HELPER LOCKS FOR FORK-JOIN PARALLEL PROGRAMMING

Kunal Agrawal Charles E. Leiserson Jim Sukha
kunal@cse.wustl.edu cel@mit.edu sukhaj@mit.edu
Washington University MIT Computer Science and MIT Computer Science and
at St. Louis Artificial Intelligence Laboratory Artificial Intelligence Laboratory

HELPER RUNTIME

Fork-join languages such as Cilk [2] do not efficiently exploit In [1] we present HELPER, a runtime system that supports helper
parallelism nested inside a locked critical section. For example, locks in Cilk. HELPER supports parallel regions by creating a
consider the following code which repeatedly performs insertions separate deque pool for every region R. A deque pool contains
into a resizable hash table H. This code uses a reader/writer lock up to P deques, one for each worker thread used to execute a
to prevent inserts from interfering with a resize. Although the program. A worker thread enters a region R and creates a deque
resize itself (which rebuilds the table) can be parallelized, Cilk for R in three ways, by (1) starting region R, (2) helping with R’s
may still execute the resize serially, since processors waiting to lock, or (3) through random work-stealing.

insert block instead of helping to complete the resize.

¥

e
)

xQ,
o
5

volid hash insert (HashTable* H, int key) {
acquire (H->resize lock, READER);
int b = hashcode (key) ;
locked bucket insert (H->buckets[b], key);
release (H->resize lock);

if (overflow (H)) /Example Execution
resize table (H) ; 1.P1: start region of R, protected by_L.
— 2. P2: steals 3 from P1, 9 calls help region (L)
3. P2: steals in region R, gets ¢ from P1
4. P3: steals 5 from P1

\5. P4: tries to steal from P1, enters into R. /

J

volid resize table (HashTable* H) {
acquire (H->resize lock, WRITER);

Buckets* newB = create buckets (2*H->size);
parallel for b in H->buckets: BOUNDS ON TIME AND SPACE
rehash bucket (H->buckets[b]);
H->buckets = newB; H->si1ze = 2*H->s1ze;
release (H->resize lock); DEFINITIONS: \
} * 1,(D): REGION WORK of D

.) . # of nodes, ighoring nested regions
vold parallel inserts (HashTable* H, int n) { °i(D)RH3§V$m§ofD gions)

parallel!._for k in 1l:n (longest path ignoring nested regions)
hash_:l.nsert (H, rand ()) M e G = (V, E) REGION DAG:

Let (R, R,) be an edge in G if region
R, starts R, or helps for R,’s lock.

e S,(D): Stack space needed to execute
H ELPER LOCKS Qserially, ignoring nested regions./

4 R

A helper lock L behaves like an ordinary lock, except " THEOREM 1: HE
that it is connected to a parallel region R. A 4 Z
processor that fails to acquire a helper lock L tries to O + E Ig(1+PV/E)

all regions R

\help complete the parallel region connected to L [1]y N J)

.. .. i \ |
Sufficient condition for linear \

To use helper locks for a resizable hash table: speedup with HELPER: Best case: IfE =V, termis O(V Ig P).

= Specify a table resize function as a parallel region R. Every region R has (no hellp_region calls)
Worst case: If E =PV, termis O(PV).

= Call a resize by starting a region, protected by a helper lock L. T,(R) / (t,(R) + P) >> P.
4

" An insert that fails to acquire L tries to help complete a resize

r N
region R if there is an R currently holding L. THEOREM 2: HELPER stack space usage is () P Z Sl(R) .
- _ allregionsR

To support helper locks, we add two constructs to Cilk, the
start regionandhelp region constructs.

FUTURE WORK

We have modified Cilk to implement a prototype of HELPER. We
are interested in using this system in future research.

voild hash_insert(HashTable* H, Int key) {

IT (lacquired_read_lock(L)) {
help_region(L); Enter and help complete |
) J

the region protected by L.

= Are there practical applications where using helper locks leads
to simpler and/or more efficient parallel programs?

as a parallel region,

protected by the lock L.,

sync; " |s HELPER’s runtime support for parallel regions useful for

supporting other extensions to a Cilk-like language?

1T (overflow(H)) y y , , , ,
start_region(resize table) (L); iStarts resize table " How lightweight can an implementation of helper locks be?

}

REFERENCES

[1] K. Agrawal, C. E. Leiserson, and J. Sukha. Helper Locks for Fork-Join Parallel Programming. In PPoPP 2010.
[2] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5 Multithreaded Language. In PLD/ 1998.

