of the internal state and external
state. If the cognizant state does not cover the
entire external state, inconsistencies between
the internal state and external state may occur
due to a failure.

For example, the coordinates describing the
mouse position may be part of a computation’s
cognizant state. Recovering the mouse position
from a checkpoint may be considered an incon-
sistency by some applications, because the actu-
al position may have been different when a
failure occurred. For other applications, it may
be acceptable to recover with the mouse posi-
tion that the operating system initializes. Alter-
natively, it may be sufficient to initialize the
mouse coordinates to the center of the screen.
Defining the recovery position as part of the
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internal state provides sufficient information
to restore a desired consistent state. Another
possibility would be to update the mouse coor-
dinates atomically as part of the cognizant state,
adding more runtime overhead in favor of a
higher degree of consistency.

A computation’s view of its environment
depends on the specification of the cognizant
state. If the cognizant state is consistent with
the internal and the external state, the com-
putation’s view of the environment is consis-
tent. To reconstruct a consistent view after an
inconsistency occurs, more than just the cog-
nizant state may be needed. The notion of
interface state captures the information nec-
essary to reconstruct a consistent view of the
computation’s environment. The amount of
interface information needed depends on the
definition of consistency. Generally, the high-
er the degree of consistency, the more inter-
face information is needed.

For example, consider the external state
saved in persistent files. Usually, internal state
and file contents should both be consistent.
In most C programs, the file pointer consti-
tutes the only cognizant state of the file, with
no information kept about file operations.
Figure 5 shows how an inconsistency can
occur. As the computation proceeds in time,
a checkpoint of the internal state is saved, and
a read and a write operation are performed,
then a crash occurs. After recovering the com-
putation from the last checkpoint, file point-
er X is restored, but the value read from this
file location is not the expected value 42,
assuming that the file is persistent. The com-
putation thus sees an inconsistency between
the internal state and the external state. 

As part of our research, we have experi-
mented with the inconsistency problem in
the context of the file system. The ftIO sys-
tem is a prototype that resolves inconsisten-
cies with the external state stored in a file.10

The ftIO system shows how interface state
can be defined to support consistent check-
pointing of computations that access files.
The interface state maintained by the ftIO
system includes the file pointer, a newly
defined protocol state for the file, and file
attributes including opening mode and
buffering policy. Note that only the file point-
er constitutes the cognizant state in a typical
C program.

The ftIO system solves part of the broader
problem of providing portable and fault-tol-
erant file I/O. It provides transactional file
operations for fault tolerance. The Porch com-
piler generates code for checkpointing the
interface state in a portable checkpoint by pre-
compiling the ftIO system itself with Porch.
This approach lets us implement ftIO’s run-
time system as a shallow layer of wrapper rou-
tines for all file operations defined in the ANSI
C standard. For details, see “The ftIO system”
box on the next page.

The Porch compiler technology explores
source-to-source compilation to simpli-

fy the task of designing portable, fault-toler-
ant software systems by means of automatic
code generation. Thus far, we understand how
to generate code for portable checkpoints to
recover a computation on a binary-incom-
patible machine.

Source-to-source compilation has surpris-
ingly few limitations, even for non-type-safe
programming languages such as C. If a C pro-
gram is written cleanly, Porch can generate
checkpointing and recovery code. Otherwise,
Porch either does not generate code in case of
ambiguities, or emits an error message at run-
time rather than checkpointing ambiguous
state.

Among the limitations for C programs is
the required type-conforming use of dynam-
ically allocated objects. Pointers may not be
assigned to nonpointer types across potential
checkpoint locations. Assignments via point-
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Figure 5. A failure causes an inconsistency between a computation’s inter-
nal state and the external state of a file. The computation progresses on the
time line. The vertical arrows denote I/O. Before the crash, value 42 is read
from file position X into variable V, and value 43 is written back into location
X. Since the file is persistent, the value read from position X after recovery
is 43 rather than the expected value 42.
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ers to union components rather than point-
ers to a union itself are not analyzable by
Porch. The Porch compiler does not support
conversion of bit fields because they are inher-
ently nonportable. Furthermore, program-

mers may need to restructure expressions with
potential side effects to enable safe compiler
transformations. The Porch compiler issues a
warning in cases where it cannot determine if
a transformation is safe. None of these limi-
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The ftIO system is a private-copy/copy-on-write
design that copies the entire file on the first write
operation and performs subsequent file operations
on the replica.1 During checkpointing, the ftIO system
commits modifications by simply replacing the origi-
nal file with its replica. The ftIO algorithm is based
on a finite automaton built on the set of interface
states for each file accessed by the application. Inter-
face-state transitions occur when certain file opera-
tions are executed.

ftIO interface state
Each file is associated with an interface state

stored in three orthogonal flags. File types can be

• Clean or dirty: A file is clean if it has not been
modified since the last checkpoint. Otherwise,
it is dirty. In our private-copy implementation,
no replicas exist for clean files.

• Open or closed: A file can be either open or
closed. Files that do not exist are closed by def-
inition.

• Live or dead: A file can be scheduled for
removal, in which case it is dead. Otherwise, it
is alive.

Besides the file-specific states, a global Boolean
ftIO state is maintained. FIN (for finished) is a bit used
to record the success of the ftIO commit operation.

We distinguish ANSI C file operations from ftIO
file operations. The latter define the input alphabet
of the ftIO finite automaton. Most of them have equiv-
alent C file operations. For example, the ftIO operation
create creates and opens a file. This ftIO file

operation corresponds to the C file operation
fopen with opening mode “w,” or “a” if the file
does not exist already.

All ftIO file operations are implemented as wrap-
pers around the standard ANSI C file operations.
These wrapper functions maintain for each file a data
structure that contains its ftIO interface state. Tran-
sitions between interface states are determined by
the ftIO finite automaton.1 The Porch compiler
replaces ANSI C file operations with their equivalent
ftIO file operations.

Checkpointing and recovery 
We separate checkpointing and recovery into two

phases. Figure A shows the sequence of the check-
pointing phases between phases of normal execu-
tion. First, the Porch runtime system saves the internal
state (Porch checkpointing). Second, the ftIO system
commits files during the ftIO commit phase. The two
phases are accompanied by a third action, the main-
tenance of the FIN bit.

Figure B shows the recovery cases before return-
ing to normal execution. First, the Porch-generated
code recovers the internal state (Porch recovery in
Figures B1 and B2). Second, the ftIO system resolves

potential inconsistencies depend-
ing on the state of the FIN bit (ftIO
recovery in Figures B1 and B2).

Upon checkpointing, the Porch-
generated code saves the internal
state of a process in a temporary
checkpoint file. The internal state
includes the interface state. The
runtime system replaces the previ-

ous checkpoint file by means of an atomic rename
operation. Then, the ftIO system performs commit
operations for all files. For each dirty file, the original
file is replaced with its replica, and the file state tran-
sitions to clean. If a file is dead or closed, however,
both the actual file and the replica (if one exists) are
removed irrespective of the clean/dirty state.

The FIN bit ensures the atomicity of the ftIO com-
mit operation. It occupies a bit in the checkpoint. The

The ftIO system

FIN = false TimeFIN = trueFIN = true

Normal
execution

Normal
execution

ftIO
commit

Porch
checkpointing

Figure A. Checkpointing phases.

.



tations are an issue for cleaner programming
languages such as Java, for example.

Our work demonstrates how compiler sup-
port enables checkpointing of a computation’s
environment. We believe that implementing

other functionalities, including a fault-tolerant
socket interface for interprocessor communi-
cation, can be achieved similarly. Conceivably,
an open compiler infrastructure can be created
that lets programmers specify the interface
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runtime system initializes a new temporary check-
point file with the FIN bit set to false. At the end of the
ftIO commit phase, the runtime system sets the FIN
bit to true. This happens in the actual checkpoint file,
newly created during the Porch checkpointing phase.
In Figure A, the FIN bit represents a global state,
defined as the FIN bit value in the last checkpoint file.
Therefore, the FIN bit becomes false in Figure A only
after the Porch checkpointing phase, when the new
checkpoint file with the FIN bit set to false is com-
mitted by replacing the previous checkpoint.

Failures may occur during normal execution, Porch
checkpointing, or ftIO commit. There are only two dis-
tinguished failure cases, however, which simplifies
reasoning about the correctness of the ftIO algorithm.1

Recovery is also split into two phases:

1. During Porch recovery, the runtime system
restores the internal state of a computation and
reads the FIN bit from the checkpoint file, which
determines the mode for ftIO recovery.

2. The ftIO runtime system recovers files during
the ftIO recovery phase.

The FIN bit serves to distinguish the two recovery
modes. Figure B shows the recovery phases for both
possible values of the FIN bit. If the FIN bit is true,
the checkpointing process succeeded, and the ftIO
recovery phase is just a no-op . If a failure occurs
during the ftIO commit phase, the FIN bit in the check-
point remains false. In this case, files are committed
during the ftIO recovery phase by executing the com-
mit phase again.

No special treatment is required to handle a fail-
ure that occurs during recovery. Since the ftIO recov-
ery phase consists of executing either the idempotent
ftIO commit operations or a no-op , the ftIO run-
time system can safely execute the recovery phase
again to recover from a failure.

The ftIO system illustrates the handling of an exter-
nal state within the framework of the Porch compil-
er technology. We believe that the entire environment
of a computation can be handled in this fashion. Once
the interface state is identified, the routines effecting
interface-state transitions are written as ordinary C
programs. Compiling these routines with Porch guar-

antees that the interface state is checkpointed in a
portable manner.

Providing support for transactional file operations
has previously been considered. More recent work
includes the libfcp library.2 This work imple-
ments the undo-log concept, using a two-phase com-
mit protocol to commit a transaction. Besides
requiring explicit annotation of a program to mark the
start and end of a transaction, libfcp does not
support portability. In combination with libckp
and libft , libfcp can be used to checkpoint
the state of persistent storage in the context of check-
pointed applications in homogeneous environments.2
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state. Moreover, such an infrastructure would
let programmers use the compiler to generate
code for checkpointing and recovering the state
of a particular device consistently. MICRO
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