Polynomials

For all polynomials of the form $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where $a_i \in R$:

Fundamental Theorem of Algebra: P(x) has n roots

Sum of roots:
$$-\frac{a_{n-1}}{a_n}$$

Product of roots:
$$\frac{a_0}{a_n}(-1)^n$$

For any a_k , $\frac{a_k}{a_n}(-1)^{n+k}$ represents the sum of the product of the roots, taken (n-k) at a time.

Ex. when n=3, $\frac{a_1}{a_3}(-1)^{3+1}$ is the sum of product of the roots, taken 3-1 or 2 at a

time. $\frac{a_1}{a_3} = (r_1r_2 + r_2r_3 + r_3r_1)$, where r_1 , r_2 , and r_3 are the roots of the polynomial.

Remainder Theorem:

The remainder when P(x) is divided by (x - w) is P(w).

Descartes' Rule of Signs:

The number of positive real roots of P(x) is z decreased by some multiple of two, (z, z-2, z-4, etc...). z is the number of sign changes in the coefficients of P(x), counting from a_n to a_0 . The number of negative real roots is found similarly by finding z for P(-x).

Ex. For the polynomial $x^5 - 4x^4 + 3x^2 - 6x + 1$, there are possibly 4, 2, or 0 positive roots and I negative root.

Rational Root Theorem:

If all a_i are integers, then the only possible rational roots of P(x) are of the form $\pm \frac{k}{a_n}$, where k is a factor of a_0 .