Number Theory

Figurate Numbers:

Triangular: 1, 3, 6, 10, ... $\frac{1}{2}n(n+1)$

Square: 1, 4, 9, 16, ... n^2

Pentagonal: 1, 5, 12, 22, 35, ... $\frac{1}{2}(3n^2 - n)$

K-gonal: 1, k ... $\frac{1}{2}k(n^2-n)-n^2+2n$

Pythagorean triples: These take the form of M^2 - N^2 , 2MN, and $M^2 + N^2$. The product of the sides is always divisible by 60.

Primes:

Mersenne: primes of the form $2^p - 1$, where p is a known prime. Not all numbers of this form are prime.

Fermat: primes of the form $2^{2^n} + 1$. The only primes of this form found so far are for n = 0 through 4.

Gauss: A regular polygon can only be constructed if the number of vertices is a Fermat prime or the product of distinct Fermat primes. (Ex. n = 3, 5, or 15 = 3*5). Note: once any n-gon has been constructed, one can easily construct the 2n-gon.

Neighbors of Six: All primes must be in the form 6n+1 or 6n-1 (after 2 and 3)

Composite Numbers:

Fundamental Theorem of Arithmetic: every integer greater than 1 has a unique factorization into prime factors.

For an integer *n* greater than 1, let the prime factorization be $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$

Number of divisors: $d(n) = (e_1 + 1)(e_2 + 1) \cdots (e_k + 1)$

Sum of divisors: $\mathbf{S}(n) = \left(\frac{p_1^{e_1+1}-1}{p_1-1}\right) \left(\frac{p_2^{e_2+1}-1}{p_2-1}\right) \cdots \left(\frac{p_n^{e_n+1}-1}{p_n-1}\right)$

Any number n such that d(n) is odd is a perfect square.

If s(n)=2n, then *n* is a perfect number.

If $2^{p}-1$ is a prime (Mersenne), then $2^{p-1}(2^{p}-1)$ is a perfect number.

Congruences:

For any integers a, b, and positive integer m, a is congruent to b modulo m if a - b is divisible by m. This is represented by

$$a \equiv b \pmod{m}$$

This is equivalent to saying a - b = mk for some integer k.

For any integers a, b, c, and positive integers m,

Reflexive property: $a \equiv a \pmod{m}$

Symmetric property: If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.

Transitive property: If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then

 $a \equiv c \pmod{m}$

For any integers a, b, c, d, k, and m, with m > 0, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$:

- (i) $a \pm k \equiv b \pm k \pmod{m}$
- (ii) $ak \equiv bk \pmod{m}$
- (iii) $a \pm c \equiv b \pm d \pmod{m}$
- (iv) $ac \equiv bd \pmod{m}$
- (v) $a^k \equiv b^k \pmod{m}$

If $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{m}$ only if m and c are relatively prime.

Fermat's Little Theorem: For any integer a and prime p, where a and p are relatively prime, $a^{p-1} \equiv 1 \pmod{p}$.

Wilson's Theorem: An integer p is prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

Linear Diophantine Equations: The equation ax + by = c has infinitely many solutions for integral x and y if the greatest common divisor of a and b divides c. If this condition is not satisfied there are no possible solutions.

Divisibility Rules

Let n be represented by the digits $\overline{d}_n \overline{d}_{n-1} \cdots \overline{d}_2 \overline{d}_1$. $a \mid b$ means that a divides into b, or that a is a factor of b.

3: A number is divisible by 3 if the sum of its digits is divisible by 3. 3/n if $3/\sum_{k=1}^{n} d_k$.

4: A number is divisible by 4 if the number represented by the last two digits is divisible by 4. 4/n if $4/10d_2+d_1$. This can be reduced to 4/n if $4/2d_2+d_1$.

6: check for divisibility by both 2 and 3.

8: A number is divisible by 8 if the number represented by the last three digits is divisible by 8. 8 / n if $8 / 100d_3 + 10d_2 + d_1$. More specifically, 8 / n if $8 / 4d_3 + 2d_2 + d_1$.

9: A number is divisible by 9 if the sum of its digits is divisible by 9. 9/n if $9/\sum_{k=1}^{n} d_k$.

 2^k : A number is divisible by 2^k if the number represented by the last k digits is divisible by 2^k .

7:

Rule 1: Partition n into 3 digit numbers starting from the right $(\bar{d}_3\bar{d}_2\bar{d}_1,\bar{d}_6\bar{d}_5\bar{d}_4,\bar{d}_9\bar{d}_8\bar{d}_7$, etc...) If the alternating sum $(\bar{d}_3\bar{d}_2\bar{d}_1 - \bar{d}_6\bar{d}_5\bar{d}_4 + \bar{d}_9\bar{d}_8\bar{d}_7 - ...)$ is divisible by 7, then n is divisible by 7.

Rule 2: Truncate the last digit of n, and subtract twice that digit from the remaining number. If the result is divisible by 7, then n was divisible by 7. This process can be repeated for large numbers.

Ex.
$$n = 228865 \rightarrow 22886 - 2(5) = 22876 \rightarrow 2287 - 2(6) = 2275 \rightarrow 227 - 2(5) = 217 \rightarrow 7 \mid 217$$
, so $7 \mid 228865 \mid (228865 = 7*32695)$

Rule 3: Partition the number into groups of 6 digits, d_1 through d_6 , d_7 through d_{12} , etc. For a 6 digit number n, n is divisible by 7 if $(d_1 + 3d_2 + 2d_2 - d_4 - 3d_5 - 2d_6)$ is divisible by 7. For larger numbers, just add the similar sum from the next cycle. The coefficients counting from d_1 are (1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, ...)

11: A number n is divisible by 11 if the alternating sum of the digits is divisible by 11 11 / n if $11 / (d_1 - d_2 + d_3 - d_4 + d_5 - ... - d_n (-1)^n)$.

13:

Rule 1: See rule 1 for divisibility by 7, *n* is divisible by 13 if the same specified sum is divisible by 13.

Rule 2: Same process as in rule 3 for 7, the cycle of the coefficients is (1, -3, -4, -1, 3, 4, ...)