
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 25(3), 291–304 (MARCH 1995)

Coupling Hundreds of Workstations for
Parallel Molecular Sequence Analysis

volker strumpen*
Institut für Informatik, Universität Zürich, CH-8057 Zu¨rich, Switzerland

SUMMARY

We present a highly scalable approach to distributed parallel computing on workstations in the
Internet which provides significant speed-up to molecular biology sequence analysis. Recent
developments show that smaller numbers of workstations connected via a local area network can
be used efficiently for parallel computing. This work emphasizes scalability with respect to the
number of workstations employed. We show that a massively parallel approach using several
hundred workstations, dispersed over all continents, can successfully be applied for solving
problems with low requirements on communication bandwidth. We calculated the optimal local
alignment scores between a single genetic sequence and all sequences of a genetic sequence
database using thessearch code that is well known among molecular biologists. In a heterogeneous
network with more than 800 workstations this job terminated after several minutes, in contrast to
several days it would have taken on a single machine.

key words: parallel computing; distributed systems; molecular biology sequence analysis;
UNIX; workstations

INTRODUCTION

Recent developments in distributed parallel computing are aiming at the use of
inexpensive computing resources for parallel computations as are available in hetero-
geneous networks of workstations. Systems such asLinda1 or PVM2 are widely used,
especially for problems of scientific computing. Typically, up to ten machines, and
in more computing and less communication intensive applications some tens of
machines, are employed within local area networks. Experiments in heterogeneous
environments, spanning several LANs have also been reported.3 We developed a
prototypical software platform for distributed massively parallel computing to support
the use of a virtually unlimited number of machines connected via the Internet. Such
a system is suited for parallel applications, where the computational expense within
a LAN clearly outweighs the interprocessor communication across LAN borders,
because the latency of Internet connections is considerable.

Compared to conventional supercomputers, powerful workstations offer less floating
point performance but almost comparable integer performance. Recent performance

* Current address: Department Informatik, Institut fu¨r Wissenschaftliches Rechnen, ETH Zentrum, CH-8092 Zu¨rich,
Switzerland, email: strumpenKinf.ethz.ch.

CCC 0038–0644/95/030291–14 Received 19 July 1993
 1995 by John Wiley & Sons, Ltd. Revised 20 October 1994



292 v. strumpen

evaluations of molecular biology sequence analysis which do not require floating
point but integer computations showed that theblastpm code for sequence analysis
runs just 20 per cent slower on a Sun4 (SPARCstation 330) compared to an
unoptimized single processor run on a Cray Y-MP 8/864.4 The Y-MP processor
delivered only approximately 40 MIPS, which coincides with the peak performance
of a Sun SPARCstation2.

In this paper, we show the possibility and describe how we employed a distributed
workstation network of more than 800 machines, geographically scattered over all
continents, to accelerate a computational problem that fits the capabilities of this
system’s architecture. The computing challenge of molecular biology sequence analy-
sis, one of the key techniques of the Human Genome projects,4,5 is accelerated from
run-times of a couple of days on a single workstation or Cray processor to some
minutes with our platform.

Today’s DNA and protein databases are growing extremely fast and seem to
exceed any computational power for similarity searches already in near future. A
distributed system may be a solution to this problem, where huge distributed databases
are geographically dispersed and accessible via electronic networks. Since the rapidly
growing size of these databases prohibits frequent transfers via networks, the comput-
ing power has to be provided at the geographical site of the database. The structure
of our system is therefore a network of globally distributed local area networks,
each with access to a local database.

MOLECULAR SEQUENCE ANALYSIS

The biological challenge rises from the fact that DNA and protein molecules are
the primary genetic materials that encode information necessary to understand life.
The DNA consists of sequences of bases, and protein molecules are built from
amino acids. The amino acids are encoded in sequences of three bases in the DNA.
The function of a protein is determined by the structure in which the amino acids
fold into a three-dimensional macromolecule. In order to understand this complex
folding structure, the folding process would have to be simulated. However, Sander
et al.5 estimate that such simulations need 12 hours of CPU time on a computer
with one million teraflops. Therefore, molecular biologists use less complex sequence
analysis methods to understand the functionality of a new genetic sequence of a
DNA or protein polymer by finding a DNA or protein with similar sequence structure
and known functionality. At present, this approach is the only well recognized way
to understand the genetic code.

Modern laboratory techniques provide fast and cheap means of analysing the
sequence of bases in DNA and the sequence of amino acids in protein molecules.
There exist databases of extracted DNA and amino acid sequences containing about
100,000 sequences that can be searched for similarity. In our experiments we used
the NCBI-GenBank (version 75.0)6 that contains a total of 106,684 genetic sequences
comprising 126,212,259 bases. Owing to the growing size of the databases even the
sequence analysis algorithms pose serious computational problems. In the case of
the search for a human chromosome, containing 5000 sequences, against a database
of 3,000,000 sequences, Bork7 estimates that a powerful workstation would take
5000 days even with thetfasta approximation algorithm.

The similarity search can be conducted using various techniques that are still



293parallel molecular sequence analysis

subject to active research. The computational aspects can be captured by regarding
the sequences of bases of DNA or amino acids of a protein as strings over an
alphabet. Wagner and Fischer8 developed an algorithm for string correction in 1973
that has been adapted to the needs of biologists by Smith and Waterman9 as well
as Needleman and Wunsch10. These algorithms compute similarity scores for measur-
ing the similarity between two sequences with respect to an optimal local alignment
metric.11,12 Owing to the computational complexity of this approach, faster but
heuristic algorithms, implemented for example in theblast, fasta, or tfasta programs,
can be used. The algorithm we used for obtaining the presented results on parallel
alignment score computations is the rigorous optimal local alignment algorithm of
Smith and Waterman. This algorithm is implemented in thessearch program which
is included in the popularfasta program package.12 We determined those 50 genetic
sequences of the NCBI-GenBank which match a given query sequence best by
computing and sorting the scores between the query sequence and all sequences of
the gene bank. We chose two query sequences consisting of 105 and 773 bases.

PARALLEL INTERNET COMPUTING

Based on our experience with The Parform,13 we extended our work on parallel
computing from local area networks to world-wide area networks. Features such as
configuring a large process topology across LAN borders and fault tolerance are not
available with other systems. Therefore, we designed a new networking platform
that incorporates these features. A system for Internet-wide parallel computations has
to fulfil the following requirements: (1) portability, which is indispensable in order
to collect an appropriate number of machines, (2) non-intrusion with respect to other
users in the network by using only idling CPU shares and not congesting the
network, and (3) efficiency, which can only be the secondary goal of our efforts
with respect to the interactive users of the workstations employed.

The existing infrastructure of the Internet and the increasing availability of powerful
workstations running a UNIX operating system are the basis for this work. Thede
facto standard for open system interconnection, the TCP/IP Internet Protocol Suite
and the Berkeley Socket Interface14,15 provide the tools to implement a parallel
computing platform spanning LANs in the Internet. Another property of the Internet
is the commonly installed client–server structure of individual LANs. Although there
exist many administrative differences, features such as network file systems or access
rights are in principle uniformly available. In contrast to the variety of computer
architectures of earlier days, modern workstations also simplify the implementation
of low level communication, because they use identical data representations.

The guiding principle for the design of our system architecture and its implemen-
tation has been simplicity. The system therefore provides only fundamental features:
(1) remote process start-up and termination, (2) asynchronous interprocess communi-
cation, (3) extensive logging and error handling, (4) fault tolerance and (5) load
balancing. To achieve portability, all mechanisms are implemented in C and on top
of the Berkeley Socket Interface.16 The first two points are based on UNIX network
programming.14,15 Error handling at the system and application levels and logging
proved to be invaluable aids during the development of the software. Fault tolerance
and load balancing have been adapted to the needs of the application and are
described below. Fault tolerance is indispensable when combining many machines



294 v. strumpen

that are scattered all over the world. First, the higher the number of machines used
the higher the chance that one or more will crash or simply get switched off during
a computation. Secondly, if these machines are installed in different geographical
time zones, machines appear to be switched on and off at any time for the central
user. Load balancing is an essential feature to achieve efficiency because of the
heterogeneous performance profile of the participating machines and the permanently
changing load situation caused by the owners of the workstations.

Technical problems such as distributing the actual object code versions among the
different heterogeneous LANs have been managed by a collection ofshell scripts.
To avoid any disturbance of local users, our processes use the C library call ‘nice’
to keep the impact on the owners’ processes as low as possible. To prevent processes
from wasting resources after the program has been aborted at one or more hosts,
which is likely to happen, especially while developing the application program, we
set all sockets to non-blocking so that system calls such as ‘accept’ and ‘connect’
cannot block. All non-blocking system calls, and ‘read’ and ‘write’ calls are guarded
by a ‘select’ call with predefined time-outs and retry counts. This ensures that in
case of failures at process start-up and during the parallel computation no processes
remain in a blocking state, probably exhausting process tables. Furthermore, to
prevent otherwise lost processes from wasting CPU power, we implemented an alarm
mechanism to terminate those processes after a predefined period of time. This
technique proved to be valuable in cases where mysterious effects such as overstressed
network file systems led to uncontrollable situations. Security precautions of various
local system administrations forced us to implement two different start-up mechanisms
for remote processes via the UNIX daemonsrexecd and rshd, respectively. Resource
constraints, such as the limited number of file descriptors per process, contributed
to the decision to implement the process topology in a tree structure as explained
below. Despite these resource limits, the number of leaf nodes of the tree can be
increased arbitrarily by adding non-leaf nodes at the expense of higher communication
costs because of the increased depth of the tree.

Besides the technical problems, the organization and logistics of such an approach
are quite complex, especially obtaining accounts and co-ordinating some 30 LANs
with several hundred machines and users. Many organizations are not fond of giving
the permission to foreign users to use their CPU power and providing disk space.
Therefore, we are especially grateful to all people who generously supported us and
did not delimit our disk space to a smaller capacity than necessary for the storage
of gene data at the site where they have to be accessed during the match.

PARALLELIZATION AND IMPLEMENTATION

The goal for our application is to accelerate the comparison of a molecular sequence
of unknown functionality against all sequences stored in a gene database. The query
sequence is sent from a central interactive working site to all sites holding parts of
the distributed gene database. After the local area networks have finished the sequence
analysis, the 50 best results are collected, sorted and delivered to the central
administration process of the user.



295parallel molecular sequence analysis

Process topology

The process structure of our system is based on a tree topology, as shown in
Figure 1. The root node accommodates thecentral administrative process. The leaf
nodes perform the sequence analysis. We distinguish aglobal layer and a local
layer. The global layer comprises the root node and all descendants down to, but
excluding, the father nodes of the leaves. The local layer consists of the leaf nodes
and their father nodes. Thus, all participating LANs are part of the local layer,
whereas the global layer is responsible for connecting the LANs with the central
administrative process.

The father nodes of the leaves accommodate anadministrative process. These are
either directly connected to the central administrative process, or viarouter processes
that are responsible for bidirectional message routeing. The router processes, as a
part of the global layer, on the one hand are used to construct an arbitrarily sized
and shaped tree topology by means of configuration files. On the other hand, they
are necessary to connect subnets that are not directly accessible from the Internet
for security reasons.

The time needed to construct this topology depends on the depth of the tree, and
the time-out values and retry counts after which those machines that are shut down
or too heavily loaded are given up. With our networking software it took between
one and two minutes to start up the program on about 800 out of 1000 machines.

Parallelization strategy

The gene database is distributed among all LANs. Thus, parallelization on the
global layer is achieved by running the sequence analysis in each LAN on a different

Figure 1. Process topology



296 v. strumpen

part of the database. On the local layer, that is within each LAN, the search is
parallelized by assigning parts of the local database to the leaf nodes which run a
conventional sequential search algorithm,ssearch in this case.

Parallelization within a LAN is organized by means of aworkpool that is provided
by the administrative process. The workpool schedules the sequence analysis by
assigning genes of the local database to theexecutive processesthat are accommo-
dated by the leaf nodes. In practice, the father node of the leaves is mapped on a
server machine of the LAN and the leaf nodes itself on the client machines, the
workstations. The workpool provides two essential features for large globally distrib-
uted heterogeneous environments:fault toleranceand dynamic load balancing.

Fault tolerance

Fault tolerance is provided by keeping a task in the workpool until it terminates
successfully. If its executing process aborts because of a malfunctioning processor
for example, the workpool reschedules this task to another available processor. The
administrative processes are placed on server machines. In general, these machines
provide access to the mass storage devices and the local gene database, and are thus
indispensable within a LAN. Therefore, we did not implement further fault tolerance
mechanisms for our experiments. Readers familiar with UNIX network programming
may study the mechanism we developed to detect remote process abortion or network
failures from the C code fragment inFigure 2. For details on network programming,
we refer to the book of Richard Stevens.15 The process executing this code is
connected to another process via the non-blocking socketsock. If select returns with
socketsock ready for reading, the secondelse part is executed. Ifrecv returns zero,
the receive buffer contains a null byte character. This indicates a broken connection.
Assuming stable network connections, we conclude that the remote process aborted,
for example because its host has been shut down.

Especially when invokingselect with a set of sockets, the effect occurs that a
socket is selected for reading although no message can be received with the following
recv. We therefore implemented the busy wait loop ofFigure 2. Only after executing
several busy wait iterations is the message readable in such cases. This technique
worked reliably, although we could not figure out why this effect occurs.

After program start-up, all processes wait for receiving messages in aselect
system call. This ensures that in particular the router processes and administrative
processes do not consume system resources if this is not necessary. If a router
process or an administrative process in the tree topology aborts or times out, such
a mechanism guarantees that all descending processes of this process will terminate,
and an appropriate error code can be sent to the central administrative process. In
case an executive process aborts, this mechanism is used to detect that a task has
to be restarted.

Dynamic load balancing

Dynamic load balancing is provided to ensure efficiency by scheduling parts of
the local gene database dynamically to the executive processes. The technique is
based on afirst come, first servedstrategy that, in a simple manner, takes the
different performance capabilities of the machines in the heterogeneous environment



297parallel molecular sequence analysis

Figure 2. Detecting remote process abortion

into account. Distinct subsets of sequences in the database are assigned to tasks.
The number of tasks is a multiple of the number of processors. The workpool
manages task identifiers. Operationally, the workpool is an array with each component
corresponding to a task. When a task is assigned to an executive process, the process
identifier is stored in the array element with the corresponding index. When an
executive process finishes its task, it reports its state to the workpool that in turn
assigns a new task to this process. If an executive process is detected to be aborted
the task that this process has been executing can be traced in the workpool array
and is restarted on the next available executive process. The granularity of the tasks
determines the efficiency of the computation. We obtained reasonably high efficiencies
within a LAN with the number of tasks being proportional to the number of
sequences in the local database, their lengths and the number of participating
workstations as determined at program start-up.



298 v. strumpen

EXPERIMENTAL RESULTS

For our experiments we implemented a simplified but optimized rigorous dynamic
programming algorithm11 of our own and also hooked up thefasta and ssearch
codes12 to our system. Here, we present the results of our experiments with the
ssearch code to calculate the similarity scores of two genetic sequences against the
NCBI-GenBank.6 The ssearch program has been used with the default scoring matrix
and gap penalties. We performed a number of single-query measurements comparing
a bacteriophagesequence and ahuman germline (AIDS)sequence consisting of 105
and 773 bases, respectively, with the complete database.

Performance results

Table I reports elapsed run-times of two experiments, A and B, with our parallel
implementation in comparison to extrapolated sequential run-times on a Sun
SPARCstation1 and a Sun SPARCstation2. In this table, thesequence lengthdenotes
the number of bases of the DNA sequences that have been matched against all
sequences of the gene bank. All run-times are wall-clock times. To determine the
extrapolated sequential run-times, we compared our two genes with a representative
portion of the database consisting of 845 sequences with an average length equal to
the average sequence length of the entire gene bank. From the measured run-times
we extrapolated the sequential run-times using the fact that the complexity of the
sequencing algorithm is linear with the number of genes in the database and the
number of bases of the genetic sequences to be matched.

We want to emphasize that these measurements have been conducted under normal
daily loads. The computation used CPU power that would be idling otherwise.
Therefore, the price/performance ratio of such configurations can be regarded as
being close to zero.

Quantitatively, the two configurations that yielded the results presented inTable I
are characterized inTable II. The entries in the bottom two lines ofTable II have
been determined with a small loop consisting of an integer test load with an average
run-time of some 10 seconds on a SPARCstation2. Elapsed (wall clock) time and
CPU time of this test load were measured and scaled so that a dedicated SPARCst-
ation2 would deliver 40 MIPS. The MIPS values shown are the sums of these MIPS
values, measured on all machines used just before the sequencing. These values give
a rough idea of thetotal performancewe would get from a dedicated configuration.
They are considerably higher than those of today’s fastest supercomputers.

Table III shows the different machine models that have been incorporated in our

Table I. Performance results

Experiment Number of Sequence length Parallel run-time Sequential Sequential
workstations

(SPARC1) (SPARC2)

A 803 105 5·0 min 21·5 h 10·4 h
B 803 773 18·4 min 6·6 days 3·2 days



299parallel molecular sequence analysis

Table II. System configuration

Experiment A Experiment B

Machines used 803 803
Local area networks 31 31

Administrative processes 46 46
Router processes 7 7
Machine types 32 32

MIPS (SPARCstation2; 40 MIPS) 26,800 26,790
Average idle percentage 93·0 92·7

Table III. Employed machine models

Manufacturer Machine models

DEC DECstation, DECmicrovax
HP HP9000, HP Apollo 9000
IBM RS6000
NEC EWS-4800
SGI Crimson, Indigo, Iris 4D, Personal Iris
Sony NEWS
Sun Sun3, Sun4, SPARC10, SPARCserver

configuration. There have been various different types of most machine models and
even more different UNIX operating system versions.

In Tables Iand II we presented those two measurements of our experiments with
the maximum number of machines. We had hands on about 1000 machines but
typically about 20 per cent of them were shut down. Since a network of several
hundred machines permanently changes its configuration, it is impossible to get a
fixed number of machines with reproducible load situation for reference measure-
ments. Actually, during experiment B, two machines left the configuration for
unknown reasons, and the run terminated with 801 of the initial 803 machines. Most
of the LANs we used had processor idle percentages of at least 90. Such values are
very common as we also confirmed by logging CPU idle percentage data in our
LAN for a period of several months. This average use remains almost constant from
our experience, although the use of individual workstations varies permanently.
However, some LANs with high-speed workstations were heavily loaded with parallel
cluster applications.

Table IV gives additional information about our measurements. The minimum and

Table IV. Performance data

Experiment Sequence Minimum Maximum Average Speed-up vs. Speed-up vs.
length run-time run-time run-time SPARC1 SPARC2

A 105 32 s 302 s 1·8 min 258 125
B 773 172 s 1103 s 8·0 min 514 249



300 v. strumpen

maximum run-times denote the minimum and maximum of the elapsed run-times in
the individual LANs. The maximum value determines the total elapsed run-time
given in Table I. The range of these values is relatively wide, because the gene
database has been partitioned statically. This partitioning does not adapt to the
permanently changing load situation of the individual workstations and thus the
average computing power of entire LANs. The run-time distribution across LANs
and hence the total performance can easily be improved by proper organization of
the distributed database. However, in our experiments this was not possible since
on some of the LANs the disk space available was too small to store a portion of
the database with its size proportional to the computational power.

The speed-upvalues are calculated with respect to the elapsed parallel run-times
and the sequential run-times given inTable I. The average run-timedenotes the
mean run-time with respect to the run-times of all participating LANs. Using these
average values, we obtain speed-ups of 717 and 1188 corresponding to the 105 base
and 773 base query sequences and the sequential run-times on a SPARCstation1.
The value of 1188 can also be interpreted as the number of processors of a virtual
machine consisting of SPARCstation1 processing elements and delivering almost
optimal performance.

We presented the MIPS performance of our dedicated configuration inTable II.
To obtain an idea of the efficiency of our experiments, we estimate the MIPS
performance of our application by assuming the sequential run to perform 24 MIPS
on a SPARCstation2, which is about 60 per cent of its peak performance, and
scaling this value with the achieved speed-up given inTable IV. These values are
given asestimated MIPSin Table V. The average MIPSvalues are calculated with
respect to the average run-times given inTable IV and indicate the possible perform-
ance of our configuration with an optimally balanced distributed database.

Efficiency analysis

Efficiency, which is traditionally one of the primary goals of parallelization, in
our case has to obey the boundary condition to not disturb other users in the
network. Nevertheless, performance, and thus efficiency, remains our goal. It is well
known13 that interprocessor communication causes performance degradation because
of the low bandwidth of today’s networks such as the Ethernet. In our application,
only communication within the LANs deserves closer examination, because communi-
cation across the LANs comprises just the initial distribution of the query sequence
and the final collection of the best alignment scores. We investigate the behaviour
and efficiency of our implementation within the LAN of our institute by means
of Figure 3.

Figure 3 shows normalized speed-upsof the two sequence analyses with query

Table V. MIPS performance data

Experiment Sequence length Estimated MIPS Average MIPS

A 105 3000 8350
B 773 6000 13,650



301parallel molecular sequence analysis

Figure 3. Normalized speed-up in a heterogeneous environment (cf.Table VI)

sequences consisting of 105 bases and 773 bases with respect to a unit processing
element delivering a performance equivalent to a SPARCstation1, which is the slowest
machine of the configuration. All participating machines have been benchmarked with
the sequence analysis application that is the subject of our investigations. These
values differ from the MIPS values on each particular machine model depending on
the machine architecture. The normalized performances are given inTable VI. The

Table VI. Machine configuration and normalized peformance (cf. Figure 3)

Machine Number Normalized performance

Sun SPARCstation1 18 1·0
Sun SPARCstation1+ 7 1·25
Sun SPARCstation2 11 2·0
Sun SPARCserver490 2 1·7
Sun SPARCserver690 2 3·7
SGI Iris 4D/70 1 1·1
SGI Iris 4D/20 1 1·7
SGI Iris 4D/320 (2 proc.) 2 2·1
SGI Personal Iris 1 2·1
SGI Iris Crimson 1 5·4
IBM RS6000 1 5·0



302 v. strumpen

speed-up measurements up to 18 machines have been conducted on SPARCstation1
only. Then, other machines have been added in the order as listed inTable VI. We
used both processors of the Iris 4D/320, each with a normalized performance of 2·1.

The numbers above the filled circles inFigure 3 denote the number of machines
actually used. Both speed-up curves inFigure 3show a typical behaviour. Up to 18
processors, we obtain slightly sublinear speed-up as expected with respect to the
increasing communication rate. Then, the additional and more powerful machines
raise the overall performance. With higher numbers of machines the increase of
speed-up is reduced. The two curves are distinguished by the ratio of computation
and communication, which increases proportional to the number of bases of the
query sequence. Communication during the match of the 105 base query sequence
even leads to Ethernet congestion and decreasing speed-up with more than 36
machines. Matching the 773 base gene, this effect does not occur with the number
of machines used, because the ratio of computation and communication is still
high enough.

The communication within a LAN comprises the exchange of identifiers and
partitioning information between the workpool and all executive processes, and the
access to the local portion of the gene database. The latter one is the reason for the
high traffic and Ethernet congestion with larger numbers of processors. This
implementation can still be improved because each executive process reads the whole
local database before the sequence analysis is performed. The amount of data
transferred via the Ethernet is therefore the size of the local database multiplied by
the number of executive processes. If each executive process would only read that
part of the database that is used for matching, the amount of transferred data would
be reduced to the size of the database, independent of the number of particpating
processes. This would improve speed-up and efficiency especially in those LANs
with high numbers of workstations. The benefit for sequence analyses with shorter
query sequences will be more significant because the improvement of the ratio of
communication and computation will be relatively higher.

CONCLUSION AND FUTURE WORK

This work shows that a massively parallel approach using several hundred worksta-
tions, dispersed over all continents and connected via the Internet, can be successfully
employed for solving problems with low communication requirements across LAN
borders. Technically, we have confirmed the following points:

1. Managing a parallel computation on about 800 workstations located in 31 local
area networks and five continents.

2. Co-ordinating a complex distributed and heterogeneous architecture, including
different file system structures, and permission, authorization and security mech-
anisms.

3. Automatized distribution and installation of a portable program to about 1000
workstations of seven different manufacturers and numerous different UNIX
operating system versions.

4. The proof that massively parallel computing in the Internet is feasible for
appropriate applications.

5. Running a molecular sequence analysis program in several minutes, whereas
the sequential implementation would take several days.



303parallel molecular sequence analysis

Although many technical problems have been solved in principle this approach
needs further refinement, technically as well as organizationally. It would be very
interesting to extend our prototype and design a general purpose platform for parallel
computing in the Internet. Such a platform might serve as a basis for investigations
on the feasibility of other compute-intensive problems to be solved with large
numbers of machines dispersed in the Internet. We hope that our work encourages
the use of network programming as a valuable tool for parallel programming in
heterogeneous environments and inexpensive workstation networks in particular. Our
experience has already benefitted several people parallelizing specific applications on
workstation networks.

Combining our approach with modern database technology would be a next step
towards a parallel, distributed system for molecular sequence analysis. To establish
a system that uses the techniques developed in this paper, some technical as well
as organizational and logistical efforts have to be undertaken. A straightforward
design would include adistributed database, where replication could be employed
to guarantee reliability and load balancing at the same time. Since the genetic
sequences in such databases areread-only data, consistency mechanisms can easily
be implemented. Currently, researchers are investigating new concepts for managing
biological DNA and protein databases.17 The main problem of achieving efficient
load balancing with a particular distribution might be solved with abalance-by-
growth concept, where those new sequences that are input to the distributed database
would be stored at a site that computationally has been least used during previous
computations. Assuming a sufficiently high rate of new sequences per day, proper
balancing could even be guaranteed if new machines join the system. Furthermore,
co-ordinated shutdown hours of the individual LANs for administrative purposes
would increase the system reliability. Most of these aspects are technically straightfor-
ward to implement but a challenge to be done.

acknowledgements

Many people from all over the world have contributed to this work. Thanks to
everyone who supported our requests for accounts and for the confidence and
patience with the experiments. This work would not have been possible without
Clemens H. Cap who came up with the idea to parallelize the sequence analysis
application and co-operated in the organization of the experiment, as well as design
and implementation of the networking part of the software. Kurt Bauknecht and
Lutz Richter provided a stimulating working environment.

This work was supported by Siemens AG (ZFE), Germany and Schweizer Bundes-
amt für Konjunkturfragen, Grant No. 2254.1.

REFERENCES

1. S. Ahuja, N. Carriero and D. Gelernter, ‘Linda and friends’,IEEE Computer,19, (8), 26–34 (1986).
2. V. S. Sunderam, ‘PVM: a framework for parallel distributed computing’,Concurrency: Practice and

Experience,2, (4), 315–339 (1990).
3. H. Nakanishi, V. Rego and V. Sunderam, ‘Superconcurrent simulation of polymer chains on hetero-

geneous networks’,Supercomputing ’92, Minneapolis, 1992, pp. 561–569.
4. D. W. Smith, J. Jorgensen, J. P. Greenberg, J. Keller, J. Rogers, H. Garner and L. Ten Eyck,

‘Supercomputers, parallel processing, and genome projects’, in D. Smith (ed.),Biocomputing: Informatics
and Genome Projects, Academic Press, in press.

5. C. Sander, R. Schneider and P. Stouten, ‘The human genome and high performance computing in



304 v. strumpen

molecular biology’, in H. W. Meuer (ed.),Supercomputer ’92, Anwendungen, Architekturen, Trends,
Springer-Verlag, 1992, pp. 32–48.

6. NCBI-GenBank, National Center for Biotechnology Information, National Library of Medicine, 38A,
8N805, 8600 Rockville Pike, Bethesda, MD 20894, U.S.A.

7. P. Bork, ‘Entschlu¨sselung von Proteinfunktionen mit Hilfe des Computers: Erkennen und Interpretation
entfernter Sequenza¨hnlichkeiten’, in R. Hofesta¨dt, F. Krückeberg and T. Lengauer (eds),Informatik in
den Biowissenschaften, Springer-Verlag, 1992, pp. 67–78.

8. R. A. Wagner and M. J. Fischer, ‘The string to string correction problem’,Journal of the ACM,21,
(2), 168–173 (1974).

9. T. F. Smith and M. S. Waterman, ‘Identification of common molecular subsequences’,Journal of
Molecular Biology,147, (1), 195–197 (1981).

10. S. B. Needleman and C. D. Wunsch, ‘A general method applicable to the search for similarities in the
amino acid sequence of two proteins’,Journal of Molecular Biology,48, (3), 443–453 (1970).

11. R. J. Lipton, T. G. Marr and J. D. Welsh, ‘Computational approaches to discovering semantics in
molecular biology’,Proc. IEEE, 77, (7), 1056–1060 (1989).

12. W. R. Pearson, ‘Searching protein sequence libraries: comparison of the sensitivity and selectivity of
the Smith–Waterman and FASTA algorithms’,Genomics,11, (3), 635–650 (1991).

13. C. H. Cap and V. Strumpen, ‘Efficient parallel computing in distributed workstation environments’,
Parallel Computing,19, (11), 1221–1234 (1993).

14. D. E. Comer and D. L. Stevens,Internetworking With TCP/IP, Vol. II: Design, Implementation, and
Internals, Prentice-Hall, 1991.

15. W. R. Stevens,UNIX Network Programming, Prentice-Hall, 1990.
16. M. R. Horton,Portable C Software, Prentice-Hall, 1990.
17. B. Rieche and K. R. Dittrich, ‘A federated DBMS-based integrated environment for molecular biology’,

Proceedings of the 7th International Working Conference on Scientific and Statistical Database Manage-
ment, Charlottesville, VA, IEEE, 1994, pp. 118–127.


	SUMMARY
	INTRODUCTION
	MOLECULAR SEQUENCE ANALYSIS
	PARALLEL INTERNET COMPUTING
	PARALLELIZATION AND IMPLEMENTATION
	Process topology
	Parallelization strategy
	Fault tolerance
	Dynamic load balancing

	EXPERIMENTAL RESULTS
	Performance results
	Efficiency analysis

	CONCLUSION AND FUTURE WORK

