## Regular Polygons

For the following formulas, $n$ is the number of sides in the polygon and $s$ is the length of each side. $\theta$ is the measure of one of the interior angles. The radius of the inscribed circle is $r$, and the radius of the circumscribed radius is $R$.

Sum of interior angles: $180(\mathrm{n}-2)^{\circ}$
Interior angle measure: $\theta=\frac{180(n-2)}{n}$
Area: $K=\frac{r n s}{2}$

| Polygon | $\boldsymbol{n}$ | $\boldsymbol{K}$ | $\boldsymbol{r}$ | $\boldsymbol{R}$ |
| :--- | :--- | :--- | :--- | :--- |
| Triangle | 3 | $\frac{s^{2} \sqrt{3}}{4}$ | $\frac{s \sqrt{3}}{6}$ | $\frac{s \sqrt{3}}{3}$ |
| Square | 4 | $s^{2}$ | $\frac{s}{2}$ | $\frac{s}{2} \sqrt{2}$ |
| Hexagon | 6 | $\frac{3 s^{2} \sqrt{3}}{2}$ | $\frac{s \sqrt{3}}{2}$ | $s$ |
| Octagon | 8 | $2 s^{2}(1+\sqrt{2})$ | $s \sqrt{\left(1+\frac{\sqrt{2}}{2}\right)}$ | $\frac{s \sqrt{3-2 \sqrt{2}}}{2}$ |

