
Appendix A

Restrictions to the Libxac Interface

A.1 Restrictions to Libxac

This appendix enumerates the various programming restrictions when using Libxac, and discusses
potential improvements to the implementation.

1. Libxac’s most significant restriction is that only one transaction per process is allowed.
Libxac uses the no-access, read-only, and read/write memory protections provided by the
mmap function. If the OS maintains a single memory map for each process rather than for
each thread, we can not use memory protections to map a page read-only for one thread and
read/write for a different thread on the same process. In this case, Libxac could not support
multiple concurrent transactions on the same process without using a different mechanism for
detecting the pages accessed by a transaction.

2. Libxac currently supports having only one shared memory segment. In other words, all
concurrent processes that xMmap the same file must call xMmap with the same filename and
length arguments. The motivation for this restriction is that programs can often simply make
one call to xMmap to map one large file for the entire shared memory space.

The implementation described in Chapter 3 could theoretically be extended to support the full
functionality of normal mmap (i.e allowing multiple xMmap calls on different files, mapping only
part of a file instead of the entire file, or mapping the same page in a file to multiple addresses).
These extensions would require Libxac to maintain a more complicated map between the
transactional page addresses returned by xMmap and the physical page address of files on disk,
but these changes are, in principle, relatively straightforward. In this extension, accesses to
pages in multiple files would be treated as though the multiple files were concatenated logically
into one large shared file.

This idea is different from the proposal of allowing a process access to multiple shared memory
segments that are logically distinct in terms of the Libxac’s atomicity guarantees. Having two
distinct shared-memory segments (for example, A and B) has interesting semantics. Libxac

would guarantee that transactions are serializable only with respect to operations on A, and
also with respect to only operations on B. The serial order of transactions could be different
for A and for B, however, so there is no guarantee of serializability if we consider all operations
on A and B together.

3. The prototype arbitrarily sets the maximum size of the shared memory segment to 100,000
pages, and the maximum number of concurrent transactions to 16. This restriction allowed
us to implement control data structures simply (and inefficiently) with large fixed-size arrays.
Using dynamic control structures easily removes this limitation, and may also improve the
caching behavior of the runtime system.

79

4. Linux limits a process to having at most 216 different memory segments (virtual memory
areas, or vma’s in the kernel [10]) at any point in time. Whenever a transaction touches a
page, Libxac calls mmap on that page and generates a new segment for that page. Thus, a
single transaction can not possibly touch more than 216 pages at once.

One way of raising this limit, aside from modifying the Linux kernel, is to concatenate adjacent
segments together when a transaction touches adjacent pages. This proposal does not fix
the problem, as it is possible for a transaction to touch every other page. In that situation
however, Libxac should escalate its concurrency control and work at a larger granularity,
treating multiple pages as a single large segment when it detects a large transaction.

5. Every xbegin function call must be properly paired with an xend. The control flow of a
program should not jump out of a transaction. If we also require that every xbegin must
be paired with exactly one xend, then it is possible to detect unmatched function calls with
compiler support.

6. As described in Section 3.2, recovery for durable transactions has not been implemented. Also,
the structure of the log file is incorrect for transactions on multiple processes if transactions
write data pages to the log that can be confused as metadata pages. Separating the meta-
data and actual data pages into separate files solves this problem and also facilitates further
optimizations such as logging only page diffs.

7. Libxac does not provide any mechanism for allocating memory from the shared memory
segment. This shortcoming is not technically a restriction on the implementation, but it is quite
inconvenient if the programmer wishes to dynamically allocate and work with transactional
objects. Providing a malloc function that allocates memory from the shared segment might
lead to simpler user programs.

80

Appendix B

Transaction Recovery in Libxac

For durable transactions the Libxac prototype writes meta-data pages in the log and synchronously
force changes out to disk. This in principle is enough to recover from a program crash and restore
the user data file back to a consistent state, assuming the disk itself has not failed.

Although Libxac writes enough data to disk to do recovery, I have not yet implemented the
recovery module for the prototype. In this section, I sketch a possible algorithm for transaction
recovery when transactions execute on a single process.

Libxac’s log files have the following structure:

• The XCOMMIT pages appear in the log in the order that transactions are committed.

• The XBEGIN page points to all pages belonging to T , and also to any spill-over pages for this
storing this list. For any transaction, T , all spill-over pages and data pages written by T
appear between the T ’s XBEGIN and XCOMMIT (or XABORT) meta-data pages.

• All pages in a new log file are initialized to all zeros before the log file is used.

Figure B-1 illustrates two example layouts for the log file when transactions are executing on a
single process and two processes, respectively. At a high level, the recovery algorithm is as follows:

1. Go to log file containing the last XCHECKPT BEGIN page that has a valid matching XCHECKPT END.1

Scan through the entire log starting at this point and compute which transaction each page in
the log belongs to.

We know that every valid page that comes after the XCHECKPT BEGIN page is either (i) a
meta-data page, (ii) a data page pointed to by an XBEGIN page in the list stored in the
XCHECKPT BEGIN page, or (iii) a data page pointed to by some XBEGIN page that comes after
the XCHECKPT BEGIN page. Therefore, we can match pages for all transactions after the last
checkpoint. Any unmatched pages are considered to be invalid.

For a transaction T , we may detect the following inconsistencies:

• T has an XBEGIN page, but no XCOMMIT or XABORT page. This event means T had not
completed at the time of the crash, or the XCOMMIT page did not make it out to disk.

• T has both XBEGIN and XCOMMIT pages, but the checksum is wrong. Since writes of mul-
tiple pages are not guaranteed to happen atomically, the XCOMMIT page may get written
to disk before one of the data pages. The checksum should detect this error.

• T does not have an XBEGIN page. This situation can occur if a system crashes before the
XBEGIN is flushed to disk. In this case, none of T ’s data pages will be pointed to by a
valid transaction.

1We assume Libxac maintains a separate file on disk recording the location of all checkpoint meta-data pages.
This file is synchronized a second fsync that occurs after the first fsync does the actual synchronization. Thus, the
XCHECKPT END page is not considered valid until this meta-meta-data appears on disk.

81

(a) (b)

Figure B-1: An example of a Libxac log file when transactions execute (a) on one process, and (b) on two
processes.

82

In these three situations, the transaction T is considered to be aborted.

2. Once we have identified which transactions in the log were successfully committed, we can
replay all those transactions in the correct serial order. This process is done by copying a
transaction’s pages into the original file. Alternatively, we could also attempting a more clever
algorithm that works from the end of the log and only copies the latest version of each page
back into the file.

Note that in the actual implementation, the recovery process must itself keep a log of its changes
so we can restore the data to a consistent state in case of a crash during the recovery process.

In the example in Figure B-1 (a), scanning through the log file, we discover that the last valid
checkpoint started at page 9. We only need to repeat transaction 3 because it is pointed to by the
XCHECKPT BEGIN page, and transaction 4 because it comes after that page. Transaction 5 attempted
to commit, and the XCOMMIT page made it to disk. Its checksum will be incorrect however, as the
corresponding XBEGIN page did not make it successfully to disk. Note that the system must have
crashed before fsync returned. Thus, Libxac did not see transaction 5 finish its commit, and no
other transaction could have read values written by 5.

The example in Figure B-1 (b) shows transactions executing concurrently on two processes. In
this case, pages from different transactions can be interleaved in the log file. For this example,
transaction 3 crashed while attempting to commit, and thus its XBEGIN page at page 7 did not suc-
cessfully get written to disk. Transaction 4 that was executing on the other process did successfully
commit however. Transaction 4 could not have read pages from transaction 3 because the fsync

that was writing transaction 3’s data did not succeed.
When all transactions are executed on a single process (but checkpointing may be done by a

different process), this recovery process works correctly because Libxac guarantees that the log will
have at most two invalid data pages interleaved between valid log pages (the two pages reserved for
XCHECKPT BEGIN and XCHECKPT END, in case the checkpointing process crashed). Since we record the
pointers to the checkpoint meta-data pages in a separate file, we can always distinguish meta-data
pages from data pages.

Unfortunately, this recovery algorithm does not always work when two or more processes execute
transactions. In Figure B-1(b), when we see pages 9 and 14 in the log, these could either be meta-data
pages for transaction 4, or they could theoretically be data pages for transaction 3 that crashed.
This proposed recovery algorithm assumes that it is always possible to distinguish between data
pages and meta-data pages. It seems quite unlikely that a programmer would accidentally execute
a transaction that writes data pages that are exactly the meta-data plus data pages for a valid
transaction. It is conceivable, however, that a programmer might call xMmap on a log file generated
by Libxac, and perhaps copy a portion of this file as part of a transaction. In this case, the recovery
process can no longer distinguish between data and meta-data.

When pages from transactions on different processes can be interleaved, it seems difficult to
differentiate between data and meta-data without imposing additional structure on the log file.
Possible solutions to this problem are to enforce some global structure in log (ex. all odd pages are
meta-data, all even pages are data), to use separate log files for each process, or to use separate
files for data and meta-data. The last two options are perhaps the most practical, although these
implementations may require multiple disks to achieve good performance. Otherwise, the system
may waste a significant amount of time doing disk seeks between two different files on disk.

83

84

Appendix C

Detailed Experimental Results

This appendix presents a more detailed description of some of the experiments described in Chapters
4 and 5. It also contains more detailed data collected from these experiments.

C.1 Timer Resolution

In this section, I describe an experiment to determine the resolution of the timers used in the
empirical studies. Using the processor’s cycle counter and gettimeofday is accurate at least for
measuring times greater than 50 ns and 10 µs, respectively.

In all experiments, I measured the time for an event by checking the system time before and after
the event and reporting the difference. For nondurable transactions, I typically used the processor’s
cycle counter, via the rdtsc instruction. For longer events, I used two calls to the gettimeofday

function. To understand the resolution of this method, I measured the difference between two
consecutive calls to check the timer, with no code in between. The results from repeating this
experiment 10,000 times for rdtsc and gettimeofday are shown in Tables C.1 and C.2, respectively.

In Table C.1, the data on Machines 1 and 2 suggests that the delay when checking the cycle
counter is about 100 clock cycles (less than 50 ns). The delay is even less for Machines 3 and 4.
Although the maximum value on Machine 1 was about 12 µs, the 99th percentile was still under 50
ns, suggesting that this mechanism for estimating times is reasonably accurate for measuring times
to within a few tenths of a microsecond, provided we make repeated measurements.

From the data in Table C.2, we observe that the delay between gettimeofday calls on all four
machines was less than 7 microseconds for 99% of measurements. This data suggests gettimeofday
has a resolution of a few microseconds.

On Machine 1, the maximum delay was approximately 200 µs. If we observe the distribution of
delay times, as shown in Figure C-1, then we see that this was a rare event. This behavior is not
surprising, as it is impossible to stop basic system processes during our experiments. An interrupt
or other operating system process may have caused the timer code to get swapped out. These rare
but expensive delays must be kept in mind when interpreting the experimental results.

Machine Mean St. Dev Min Median 99th Percentile Max

1 99.5 458 92 92 112 35332
2 92.0 0.92 92 92 92 184
3 9.0 3.2 5 8 23 36
4 41.0 0.16 41 41 41 51

Table C.1: Delay (in clock cycles) between successive calls to timer using rdtsc instruction, 10,000 repeti-
tions.

85

Machine Mean St. Dev Min Median 99th Percentile Max

1 2.87 2.24 2.0 3.0 7.0 201.0
2 0.87 0.39 0.0 1.0 1.0 20.0
3 1.3 0.50 1.0 1.0 2.0 8.0
4 1.55 2.99 1.0 2.0 2.0 271.0

Table C.2: Delay between successive calls to gettimeofday (in µs), 10,000 repetitions.

 1

 10

 100

 1000

 1 10 100 1000 10000

T
im

e
(u

s)

kth longest delay.

kth longest delay between gettimeofday calls

Machine 1

Figure C-1: Machine 1:Distribution of Delay Times Between Successive gettimeofday Calls.

In summary, the data suggests we can use gettimeofday to measure times longer than approx-
imately 10 µs with reasonable accuracy provided the time interval is long enough or we do enough
repetitions.

C.2 Page-Touch Experiments

This section contains results from the page-touch experiments on Machines 2 through 4. These
experiments were previously described in Section 4.2.1 and 4.2.2. Figures C-2 through C-4 plot the
times per page read and write in the page-touch experiments with nondurable transactions.

C.3 Experiments on Various System Calls

In this section, I present detailed data from the microbenchmark experiments discussed in Section
4.2.3.

Memory Mapping and Fault Handlers

Table C.3 is a more complete version of Table 4.3.

86

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10

C

yc
le

s
/ 1

00
0

k

Machine 2: Transaction Reading 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s

/ 1
00

0

k

Machine 2: Transaction Writing 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

Figure C-2: Average time per page to execute the transactions shown in Figure 4-3 on Machine 2. For each
value of n, each transaction was repeated 1000 times.

87

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s/

10
00

k

Machine 3: Transaction Reading 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s/

10
00

k

Machine 3: Transaction Writing 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

Figure C-3: Average time per page to execute the transactions shown in Figure 4-3 on Machine 3. For each
value of n, each transaction was repeated 1000 times.

88

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

C

yc
le

s
/ 1

00
0

k

Machine 4: Transaction Reading 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s

/ 1
00

0

k

Machine 4: Transaction Writing 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

Figure C-4: Average time per page to execute the transactions shown in Figure 4-3 on Machine 4. For each
value of n, each transaction was repeated 1000 times.

89

Operation Mean St. Dev Min Median 99th %tile Max

1: Entering SIGSEGV 32,216 11,268 33,320 33,956 54,772 648,236
1: mmap 15,156 2,747 13,916 14,580 26,672 70,748
1: Exiting SIGSEGV 29,323 9,288 27,408 28,428 44,996 635,340

2: Entering SIGSEGV 8,032 546 7,884 8,032 8,132 45,720
2: mmap 10,054 639 9,920 10,024 10,380 49,520
2: Exiting SIGSEGV 9,723 830 9,632 9,704 9,872 46,960
3: Entering SIGSEGV 3,489 182 3,238 3,466 3,741 13,190
3: mmap 3,228 512 2,892 3,205 3,420 13,335
3: Exiting SIGSEGV 4,745 110 4,377 4,709 4,844 9,204
4: Entering SIGSEGV 3,078 613 2,971 3,051 3,155 30,968
4: mmap 2,282 711 2,142 2,259 2,340 56,322
4: Exiting SIGSEGV 3,140 537 3,055 3,114 3,267 21,255

Table C.3: Timing data for entering SIGSEGV handler, calling mmap, and leaving handler, 10,000 repetitions.
All times are processor cycles.

Operation Mean St. Dev Min Median 99th %tile Max

1: memcpy 1,122,167 129,167 1,064,328 1,076,620 1.803,956 2,204,000

2: memcpy 1,052,253 7,379 1,046,292 1,052,316 1,086,384 1,106,784
3: memcpy 608,482 8,049 605,017 608,112 612,237 791,724
4: memcpy 931,823 98,636 925,048 925,089 953,525 4,037,042

Table C.4: Clock cycles to do 1,000 calls to memcpy between two 4K character arrays in memory, 1,000
repetitions. times are in µs.

Test of memcpy

Table C.4 is a more detailed look at the time required to do memcpy between two arrays 1,000 times
(i.e. the last column of Table 4.5).

C.4 Durable Transactions

All times in this section of the appendix were measured using gettimeofday as the clock.

Page-Touch Experiments

Table C.5 is a more complete version of Table 4.7 from Section 4.3.

Synchronizing a File

Table C.6 is a more complete version of Table 4.8.

Write Speed

This benchmark measures the time to write 10,000 pages to a file, 1 page at a time, using the write

system call. This operation was repeated 1000 times. The results from this test are shown below in
Table C.7.

The data suggests that lseek is actually lazy, with the disk head not actually moving until an
I/O operation executes. This test was done when the write-cache on all machines was enabled.

90

Machine Mean σ Min. Median 99th %tile Max
1, Page Read 38.6 65.0 34.6 35.5 52.7 2044.5
1, Page Read w. Adv. 22.4 75.0 18.1 18.8 36.0 2032.2
1, Page Write 1569.3 4146.0 560.4 731.3 9578.2 106,560
1, Page Write w. Adv. 1297.4 2808.0 524.4 842.5 8645.2 54,514
3(a), Page Read 15.4 33.1 14.1 14.4 14.7 1062.6
3(a), Page Read w. Adv. 14.0 32.5 11.8 13.0 13.5 1039.4
3(a), Page Write 235.0 276.3 108.7 126.0 1231.71 1800.13
3(a), Page Write w. Adv. 179.4 173.9 102.9 114.7 822.3 1612.6
3(b), Page Read 16.4 10.6 15.5 15.8 30.2 344.6
3(b), Page Read w. Adv. 15.1 25.2 12.7 13.8 25.9 636.2
3(b), Page Write 226.8 297.6 103.9 121.2 1510.3 1798.0
3(b), Page Write w. Adv. 182.2 203.8 97.8 115.3 1072.4 1674.3

Table C.5: Average Access Time (µs) per Page, for Transactions Touching 1024 Pages.

Operation Mean St. Dev Min Median 99th Percentile Max

1: msync 8 1 7 8 16 27
1: fsync 13575 184338 2439 8015 12672 5836456

2: msync 11 3 8 9 19 25
2: fsync 5137 36919 294 2663 41061 1156245
3(a): msync 5 1 4 5 6 12
3(a): fsync 4794 24018 735 4002 7000 761552
3(b): msync 5 1 4 5 6 12
3(b): fsync 4698 23090 818 3949 6925 731910
4: msync 33 6 28 31 43 111
4: fsync 3531 46,721 592 632 32,576 1,460,662

Table C.6: Timing data for calling msync and fsync on a 10,000 page file with a random page modified,
1000 repetitions. All times are in µs.

Operation Mean St. Dev Min Median 99th %tile Max

1: lseek 6 2 5 6 13 62
1: write 103,446 244,907 90,564 92,088 113,437 5,615,347

2: lseek 4 13 2 3 4 406
2: write 151,895 166,318 119,006 119,571 1,193,881 1,278,444
3(a): lseek 3 1 2 2 4 9
3(a): write 63,465 4,036 62,992 63,270 64,268 190,798
3(b): lseek 3 1 2 3 4 9
3(b): write 92,507 70,402 78,171 83,658 586,612 837,660
4: lseek 9 5 7 8 9 103
4: write 2,168,185 504,761 1,423,656 2,521,593 2,893,774 3,070,492

Table C.7: Time to write 10,000 pages to a file, 1,000 repetitions. All times are in µs.

91

Machine Hash Mean σ Min Median 99th % Max
1 SHA1 85.6 16.5 81.7 82.9 118.6 685.6
1 MD5 36.3 10.1 34.4 35.1 67.3 680.5
2 SHA1 84.5 2.3 83.6 84.2 86.4 177.5
2 MD5 35.5 5.7 34.4 35.5 35.9 582.0
4 SHA1 105.2 555.9 52.2 52.3 69.2 6,069.2
4 MD5 54.6 412.2 25.9 25.9 30.6 6,050.1

Table C.8: Time to compute SHA1 and MD5 hash functions on a single page. All times are in thousands of
clock cycles.

Checksum Calculations

Table C.8 shows the time required to calculate the SHA1 and MD5 hash functions on a single page.
On Machines 1 and 2, the average time for MD5 is 12 and 15 µs, respectively. This data suggests that
the overhead of computing a checksum of each page a transaction writes on a transaction commit is
not too expensive for small durable transactions.

C.5 Concurrency Tests

Table C.9 shows the average time required per nondurable transaction for the concurrency tests
described in Section 4.4. This table represents a more complete version of Table 4.9. For transactions
on two processes, I report the number of aborted transactions on each process. All times in this
section are measured with gettimeofday.

Similarly, Table C.10 is a more complete version of the data for concurrency tests for durable
transactions, originally presented in Table 4.10.

C.6 Search Trees using Libxac

I use gettimeofday as the timers for all experiments on the Libxac search trees. For insertions
done on a single process, I measure and record the time required for every insertion. To provide
a comparison on two processes, I use a call to fork, and did 125,000 insertions on each process.
To estimate the time required for each insertion, I record the time to complete each insertion and
compare that to the time before the call to fork. Note that this introduce a slight bias in favor of
the single process because I am also including the time required to do the fork operation. On the
other hand, each insertion on two processes requires only one call to gettimeofday instead of two.

Insertions as Nondurable Transactions

This section describes the details of the experiments done on the Libxac search trees and on Berkeley
DB’s B-tree and presents a complete table of results for nondurable and durable transactions. See
Section 5.4 for details.

With the Libxac versions of the B+-tree and the CO B-tree, I measured the time to insert
250,000 elements. Each search tree had 512-byte data blocks, each indexed by a 64-bit key. For the
B+-tree, the blocksize was 4K. The keys for the inserted elements were chosen at random using the
rand function, with each insert being a separate transaction. I tested 2 versions of the B+-tree: one
unoptimized implementation, and one that uses the advisory function. I only tested an unoptimized
CO B-tree.

For the Berkeley DB B-Tree, I used the DB AUTO COMMIT feature to automatically make each put

operation on the B-tree its own transaction. On Machines 1 and 3, I ran Berkeley DB version 4.2
(-ldb-4.2). Machines 2 and 4 had Berkeley DB version 4.1 (-ldb-4.1). On each machine, the
cache size was set to be 2 caches, 1 MB in size.

92

Machine Test # Avg. Time per Standard Dev. Speedup
Xaction (µs) (µs)

1 A, 1 proc. 32.2 0.27
1 A, 2 proc. 30.7 0.36 1.05
1 B, 1 proc. 33.6 0.25
1 B, 2 proc. 32.2 0.87 1.04
1 C, 1 proc. 1,453 4.90
1 C, 2 proc. 1,460 56.0 1.00

2 A, 1 proc. 26.2 0.10
2 A, 2 proc. 23.0 0.15 1.14
2 B, 1 proc. 28.3 0.26
2 B, 2 proc. 24.2 0.48 1.17
2 C, 1 proc. 1,787 30.3
2 C, 2 proc. 903 36.3 1.98

3(a) A, 1 proc. 22.9 0.63
3(a) A, 2 proc. 24.3 1.14 0.94
3(a) B, 1 proc. 28.1 0.42
3(a) B, 2 proc. 27.5 1.05 1.02
3(a) C, 1 proc. 2,259 3.90
3(a) C, 2 proc. 1,132 1.82 2.00

3(b) A, 1 proc. 24.3 1.36
3(b) A, 2 proc. 24.9 1.07 0.98
3(b) B, 1 proc. 28.2 1.67
3(b) B, 2 proc. 26.3 0.74 1.07
3(b) C, 1 proc. 2,248 2.74
3(b) C, 2 proc. 1,130 1.30 1.99

4 A, 1 proc. 109 3.39
4 A, 2 proc. 185 13.1 0.59
4 B, 1 proc. 121 3.39
4 B, 2 proc. 190 11.5 0.64
4 C, 1 proc. 10,487 8.51
4 C, 2 proc. 10,565 8.86 0.99

Table C.9: Concurrency tests for nondurable transactions. Times are µs per transaction.

93

Machine Test # Mean Time per Xaction (µs) Standard Dev. (µs) Speedup

1 A, 1 proc. 8,231 234
1 A, 2 proc. 8,531 3500 0.96
1 B, 1 proc. 8,868 46.5
1 B, 2 proc. 8,878 3133 1.00
1 C, 1 proc. 9,125 65.6
1 C, 2 proc. 10,042 1452 0.91

3(a) A, 1 proc. 6,116 8.23
3(a) A, 2 proc. 6,162 95.3 0.99
3(a) B, 1 proc. 6,113 3.28
3(a) B, 2 proc. 6,201 93.8 0.98
3(a) C, 1 proc. 6,315 6.57
3(a) C, 2 proc. 6,626 464 0.95

3(b) A, 1 proc. 6,210 23.1
3(b) A, 2 proc. 6,264 64.8 0.99
3(b) B, 1 proc. 6,215 18.1
3(b) B, 2 proc. 6,213 20.1 1.00
3(b) C, 1 proc. 6,388 16.2
3(b) C, 2 proc. 6,619 438.4 0.97

Table C.10: Concurrency tests for durable transactions. Times are per transaction.

To make transactions nondurable, for the machines Berkeley DB 4.2, I used the DB TXN NOT DURABLE

flag to turn off durability. For Machines 2 and 4, finding an appropriate point of comparison with
Berkeley DB was challenging, as using Berkeley DB version 4.1 seemed to cause some incompatibility
with this flag. Instead, I used the flag DB TXN NOSYNC on Machines 2 and 4.

Durable Insertions with Write-Cache Enabled

Table C.12 shows the average times per durable insert when the write-caches on the harddrives on
all machines were enabled. It is unclear how to interpret these numbers, as these transactions are
not strictly durable. The main point is, however, that the performance of Libxac search trees and
Berkeley DB are still comparable under different hardware settings.

94

Machine Search Tree # Proc. Avg. Time (µs) # Aborts
per Insert

1 B+-tree, no adv. 1 411 –
1 B+-tree, no adv. 2 488 59,992, 56,193,
1 B+-tree, w. adv. 1 240 –
1 B+-tree, w. adv. 2 236 27,753, 28,041
1 CO B-tree, no adv. 1 490 –
1 CO B-tree, no adv. 2 455 3,370, 2,876
1 Berkeley DB 1 37 –
1 Berkeley DB 2 29 –
2 B+-tree, no adv. 1 244 –
2 B+-tree, no adv. 2 191 32,270, 33,397,
2 B+-tree, w. adv. 1 189 –
2 B+-tree, w. adv. 2 152 31,491, 27,238
2 CO B-tree, no adv. 1 260 –
2 CO B-tree, no adv. 2 189 3,733, 5,785
2 Berkeley DB 1 24 –

3(a) B+-tree, no adv. 1 266 –
3(a) B+-tree, no adv. 2 264 31,128, 27,250
3(a) B+-tree, w. adv. 1 232 –
3(a) B+-tree, w. adv. 2 229 26,877, 25,497
3(a) CO B-tree, no adv. 1 338 –
3(a) CO B-tree, no adv. 2 337 3,345, 5,166
3(a) Berkeley DB 1 26 –
3(a) Berkeley DB 2 20 –
4 B+-tree, no adv. 1 18,019 –
4 B+-tree, w. adv. 1 17,408 –
4 CO B-tree, no adv. 1 2,286 –
4 Berkeley DB 1 393 –

Table C.11: Time to do 250,000 nondurable insertions into Libxac search trees.

Machine B+-tree CO B-tree Berkeley DB B-Tree
1 2.6 2.2 2.1
2 6.0 4.8 4.6

3(a) 2.7 2.1 6.5
3(b) 2.0 1.7 14.1

Table C.12: Time to do 250,000 durable insertions on a single process into the various search trees, with
write-caches on the harddrives enabled. All times are in ms.

95

96

