## Polynomials

For all polynomials of the form $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0}$, where $a_{i} \in R$ :

Fundamental Theorem of Algebra: $P(x)$ has $n$ roots

Sum of roots: $\quad-\frac{a_{n-1}}{a_{n}}$
Product of roots: $\quad \frac{a_{0}}{a_{n}}(-1)^{n}$
For any $a_{k}, \frac{a_{k}}{a_{n}}(-1)^{n+k}$ represents the sum of the product of the roots, taken $(n-k)$ at a time.

Ex. when $n=3, \frac{a_{1}}{a_{3}}(-1)^{3+1}$ is the sum of product of the roots, taken 3-1 or 2 at a time. $\frac{a_{1}}{a_{3}}=\left(r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}\right)$, where $r_{1}, r_{2}$, and $r_{3}$ are the roots of the polynomial.

## Remainder Theorem:

The remainder when $P(x)$ is divided by $(x-w)$ is $P(w)$.

## Descartes' Rule of Signs:

The number of positive real roots of $P(x)$ is $z$ decreased by some multiple of two, ( $z$, $z-2, z-4, e t c \ldots) . \quad z$ is the number of sign changes in the coefficients of $P(x)$, counting from $a_{n}$ to $a_{0}$. The number of negative real roots is found similarly by finding $z$ for $P(-x)$.

Ex. For the polynomial $x^{5}-4 x^{4}+3 x^{2}-6 x+1$, there are possibly 4,2 , or 0 positive roots and $l$ negative root.

## Rational Root Theorem:

If all $a_{i}$ are integers, then the only possible rational roots of $P(x)$ are of the form $\pm \frac{k}{a_{n}}$, where $k$ is a factor of $a_{0}$.

