Cevians

A cevian is any segment drawn from the vertex of a triangle to the opposite side. Cevians with special properties include altitudes, angle bisectors, and medians. Let h_{c}, t_{c}, and m_{c} represent the altitude, angle bisector, and median to side c , respectively.

Altitudes:

The altitudes of a triangle intersect at the orthocenter.

Angle Bisectors:

The angle bisectors of a triangle intersect at the incenter, the center of the triangle's inscribed circle.

Angle Bisector Theorem: $\frac{a}{m}=\frac{b}{n}$

Length of an Angle Bisector: $t_{c}=\sqrt{a b\left(1-\frac{c^{2}}{a^{2}+b^{2}}\right)}$

Medians:

The medians of a triangle intersect at the centroid. Along the median, the distance from a vertex to the centroid is twice the distance from the centroid to the opposite side.

Length of a Median: $m_{c}=\sqrt{\frac{a^{2}}{2}+\frac{b^{2}}{2}-\frac{c^{2}}{4}}$

Stewart's Theorem

If a cevian of length d is drawn and divides side c into segments m and n, then

$$
a^{2} n+b^{2} m=c\left(d^{2}+m n\right)
$$

Ceva's Theorem

A necessary and sufficient condition for $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$, where D, E, and F are points on the respective side lines $B C, C A, A B$ of a triangle $A B C$, to be concurrent is that

$$
B D \cdot C E \cdot A F=+D C \cdot E A \cdot F B
$$

where all segments in the formula
 are directed segments.

Ex. Suppose AB, AC, and BC have lengths 13,14 , and 15 . If $\mathrm{AF}: \mathrm{FB}=2: 5$ and $\mathrm{CE}: \mathrm{EA}=5: 8$. If $\mathrm{BD}=x$ and $\mathrm{DC}=y$, then $10 x=40 y$, and $x+y=15$. Solving, we have $x=12$ and $y=3$.

Menelaus' Theorem

A necessary and sufficient condition for points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ on the respective side lines $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of a triangle ABC to be collinear is that

$$
B D \cdot C E \cdot A F=-D C \cdot E A \cdot F B
$$

where all segments in the formula are directed segments.

