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Abstract. This paper introduces connectivity preserving constraints
into spatio-temporal multi-view reconstruction. We efficiently model con-
nectivity constraints by precomputing a geodesic shortest path tree on
the occupancy likelihood. Connectivity of the final occupancy labeling is
ensured with a set of linear constraints on the labeling function. In order
to generalize the connectivity constraints from objects with genus 0 to
an arbitrary genus, we detect loops by analyzing the visual hull of the
scene. A modification of the constraints ensures connectivity in the pres-
ence of loops. The proposed efficient implementation adds little runtime
and memory overhead to the reconstruction method. Several experiments
show significant improvement over state-of-the-art methods and validate
the practical use of this approach in scenes with fine structured details.
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Fig. 1: Embedding connectivity constraints into multi-view reconstruction clearly
helps to recover fine structures like the rope. The tree-shaped connectivity prior
[25] only works for objects without holes (genus 0), resulting in disconnected
parts when the rope touches the head. The proposed generalized connectivity
constraint works for objects with arbitrary genus. Dataset: ’jumping rope’ se-
quence from the INRIA 4D repository [16].
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1 Introduction

Multi-view 3D reconstruction is a central research topic in computer vision that
is driven in many different directions. Apart from a realistic physical modeling
of the inverted imaging process, it is also of common interest to model learned
and prior information (e.g. smoothness or shape priors), or imposing intuitive
constraints on the solution, such as symmetry, connectedness or surface genus. In
this work, we propose a method that is first: able to enforce connectedness of the
computed solution, and second: able to preserve holes of the reconstructed scene
within a multi-view reconstruction setup. We can guarantee that the solutions’
surface genus is not smaller than the one of the visual hull.

Our approach is motivated by the spatio-temporal multi-view 3D reconstruc-
tion of scenes containing small object structures that we want to preserve in the
reconstruction. Although fine object structures can also be preserved by incorpo-
rating exact silhouette information, such as in the work of Cremers and Kolev [6],
this method is not applicable if the precomputed silhouettes are not accurate.

1.1 Contributions

– We embed the concept of connectivity constraints for image segmentation
into a spatio-temporal multi-view reconstruction setup.

– Since the connectivity constraints proposed in [25] only work well for scenes
and objects of genus zero, we propose a generalization of the connectivity
constraints to an arbitrary genus.

– We suggest an efficient implementation of the generalized connectivity con-
straints with a small additional memory footprint and an almost unchanged
computation runtime per optimization iteration. The necessary preprocess-
ing only adds around one minute to the three minutes computation time per
frame for the presented experiments.

1.2 Related Work

Spatio-temporal multi-view reconstruction on dense occupancy grids has been
pioneered by Goldlücke et al. [12], [11] with a level set representation of the
space-time surface. The drawback of this approach is its dependency on a good
initialization due to the locally optimal optimization procedure. Aganj et al.
[1] compute a spatio-temporal Delaunay mesh that automatically provides tem-
poral correspondences of mesh vertices by using silhouettes. Starck and Hilton
[24] proposed a spatio-temporal reconstruction pipeline which first estimates
shapes from silhouettes and later refines the reconstruction with photometri-
cally matched features and information about the reconstruction result from the
previous time step. In [13], Guillemaut and Hilton propose a method that con-
currently estimates a multi-layer segmentation and corresponding depth values
of the scene based on confidence-weighted optical flow measures.

We use the spatio-temporal reconstruction method from Oswald and Cre-
mers [22] as the basis of our work. This method is a generalization of the 3D
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reconstruction by Kolev et al. [19] to the temporal domain. Both approaches
use a volumetric representation of the surface within an energy minimization
framework which makes it easy to impose additional constraints on the solution.

To the best of our knowledge the only previous work on connectivity in
3D reconstruction is the work of Bleyer et al. [3], in which the authors propose to
use connectivity information for joint stereo matching and object segmentation.
In contrast to our work, this method is rather a 2.5D than a 3D or even a 4D
reconstruction method. While the authors in [3] correctly define connectivity
as the existence of a connecting path, they instead propose to determine the
connectivity of a pair of points by testing along a straight line that connects
both points, thus only favoring convexity of objects.

In the field of image segmentation, topology preserving extensions have been
proposed in different algorithmic frameworks. For the graph cut [4] algorithm,
Zeng et al. [27] proposed a topology preserving refinement scheme. Chen et al.
[5] propose to alternatingly estimate a graph cut segmentation and alter the
respective unaries based on a level-set representation in order to fulfill prede-
fined topological constraints. In contrast to our approach, this method does not
compute minimal geodesic connections with respect to the input data and its
runtime is much higher due to the iterative optimization. For the level set method
a topology preserving extension was proposed by Han et al. [15]. Vicente et al.
[26] use connectivity priors for a Markov random field segmentation. The authors
propose an approximation scheme to enforce connectivity of the segmented ob-
ject with respect to user given seed points. The drawback of all methods on
connectivity mentioned so far is that they only converge to a local minimum
and therefore depend on the initialization. Moreover, apart from Bleyer et al. [3]
all approaches are made for a 2D domain.

Recently, three different globally optimal approaches were proposed. One is
the work of Nowozin and Lampert [21], in which the constrained image segmen-
tation problem is formulated as a linear programming relaxation. The drawback
of this method is that the complexity does not scale well with the image size
and therefore prevents its use for 3D or 4D reconstruction methods where the
problem size easily reaches thousands or even millions of variables.

A closely related work is that of Gulshan et al. [14]. The foreground segment
is restricted to the shape of a geodesic star with respect to a geodesic distance
measure that depends on the image gradient. By placing several input seeds,
this constraint allows several geodesic star shaped objects, their union is called
a geodesic forest. However, the authors only present results on 2D image data
and because the method is formulated in a graph-cut segmentation framework
the boundary length regularizer is affected by the discretization.

Another globally optimal segmentation method with connectivity constraints
is the work of Stühmer et al. [25]. The authors propose a geodesic tree-shaped
connectivity prior for image segmentation in an efficient convex optimization
framework that allows the segmentation of large scale problems as they arise
for example in 3D medical imaging data. In contrast to [14], this method is for-
mulated using a continuous segmentation framework and does not suffer from
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discretization artifacts with respect to the boundary length regularizer. It is per-
fectly suited to accurately segment objects with a fine detailed tree-like structure,
such as blood vessels in angiography, or the legs of insects in photographs. They
first compute a single-source geodesic shortest path tree based on the image
data. Then, the tree-connected segmentation is computed by imposing linear
constraints on the solution, based on the precomputed shortest path tree. As
such, these constraints only impose connectivity for objects without any holes
or loops (genus 0).

We follow this idea in the context of spatio-temporal multi-view reconstruc-
tion and generalize the connectivity constraint to objects with arbitrary genus.

2 3D Reconstruction with Connectivity Constraints

First, we give an introduction to the spatio-temporal 3D reconstruction approach
of [22] which allows 3D reconstructions of moving scenes by using video data from
several viewpoints. Then we show how the connectivity constraint of [25] can be
incorporated into the reconstruction. The combination of both methods allows
image based globally optimal 3D reconstruction while preserving connectivity
of the object. As shown later in the experiments, this constraint also helps to
reconstruct fine scale details of the scene.

2.1 Spatio-temporal Multi-view Reconstruction

This section briefly repeats the spatio-temporal 3D reconstruction approach in
[22], which forms the basis of the proposed approach. The temporally chang-
ing scene is represented by an hypersurface Σ ⊂ V×T that is embedded in
the spatio-temporal product space of the three-dimensional space V ⊂ R3 that
changes over time T ⊂ R≥0. At every time instant t, the scene is observed
by N static cameras with known projection matrices {πi}Ni=1 and approximate
silhouettes {Si(t)}Ni=1. We do not need exact silhouettes, which is a desirable
property in a 4D setup, because it is not easy to automatically generate exact
silhouettes for all cameras and all time steps. The silhouettes contain valuable
information about the number of holes in the scene, that is, the genus of the
scene. Bringing this information into space-time, we will later use the visual
hull VH(t) =

⋂N
i=1 π

−1
i (Si(t)) to analyze the scene structure and to impose

constraints on the connectedness of the reconstructed surface.

For mathematical convenience with respect to the final optimization proce-
dure, we represent the hypersurface Σ as the boundary between the interior and
the exterior part of the scene. Thus, hypersurface Σ is expressed by the binary
labeling function u : V×T 7→ {0, 1}, indicating either interior or exterior for
every point in space-time. This automatically ensures a closed manifold without
boundaries and easily deals with arbitrary topologies. Stated as an energy min-
imization, the 3D reconstruction problem is described as finding a surface with
minimal area that best fits the input data, represented by a photoconsistency
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measure ρ : V×T 7→ R≥0 and a data term f : V×T 7→ R:

E(u) =

∫
V×T

(
ρ|∇xu|+ gt|∇tu|

)
dxdt+ λ

∫
V×T

fu dxdt (1)

with λ > 0 steering the smoothness of reconstructed hypersurface. The data term
f : V×T 7→ R locally expresses an affinity to an interior (f < 0) or an exterior
(f > 0) labeling. Similar to [22], we restrict the solution space of the energy min-
imization in (1) to the visual hull. As a consequence, the approximate silhouettes
can be ’larger’, but not ’smaller’ in order to ensure that the corresponding vi-
sual hull fully contains the true scene. The function gt(x, t) = exp

(
−|∇f(x, t)|

)
weights the temporal smoothing based on f to account for fast motions.

The photoconsistency measure ρ(x) resembles truncated normalized cross-
correlation matching scores Ci between neighboring camera pairs and is defined
as

ρ(x) = exp
[
− µ
∑
i∈C

δ
(
dmax
i =depthi(x)

)
· Ci(x, dmax

i )︸ ︷︷ ︸
VOTEi(x)

]
. (2)

The delta function δ in combination with dmax
i = arg maxd Ci(x, d) performs a

ray-based denoising of these measures and represents the voting scheme proposed
by Hernández and Schmitt [9] and µ is a scaling parameter. The data term f
avoids trivial solutions of energy (1) by propagating the photometric information
from Eq. (2) in a probabilistic manner into the volume.

f(x, t) = − ln

(
1− P (x ∈ int(Σ))

P (x ∈ int(Σ))

)
. (3)

The probability P (x ∈ int(Σ)) that point x belongs to the interior of surface Σ
is defined based on the voting locations and qualities of corresponding camera
rays ri(x, ·) through point x

P (x ∈ int(Σ)) =

N∏
i=1

N∏
j=1

∏
depthi(x)<d≤dmax

i

1

Zj
exp

[
−η ·VOTEj

(
ri(x, d)

)]
(4)

As suggested in [22] we limit the memory consumption of the method by setting
|T | = 3 and taking the center frame as a smooth solution. For each frame a mesh
is extracted with the Marching Cubes algorithm [20] at an iso-level of 0.5.

2.2 Connectivity Constraints via Directed Graphs

Without loss of generality we assume that the visual hull is connected. For the
case that is not connected, the same approach can be applied component-wise
after identifying independent connected components of the visual hull. We define
connectivity constraints independently for each time step to allow for topology
changes between time steps. For better readability we drop the temporal depen-
dency in the following notation.
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Graph Structure. For every time step we define a geodesic shortest path tree Gs
on the visual hull VH with respect to a given source node s that contains for
each point x ∈ VH inside the visual hull the shortest geodesic path Cx

s from s
to x that minimizes the cost function

Ds(x) = `(Cx
s ) =

∫ 1

0

ef(C
x
s (r))dr , (5)

which is a positive geodesic measure that depends on the data term. Variable r
parametrizes the path from s to x. Ds(x) is a shorthand for the distance map
of the shortest geodesic path from the source node s to any point x ∈ VH. The
edges of the shortest paths form the edge set E of the shortest path tree Gs.

Source Node Computation. It is desirable to center the source node for the
geodesic shortest path computation within the data term. To this end, we com-
pute the source node s(t) as the point which minimizes a spatio-temporal con-
volution of the data term f with a sufficiently large Gaussian kernel G.

s(t) = arg min
x

t+1∫
t−1

(
f ∗ G

)
(x, τ) dτ (6)

The minimization reflects the fact that negative data term values f < 0 indicate
a favor for an interior label and thus ensures a position that has high probability
of being interior. The position of the source node has not much influence on
the result, but this choice favors a smoothly temporal change of its position
within the data term while maximizing the distance to the surface. An example
rendering of a shortest path from a leaf node to the source is shown in Fig. 4a.

Constrained Optimization. The connectivity constraint from [25] is included into
the reconstruction process as a monotonicity constraint of the labeling function u
with respect to the edges E in Gs. This monotonicity can be ensured by including
inequality constraints on the directional derivative δe (u(x, t)) of u along every
edge e ∈ E . Thus, computing a spatio-temporal 3D reconstruction with connec-
tivity constraints can be achieved by computing a minimizer of the constrained
optimization problem

min
u∈BV(V×T ;{0,1})

E(u) (7)

s. t. δe (u(x, t)) ≤ 0, e ∈ E

with one constraint for each edge e in the edge set E of the shortest path tree
Gs. BV(·) denotes the function space of bounded variations [2].

3 Generalized Connectivity Constraints for Objects of
Arbitrary Genus

The key idea to generalize the connectivity constraint to objects with arbitrary
genus is a modification of the constraints that are defined on the geodesic shortest
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path tree. The key ingredient to this modification is to detect loops in the object
and to identify parts of these loops with a ’thin’ geometry, called handles. This
is described in the following.

3.1 Handle and Tunnel Loops

In [8], Dey et al. study arbitrary surfaces represented by a simplicial complex,
that is, a hierarchy of p-simplicies with different dimensions p (e.g. p = 0, . . . , 2
corresponding to points, edges, and faces). The surfaceM separates the simplicial
complex into an interior part I and an exterior part E, both including the surface,
i.e. I ∩ E = M. Since we want to analyze the topology of the visual hull, these
sets will be shorthands for M = ∂VH, I = VH and E = (V \ VH) ∪ ∂VH.

The authors in [8] define and study cycles of edges (’loops’) on the surface
which build equivalence classes with respect to contraction or translation of
the cycle - like a rubber band which can be moved along the surface, but not
above holes in the surface. In this paper we call this equivalence relation ∼M
’contractible’ on the set M, for example, we denote the relation that a loop
l1 ⊂M is contractible to a loop l2 ⊂M on the set M as l1 ∼M l2. For simplicity
we try to define terms and notation on a more intuitive level which should be
sufficient to follow the rest of the paper. For mathematically precise definitions
based on persistent homology we refer to [8]. Following their work, we now
consider loops on the surface with the following properties.

Definition 1 (Handle and tunnel loops). A handle loop h ⊂M is a cycle
of edges on the surface that is contractible in the interior (h ∼I 0) and not
contractible on the surface (h �M 0). A tunnel loop t ⊂ M is a cycle of edges
on the surface that is contractible in the exterior (h ∼E 0) and not contractible
on the surface (h �M 0).

With respect to the above mentioned equivalence relation, a closed surface
of genus g has exactly g classes of handle loops and g classes of tunnel loops
induced by the surface embedding. We consider one representative loop with
approximate minimal geometric length per class and denote them as the set of
handle loops {hi}gi=1 and the set of tunnel loops {ti}gi=1. Hence, for each surface
hole i we have a corresponding pair (hi, ti) of representative handle and tunnel
loops.

Examples of handle and tunnel loops are shown in Figs. 2, 3, 4c. Dey et
al. [8] also propose an algorithm which computes handle and tunnel loops with
approximate minimal length that is perfectly suited to process volumetric data.
However, this algorithm is considerably slower than a recently published algo-
rithm by Dey et al. [7] which only works for meshes. To this end, we extract
an iso-surface mesh of the visual hull to efficiently compute handle and tunnel
loops. The speed advantage of the method in [7] stems from the fact that it does
not need a 3D tessellation of the scene. In [7], the concept of Reeb graphs is used
to estimate an initial set of handle and tunnel loops and their geometric length
is shortened in a subsequent refinement step.



8 M.R. Oswald, J. Stühmer, and D. Cremers

(a) (b) (c) (d)

Fig. 2: Various sets defined in this section visualized on a teapot model of genus
2. (a) Exterior E (red), (b) Interior I (green), (c) Handle and tunnel loops
{h1, h2}, {t1, t2} (green+red), (d) Handle segments H1, H2 (yellow+blue).

Handle Segmentation. We aim to segment the ’thin’ geometric parts around the
holes of the surface, called handles. These handle segments will help to make the
connectivity constraints adaptive to the data term. For this purpose we introduce
the following definitions.

Definition 2 (Handle Segment Surface). We define the handle segment sur-
face as the connected subset of all points x ∈M for which a handle loop hx exists
which is contractible to hi subject to the additional constraint that the ratio of
`(hx) and `(hi) does not exceed a user given threshold σ:

MHi
=
{
x ∈M

∣∣∣ ∃hx ⊂M : hx ∼σI hi
}

(8)

where hx ⊆ M denotes a handle loop through the surface point x and hx ∼σI hi
means that handle loop hx is contractible to hi subject to the constraint `(hx) <
σ`(hi).

Definition 3 (Handle Segment). Given the handle segment surface MHi

from the previous definition, we define the corresponding volumetric handle seg-
ment Hi ⊆ I as the set of all points in the visual hull for which the closest point
on the visual hull boundary is on the handle segment surface MHi

.

Hi =

{
x ∈ I

∣∣∣∣ arg min
y∈M

dist(x,y) ∈MHi

}
(9)

where dist(x,y) denotes the Euclidean distance between point x ∈ I in the inte-
rior and point y ∈M on the surface.

In practice, we compute Hi by a breadth first search algorithm on the visual hull.
Starting from the handle loop hi a wavefront is propagated in both directions.
Independently for each wavefront, we stop the search if the ratio between the
current length of the wavefront and the initial position exceeds the threshold σ.

3.2 Loop Connectivity Constraints

With the handle and tunnel loops of the visual hull we are now able to generalize
the connectivity constraint in the presence of loops. By enforcing interior labels
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along each tunnel loop ti we can assure that loops in the visual hull are preserved
in the final segmentation. However, in order add a minimum amount of costs to
the energy (7) when enforcing loop connectivity, we need to find corresponding
loops that respect the costs of the data term. We approximate these geodesics
shortest loops by computing corresponding loops tGsi ⊂ I on the precomputed
geodesic shortest path tree Gs which are contractible to the original tunnel loop
on the surface, i.e. tGsi ∼I ti. The computation of tGsi is discussed later in this
section. For each tunnel loop ti of the visual hull we define a loop preserving
constraint as

∀i ∈ [1, . . . , g] :
{
∀x ∈ tGsi : u(x) = 1

}
. (C0)

Proposition 1 The constraint (C0) preserves the handle and tunnel loops and
thus all holes of the visual hull in the reconstructed object. The topological genus
of the reconstructed object is larger or equal to the one of the visual hull.

Proof. Let us assume that the proposition does not hold. To let the genus of
the reconstructed object decrease, either (i) at least one hole of the visual hull
needs to be filled or (ii) at least one tunnel loop has to be disconnected in
the reconstructed object. Because the domain of the reconstructed object is
restricted to the visual hull, (i) cannot be fulfilled. By construction, (ii) is fulfilled
if (C0) is fulfilled. Therefore the genus of the reconstructed object has to be larger
or equal to the genus of the visual hull.

Note that, depending on the data term f the reconstructed object is allowed
to have more holes than the visual hull. In some cases, it is not desirable to
exactly preserve all holes and corresponding handles of the visual hull. A possible
scenario is depicted in Fig. 3 where aliasing artifacts of the visual hull lead to
spurious handle loops which should not be preserved in the final reconstruction.
Therefore we propose to relax the loop preserving constraint (C0) such that
either the connectivity of a handle is preserved in the final reconstruction or, in
case the photometric support via f is not strong enough, the handle segment Hi

is suppressed completely. We define the generalized connectivity constraint as

∀i ∈ [1, . . . , g] :

{
∀x ∈ tGsi ∩Hi :

d

ds
u(x) = 0

}
(C1)

where d
ds is the directional derivative along the loop tGsi .

Finding the optimal connected loop tGsi . For objects of genus 0, the use of the
shortest path tree in the connectivity constraint is motivated by the optimal
connecting path, that adds the minimum cost to the final segmentation result.
In case of objects with higher genus, we wish to preserve the connectivity with
respect to loops in the final segmentation. Therefore a loop through each handle
needs to be found, which is optimal in the same way, i.e. that it also adds the
minimum cost to the final segmentation. Using the already computed shortest
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(a) Visual Hull (b) Result with strict loop
connectivity (C0)

(c) Result with generalized
connectivity (C1)

Fig. 3: (a) In some cases artifacts of the visual hull can lead to spurious handle
loops which should not be preserved in the final reconstruction. (b) The con-
straint C0 strictly preserves all loops in the solution. (c) Relaxing the topology
preserving constraint to our generalized connectivity constraint allows to sup-
press handles where the photoconsistency is not strong enough. The rope, where
the support of the photoconsistency is sufficient, is still completely preserved.
Handle and tunnel loops are depicted in green and red, respectively.

path tree Gs, we can find the shortest loop tGsi with respect to Gs for each
handle i by the following steps: With a depth first search on Gs, starting from
the boundary of a handle segment Hi, we compute the partitions H1

i ∪ H2
i =

Hi, H
1
i ∩ H2

i = ∅ which are disconnected on the shortest path tree Gs. These
partitions are shown in Fig. 4d. If one of these partitions is empty, i.e. all points
in the handle segment Hi are connected on Gs, then no further constraints need
to be added in order to preserve handle segment Hi. Otherwise, we compute an
optimal pair of points

(p, q) = arg min
(x∈H1

i ,y∈H2
i ,y∈N (x))

Ds(x) +Ds(y) (10)

which are leaf-nodes in Gs. The set N (x) denotes the local spatial neighborhood
of a point x ∈ V . The optimal path through the handle is computed by tracing
the path backwards along the predecessors of both nodes p, q in Gs, resulting in
the path with minimum costs through the handle (Fig. 4e).

While the tree connectivity constraint resulted in an inequality constraint on
the derivative of the label function, the loop connectivity is preserved by adding
the equality constraints

δe (u(x, t)) = 0, e ∈ E=. (11)

to the optimization problem (7), where E= is the set of edges of the optimal path
through the handle.
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(a) (b) (c) (d) (e) (f)

Fig. 4: Visualization of various properties that we compute based on the shape of
the visual hull (genus 2 in this case) and the data term. (a) Example shortest path
from a leaf node to the source node s (red); (b) color-coded geodesic distance
map Ds with respect to the source node s; (c) handle (green) and tunnel (red)
loops; (d) handle segmentations Hi = H1

i ∪ H2
i (green+orange), the coloring

shows disconnected parts within the handle with respect to the geodesic path
tree Gs. (e) shortest path through the handle for which the equality constraints
(C1) are imposed; (f) final reconstruction result.

4 Numerical Optimization

To minimize energy (7) using convex optimization we first relax the discrete
image function to the continuous interval [0, 1]. The constraints defined on the
derivative of the image function remain the same as in the discrete setting.

Because the total variation norm is non-differentiable, we introduce a dual
variable p : V×T 7→ R4 and reformulate the optimization problem Eq.(7) as the
equivalent saddle-point problem

min
u

max
‖p‖≤1

∫
V×T

〈u,− div(p)〉 dxdt+ λ

∫
V×T

fu dxdt . (12)

s. t. δe (u(x, t)) ≤ 0, e ∈ E
δe (u(x, t)) = 0, e ∈ E=

The constraints on u over the edge sets E and E= are included in the opti-
mization using Lagrangian multipliers β and γ. The Lagrangian associated to
problem (12) becomes

min
u

max
‖p‖≤1,
β≥0,
γ

∫
V×T

〈u,−div(p)〉 dxdt+ λ

∫
V×T

fu dxdt (13)

+

∫
T

{∑
e∈E

βe δe (u) +
∑
e∈E=

γe δe (u)
}
dt .
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This saddle point problem is optimized using the preconditioned primal-dual
algorithm by Pock and Chambolle [23]. The algorithm results in an iterative
update scheme with a gradient ascent in the dual and a gradient descent in the
primal variable

pn+1 = ΠC [pn + σ∇ūn]

βn+1
e = Π≥0(βne + µ δe (ūn))

γn+1
e = γne + ν δe (ūn) (14)

un+1 = Π[0,1]

[
un + τ

(
div pn+1 + div βn+1 + div γn+1 − λf

)]
ūn+1 = 2un+1 − un

where Π[0,1] is the projection of u onto the unit interval [0, 1] and Π≥0 onto
positive values. The projection onto the set C = {q = (qx, qt)

T : V×T 7→
R4
∣∣ ‖qx‖ ≤ 1, |qt| ≤ 1} is a projection on a 4D hyperball and can be done as

follows:

ΠC(q) =

(
qx

max(1, ‖qx‖ρ )
,max

(
− gt,min(gt, qt)

))T
(15)

The step sizes τ , σ, µ and ν are chosen as suggested in [23]. Because our energy
model is convex and the linear constraints preserve convexity of the optimization
problem, the update scheme (14) converges to a global minimum of the relaxed
energy (7). An optimal binary labeling can be found by thresholding the relaxed
solution [23].

Implementation. The proposed iterative scheme for minimal surface reconstruc-
tion with connectivity constraints (14) allows a high degree of parallelization
and is implemented using the CUDA programming framework. The connectiv-
ity graph precomputation is more difficult to parallelize and therefore is imple-
mented on the CPU.

5 Experiments

We evaluated our method on several spatio-temporal multi-view data sets pro-
vided by the INRIA 4D repository [16]. All scenes were synchronously recorded
by 16 cameras in a green room environment.

In the experiments we mainly focus on comparing reconstruction results with
and without connectivity constraints. Since no other 4D reconstruction methods
are publicly available, we compare our results with the ones of the state-of-the-
art 3D reconstruction methods by Jancosek and Pajdla [17] and the combination
of Furukawa et al. (PMVS) [10] and Poisson surface reconstruction [18].

Approximate silhouette information was used for all methods except of the
method by Jancosek and Pajdla [17] for which it cannot be used. We used the
6-neighborhood for the computation of the geodesic shortest path tree Gs. In
this setting, the generalization to arbitrary genus by using equality constraints
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1 of 16 Input Images

Jancosek and Pajdla [17]

Furukawa et al. (PMVS) [10] + Poisson surface reconstruction [18]

Without Connectivity Constraint [22]

With Connectivity Constraint [25]+[22]

Proposed Generalized Connectivity Constraint

Fig. 5: Comparison of different reconstruction methods: Existing state-of-the art
approaches [17,10,18] fail to recover thin structures like the stick and the rope.
The connectivity constraint allows to preserve the stick, but for the rope-jump
scene with higher genus, it does not completely preserve the connection of the
rope. Our proposed generalized connectivity constraint allows to correctly re-
construct both scenes (volume resolution |V | = 3843).
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does not increase the number of dual variables (Lagrange multipliers), because
some inequality constraints are exchanged by equality constraints.

Runtime and Memory Resource Evaluation. The memory footprint of the sug-
gested implementation increases only by |V×T | bytes in comparison to the orig-
inal approach. The numerical optimization runtime per iteration remains almost
unchanged, but depending on the scene structure more iterations are needed for
sufficient convergence. All experiments were run on a Linux-based Intel Xeon
E5520 PC with 24GB RAM and NVidia GTX Titan graphics card. For the genus
0 connectivity [25] the precomputation time per frame was about 20 sec for com-
puting the tree of the tree-shaped connectivity constraints. For the generalized
connectivity constraints the precomputation time was about 1 min for handle
and tunnel loop detection, handle segmentation and computation of the tree.
The optimization needs about 3 min per frame resulting in a total runtime of
about 4 minutes per frame when using the generalized connectivity constraints.

6 Conclusion

In this paper we introduced tree-shaped connectivity constraints into spatio-
temporal multi-view 3D reconstruction. By detecting loops in the object we are
able to generalize the connectivity constraint to objects with non-tree structure
of arbitrary genus. In several experiments, we demonstrated that the proposed
connectivity constraints significantly improve the reconstruction quality in the
presence of fine elongated structures.

To the best of our knowledge, apart from the work in [3], which uses a
strong simplification of a connectivity prior and essentially is a 2.5D method,
this is the first work which imposes connectivity constraints in a multi-view 3D
reconstruction setup.

The connectivity constraint is especially useful in 4D multi-view settings, for
which exact silhouettes are usually not available and exact silhouette constraints
are not applicable. Assuring temporal coherence of the connectivity constraints
would need explicit modeling of the occupancy flow and remains for future work.
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