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METHODS

Nanocomposite gel synthesis

Mercaptoundecanoic acid coated gold nanoparticles
(AuNPs) are synthesized by the Stucky method with
slight modifications.[1] Nanocomposite gels are synthe-
sized as follows: 0.4 mg AuNP are dried in a vial before
adding a pre-gel solution comprising 11.7 mg acrylamide,
1.5 mg sodium acrylate, and 0.2 mg methylene bisacry-
lamide in 200 µL deionized water. The solution is de-
gassed and the reaction is initiated by adding 2 µL of an
aqueous ammonium persulfate solution (0.1 g/mL) be-
fore injecting between two glass slides separated by 125
µm Kapton spacers. The mold is then placed under N2

and allowed to react for 1 h. The gels are placed in deion-
ized water to release from the mold, then transferred sev-
eral times to fresh water solutions to wash. The gels are
punched manually into the desired size and shape with
stainless steel punches (leathercrafttools.com).

Oscillatory motion experiments

Deionized water droplets (100–300 µL) are placed on
polystyrene surfaces and situated on a Nikon ECLIPSE
Ti inverted microscope stage. White light from a Lu-
mencore Light Engine is reflected from a 99% mirror in
the fluorescence filter turret before being focused onto
the droplet surface using a 10x objective lens. Videos are
recorded from above with a digital camera at 60 fps. The
incident intensity is measured by a power meter and re-
ported intensities are an average reading between 500 and
600 nm. Using a thermocouple immersed in the droplet
∼ 1 mm away from submerged (stationary) discs sub-
jected to photothermal heating, we verify that there is a
negligible temperature increase in the bulk of the droplet
over a time-scale of at least ∼ 30 s. However, evaporation
of water from the drops is inevitable even at room tem-
perature, and hence a fresh drop is prepared immediately
prior to the start of each experiment.

Video descriptions

S1: gel size a=1 mm on a 200 µL drop with a light in-
tensity of 10 W/cm2

S2: gel size a=1 mm on a 200 µL drop with a light in-
tensity of 40 W/cm2

S3: gel size a=1 mm on a 100 µL drop with a light in-
tensity of 10 W/cm2

S4: gel size a=1 mm on a 100 µL drop with a light in-
tensity of 40 W/cm2

S5: star shaped gel on a 300 µL drop with a light inten-
sity of 40 W/cm2

S6: 3 gels with a=1 mm on a 200 µL drop with a light
intensity of 40 W/cm2

Oscillator model

To understand the nonlinear dynamics of the pho-
tothermocapillary oscillator, we construct a deterministic
model and numerically simulate the equation of motion
coupled with the heat transport equation - for the gel
disc bound to the water-air interface. The force required
to detach the disc from the fluid interface is many orders
higher than any other forces in the system, and thus we
assume that the gel disc is constrained to move along
the interface alone and solve the full system of equations
in the s-coordinate defined in Fig. S1A. The multiple
forces acting on the disc are shown in Fig. S1B. In short,
the Marangoni force drives the disc away from the beam
(and the apex) while the capillary force acts as the restor-
ing force. Instead of reaching a steady-state position
at the periphery of the beam (where the capillary force
is exactly balanced by a quasi-static Marangoni force),
the disc exhibits various regimes of sustained oscillations
analogous to a Duffing oscillator due to the force nonlin-
earities. A linear model for the small oscillation regime
can be intuitively understood, and is explained in a later
section.

To compute the capillary forces, we start by solving
the Laplace equation to generate the axisymmetric ses-
sile drop shape for the specified volume of the droplet[2].
For axisymmetric fluid interfaces, the following system of
ordinary differential equations (ODEs) can be solved for
the desired droplet volume while terminating the simu-
lation on reaching the three phase contact angle of the
system (θc = 87°, water-polystyrene interface in air):

dx

ds
= cos θ,

dz

ds
= sin θ, (1a)
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FIG. S1. Photothermocapillary oscillator model A. Model co-
ordinate system B. Forces acting on the gel disc. C. Equiva-
lent 2-element lumped thermal model of the gel disc. Rc is the
resistor coupling the two nodes, and is very large when com-
pared to the nodal resistors R1 and R2. This is because Rc

denotes the resistance for heat transfer by conduction across
the diameter of the gel while the nodal resistors represent
the resistance to heat flow between the gel disc and water
by forced convection. For our disc geometry, the diameter a
is much larger than the thickness td (a � td). Similarly Cc

the coupling capacitor can be ignored to good approximation
for our system. This allows simplification of the model to
the equivalent differential circuit as shown in D. Here, ∆Q
is the differential heat input across the nodes, leading to a
temperature difference of ∆T . E. A simplified model used for
extracting the effective thermal capacitance at the disc-water
interface when heat loss is predominantly set by convection.

dθ

ds
=

{
β, s = 0

2β + γcz − sin θ
x , otherwise

(1b)

dV

ds
= πx2sin θ,

dA

ds
= 2πx (1c)

where β is the curvature at the origin, γc is the capillary
constant (∆ρ ·g/γ), V is the volume and A is the surface
area. The first principal curvature P1 is equivalent to
curvature of the plane curve, given by dθ

ds , and the sec-

ond principal curvature P2 = sin θ
x . The mean (H0) and

deviatoric (∆c0) curvatures are given by

H0 = β +
γcz

2

∆c0 =

{
0, s = 0

2β + γcz − 2sin θ
x , otherwise

(2)

The capillary force Fcap is obtained from the derivative
of the energy of adsorbing a disc to a curved interface
[3–5], as

Fcap = −πγa
4

8

d

ds

(
∆c20 + 2H2

0

)
(3)

where γ is the surface tension and a is the diameter of the
disc. For the sessile drop in our setting, with θc = 87°, the
capillary force is always negative, indicating its restoring
nature.

The intensity and the temporal properties of the
Marangoni force, Fmar ≈ γTa∆T , are largely set by the
thermal behavior of the system. Using lumped system
analysis, it is straightforward to calculate the thermal
time constant, τth for objects with a uniform tempera-
ture with heat transfer dominated by convection, to be
given by

τth =
meffcp
hwAs

(4)

where meff is the effective mass of the object, cp is the
specific heat capacity, hw is the convection heat transfer
coefficient and, As is the surface area. However, the main
challenge here is that the convection heat transfer coeffi-
cient in our system varies significantly with velocity. We
therefore solve the thermal transport problem coupled
with the equation of motion using a velocity dependent
heat transfer coefficient. The average convection heat
transfer coefficient hw can be written as a function of the
velocity ṡ, using a flow over a flat plate approximation
[6], as

hw(ṡ) = 0.664Pr
1
3 kw

√
ρw|ṡ|
aµv

(5)

where Pr is the Prandtl number (cpµv/kw), kw is the
conductive heat transfer coefficient of water, µv is the
dynamic viscosity of water and ρw is the density of water.

When a light source (eccentric to the disc) is turned
on, the Marangoni force is related to the temperature
difference between the leading edge and the trailing edge
of the gel disc. We begin by treating the light source to
be a perfect Gaussian beam (in the x -coordinate system)
centered at the apex of the droplet. The differential light
input between the leading edge and trailing edge of the
disc on the air-water interface, for a full beam width, b,
can be written as

∆I = αI0

(
e−

8
b2

(x− a
2 cosθ)

2

− e−
8
b2

(x+ a
2 cosθ)

2)
(6)
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where α is the absorption constant for the particular gel
thickness, and I0 is the peak intensity of the beam. In our
experimental setup, I0 = 40 W/cm2 and α ≈ 0.2 [7]. To
the first order, the thermal system requires a minimum
of two lumped nodes and can be represented using the
electrical equivalent circuit diagram in Fig.S1C using the
standard analogies between the thermal domain circuit
parameters and electrical domain. Given the symmetry
of the system, we expect the lumped nodal parameters -
effective thermal capacitances C1 and C2 and the thermal
resistances R1 and R2 - to be identical. When a � td
and convection loss to water is the predominant mode
of heat transfer, the effective circuit for the temperature
difference between the nodes can approximated as in Fig.
S1D, where ∆Q(s) is the position dependent differential
heat generation between the leading edge and the trailing
edge. The effective thermal resistance Rth, and the ther-
mal capacitance Cth, of each node are velocity dependent.
Under conditions where the minimal thermal resistance
is set by the convection through water, the instantaneous
thermal resistance for a surface of area As can be written
as Rth(ṡ) = (hw(ṡ)As)

−1. We solve the 1D-heat conduc-
tion problem with uniform heat generation assuming heat
convected to air from the gel to be negligibly small to ob-
tain the steady state temperature profile for the setup in
Fig. S1E. Using the obtained temperature profile, we cal-
culate the lumped thermal capacitance at the disc-water
interface using energy methods, i.e. the energy required
to raise the temperature to Tbottom (Tbottom < Ttop). The
temperature profile through the depth of the gel, and the
instantaneous thermal capacitance can be obtained as

T (y) =
qt2d
2kth

(
1− y2

t2d

)
+

qtd
hw(ṡ)

(7a)

Cth(ṡ) = cpρmAstd

(
1 +

hw(ṡ) td
3kth

)
(7b)

where q is the uniform heat generation density, and m is
the mass of the gel.

To model the complete dynamics we solve the following
coupled system of equations, where u1 = s, u2 = ṡ and
u3 = ∆T are the state variables:

u̇1 = u2

u̇2 =
1

meff
(γTa.u3 + Fg,s(u1)− ηeff .u2 − Fcap(u1))

u̇3 =
1

Cth(u2)

(
∆Q(u1)− u3

Rth(u2)

) (8)

where ηeff is the effective viscous drag coefficient; explicit
dependencies of each term are indicated. ∆Q, the differ-
ential heat generation between the lumped nodes of the
thermal system is obtained by lumping the disc into two
identical semicircular halves. The viscous drag coefficient
for a disc moving sideways can be estimated by equat-
ing it to a sphere with its radius scaled by 0.566 giving
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FIG. S2. Model predictions of the disc’s center position with
time at 10 W/cm2 incident intensity for the given drop vol-
umes. The simulation settings for these different drop sizes
are listed in Table 2. It is important to note that the val-
ues of both Λd and Λm are varied for each drop size. These
results show that the behavior seen in experiments can be
qualitatively reproduced in simulations, although with two
free model parameters that vary with drop size, it is not pos-
sible to draw any robust comparisons between experiments
and simulations.

ηd = 6πµv(0.566a/2) [8]. However, it is noteworthy that
for both the effective mass, meff and the drag coefficients
in our system there are two factors that play a critical
role (i) the effective mass to be moved is expected to be
several times the actual mass of the gel disc itself, and,
(ii) the size of the gel disc is similar to the droplet size
(disc size, a ∼ droplet size), and thus re-circulation and
the droplet shape (sphericity) play important roles in the
drag [9]. We include a scaling factor for the effective mass
(meff = Λmm) and damping coefficient (ηeff = Λdηd) in
our model to appropriately account for these two effects.
Specifically, Λm accounts for the added mass of water
experienced during acceleration of the gel disc while the
effective drag multiplier Λd is used to represent the vis-
cous drag experienced by the disc in the re-circulation
limited, small volume of the droplet. Λm and Λd are dif-
ficult to estimate analytically and are instead used as two
fitting parameters (kept constant for a given droplet vol-
ume and disc size) - and are listed in Table 2. All other
quantities in the model are specified at their estimated
values.

Intuitive model and note on the Barkhausen criteria

As the gel disc is differentially heated (differential heat
generation, ∆Q) by the beam of light, a temperature dif-
ference ∆T is established between the leading and the
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FIG. S3. Schematic illustration of the oscillation cycle. Un-
der small amplitude oscillation conditions, the disc performs
oscillations about the point where the quasi-static Marangoni
force exactly balances the capillary restoring force. The small
signal phase shift between the displacement s and the differ-
ential internal heat generation across the two lumped nodes,
∆Q, is exactly π. The thermal and mechanical phase lags
are represented by φT and φM . The Barkhausen phase shift
criterion is then φM + φT = (2n− 1)π.

trailing edge. The resulting Marangoni force causes the
disc to move away from the apex (s = 0), which reduces
the differential heat generation. The capillary force Fcap
subsequently tries to restore the disc to the apex. Fig. S3
schematically illustrates the feedback mechanism in the
oscillation cycle. We define the bias point as the location
along the surface of the droplet where the quasi-static
Marangoni force exactly balances the capillary force. In
the small-amplitude, linear regime of oscillations, the
gel disc can be approximated as a harmonic oscillator
about this bias point (see Fig. S3). For simplicity, we
can consider the heat transport problem to be uncou-
pled from the equation of motion. Under these settings
the Barkhausen criteria can be used to understand the
simplified oscillator [10–12]. This implies that the (i)
the open-loop gain of the signal is unity in the steady
state of oscillations, and (ii) the small-signal phase shift
through the system is an integral multiple of 2π [10]. In
typical mechanical oscillators, the open-loop unity gain
condition is set by amplitude limiting nonlinearities in
the system ([11, 13]). The phase shift criterion offers in-
teresting details on the steady state oscillation frequency.
This is particularly useful in oscillators where the signal
is transduced across multiple domains [11, 12, 14].

In Fig. S3, an infinitesimal movement of the gel disc
away from the light source, at the quasi-static equilib-
rium point, reduces the differential heat generation (∆Q)
in the disc. Therefore, the small-signal phase-shift be-
tween the displacement, s, and ∆Q is exactly π. The
phase delay of the thermal and mechanical systems are
denoted by φT and φM respectively. The dynamics of
the temperature oscillations are set by the circuit in Fig.
S1D, i.e. the phase lag of the small-signal of ∆T with
respect to ∆Q is set by the effective thermal circuit pa-
rameters, and denoted by φT . For the first-order ther-

mal system, the phase-lag between the temperature vari-
ation and the heat input fluctuations is π/4 at the cutoff-
frequency. This increases to at most π/2 depending on
the frequency of oscillations, i.e. 0 ≤ φT ≤ π/2. The
Marangoni force Fmar resulting from the temperature gra-
dient is in phase with the differential temperature across
the two nodes, ∆T . Thus the phase delay between ∆T
and s in the case of uncoupled equations we consider
here, is set purely by the second order equation of motion,
where the phase delay (φM ) at the natural frequency is
π/2. At the final frequency of oscillations in this simpli-
fied system, the Barkhausen phase-shift criterion (phase
shift = 2nπ; n ∈ 0, 1, 2... ) becomes φM +φT = (2n−1)π.
The maximum phase-lag arising from the first order ther-
mal system (φT : ∆Q→ ∆T ) is smaller than π/2. There-
fore the mechanical system has to compensate by adjust-
ing its frequency to produce a phase-lag φM > π/2. It
is therefore required that in the steady state of oscil-
lations the system settles in to an oscillation frequency
larger than the natural mechanical frequency (such that
φM > π/2). This frequency offset with respect to the
natural mechanical frequency increases with the mechan-
ical damping coefficient. A similar result is observed in
an analogous multi-domain self-oscillator [12, 14].
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TABLE I. Model parameters

α Optical absorption coefficient of disc
β Curvature at the apex of the droplet [m−1]
γ Interfacial tension of air-water interface [N·m−1]
γc Capillary constant of water [m−2]
γT Temperature coefficient of surface tension [0.14 mN·m−1·T−1]
∆c0 Deviatoric curvature [m−1]
∆T Temperature difference responsible for the Marangoni force [K]
ηeff Effective viscous drag coefficient [N·s·m−1]
ηd Viscous drag coefficient of a disk moving sideways [N·s·m−1]
θc Three phase contact angle (Water-polystyrene-air ∼ 87°)
Λd Effective drag scaling factor
Λm Effective mass scaling factor
µv Dynamic viscosity [N·s·m−2]
ρm Density of the gel [kg·m−3]
ρw Density of water [kg·m−3]
τth Thermal time constant [s]
a Diameter of the gel disc [m]
b Beam width (Gaussian full beam in simulations) [m]
As Surface area (general) [m2]
cp Specific heat capacity of the gel [J·kg−1·K−1]
Cth Effective thermal capacitance [J·K−1]
Fcap Capillary force [N]
Fdrag Viscous drag force [N]
Fg,ṡ Effective force due to gravity along s-coordinate [N]
Fmar Marangoni force [N]
H0 Mean curvature [m−1]
hw Convection heat transfer coefficient [W·m−2·K−1]
I0 Peak intensity of gaussian light beam [W·m−2]
∆I Differential light input across the disc [W·m−2]
kth Conductive heat tranfer coefficient of gel disc [W·m−1·K−1]
kw Conductive heat transfer coefficient of water [W·m−1·K−1]
meff Effective mass [kg]
Pr Prandtl number
P1 First principal curvature of droplet [m−1]
P2 Second principal curvature of droplet [m−1]
q Uniform heat generation density [W·m−3]
∆Q Differential heat generation across the two nodes [W]
Rth Effective thermal resistance [K·W−1]
s Surface distance [m]
td Thickness of the gel disc [m]

TABLE II. Simulation settings for 1 mm gel disc. Input settings for droplet shape computation, and effective mass and drag
scaling coefficients used in the dynamics simulation

Volume 100 µL 200 µL 300 µL

β [m−1] 175.4 109.3 78.4
Λd 1.85 2.5 1.72
Λm 32.1 23.5 8.9

β is set to obtain the droplet volume with the contact angle fixed (87°) in Laplacian droplet shape computation. Λd and Λm

are varied to account for the role of the added mass and circulation limited flow in small droplet volumes (a ∼ droplet size).


