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Abstract

Memory-mapped transactions combine the advantages of both memory mapping and transactions
to provide a programming interface for concurrently accessing data on disk without explicit I/O or
locking operations. This interface enables a programmer to design a complex serial program that
accesses only main memory, and with little to no modification, convert the program into correct
code with multiple processes that can simultaneously access disk.

I implemented Libxac, a prototype for an efficient and portable system supporting memory-
mapped transactions. Libxac is a C library that supports atomic transactions on memory-mapped
files. Libxac guarantees that transactions are serializable, and it uses a multiversion concurrency
control algorithm to ensure that all transactions, even aborted transactions, always see a consistent
view of a memory-mapped file. Libxac was tested on Linux, and it is portable because it is
written as a user-space library, and because it does not rely on special operating system support for
transactions.

With Libxac, I was easily able to convert existing serial, memory-mapped implementations of
a B+-tree and a cache-oblivious B-tree into parallel versions that support concurrent searches and
insertions. To test the performance of memory-mapped transactions, I ran several experiments
inserting elements with random keys into the Libxac B+-tree and Libxac cache-oblivious B-tree.
When a single process performed each insertion as a durable transaction, the Libxac search trees
ran between 4% slower and 67% faster than the B-tree for Berkeley DB, a high-quality transaction
system. Memory-mapped transactions have the potential to greatly simplify the programming of
concurrent data structures for databases.
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