
Chapter 2

The Libxac Interface

In this chapter, I present the specification for Libxac, a C library supporting memory-mapped trans-
actions. Libxac demonstrates that a programming interface based on memory-mapped transactions
can have a well-defined and usable specification.

In Section 2.1, I illustrate how to write programs with memory-mapped transactions. I present
the prototypes for Libxac’s basic functions for nondurable transactions and exhibit their use in a
complete program. Libxac’s interface, modeled after ordinary memory mapping, provides an xMmap

function that allows a programmer to memory-map a file transactionally. A programmer can easily
specify a transaction by enclosing the relevant code in between xbegin and xend function calls,
and the runtime automatically detects which pages a transaction accesses. Section 2.1 also illus-
trates how Libxac supports nested transactions by subsuming inner transactions into the outermost
transaction, and describes additional functions for durable transactions.

In Section 2.2, I show that memory-mapped transactions can have well-defined semantics by
describing Libxac’s memory model. This model guarantees that both committed and aborted
transaction instances are “serializable,” and that aborted transactions always see a consistent view
of the memory-mapped file. Transactions abort synchronously at the xend call, and only changes
to the xMmaped file are rolled back on an abort; any changes that the transaction makes to local
variables remain. These restrictions on the behavior of aborted transactions, I argue, lead to more
predictable program behavior and thus simpler programs.

Because memory-mapped transactions provide a simple interface, opportunities for additional
program optimizations exist. I discuss three functions for optimizing Libxac programs in Section
2.3. First, Libxac provides a function for explicitly validating a transaction in the middle of
execution. A program can prematurely abort a transaction if this function reports that the runtime
has already detected a conflict. Second, Libxac uses a multiversion concurrency control scheme
to provide special functions for specifying read-only transactions that never generate transaction
conflicts. Finally, Libxac provides an advisory function that reduces the overhead of automatic
detection of pages accessed by a transaction.

I explain how memory-mapped transactions fit in the context of other work in Section 2.4. I
briefly describe other systems that provide mechanisms for simplifying concurrent and/or persistent
programming, focusing on three areas: transaction systems for databases, persistent storage systems,
and transactional memory.

In Section 2.5, I conclude with a summary of the main advantages of an interface based on
memory-mapped transactions. Programs and data structures written using memory-mapped trans-
actions are modular because they separate the concurrency structure of the program from the specific
implementation. Because memory-mapped transactions hide details such as I/O operations and lock-
ing, programmers can easily code complex but algorithmically efficient data structures. Finally, an
interface based on memory-mapped transactions is flexible because it can provide features such as
multiversion concurrency control and support for durable transactions.

25



int xInit(const char *path,

int flags);

This function initializes Libxac. The path ar-
gument specifies where Libxac stores its log and
control files. The flag specifies the kind of transac-
tion to support (either NONDURABLE or DURABLE).

int xShutdown(void);

This function shuts down Libxac. This function
should be called only after finishing all transactions
on all processes.

void* xMmap(const char *name,

size_t length);

The xMmap function memory-maps the first length
bytes of the specified file transactionally. Length
must be a multiple of the system page size. The
function returns a pointer to the transactionally-
mapped file, or MAP FAILED on an error.

int xMunmap(const char *name); The xMunmap unmaps the specified file.

int xbegin(void);
The xbegin function marks the beginning of a
transaction.

int xend(void);

The xend function marks the end of a transaction.
Returns COMMITTED (ABORTED) if the transaction
completed successfully (unsuccessfully). For a
nested transaction, xend returns PENDING if no
conflict has been detected, and FAILED otherwise.

Table 2.1: The Libxac functions for nondurable transactions.

2.1 Programming with Libxac

In this section, I illustrate how to write programs with memory-mapped transactions using Libxac.
First, I present the prototypes for Libxac’s basic functions for nondurable transactions and demon-
strate their use in two complete sample programs. Next, I describe how Libxac’s supports nested
subsumed transactions with another sample program. Finally, I describe Libxac’s functions for
supporting durable transactions and some restrictions to the Libxac interface.

The Libxac Specification

Table 2.1 gives the prototypes for Libxac’s basic functions. All functions except xMmap and xend

return 0 if they complete successfully and a nonzero error code otherwise.

A Simple Libxac Program

Figure 2-1 illustrates a simple program using Libxac that increments the first integer stored in the
file input.db.

Line 5 calls xInit to initialize Libxac. The second argument is a flag specifying whether
transactions should be durable or nondurable. For durable transactions, Libxac writes enough
information to disk to guarantee that the data can be restored to a consistent state, even if the
program crashes during execution.

Line 6 calls xMmap to transactionally memory-map the first 10 pages of the file input.db. This
function returns a pointer to a shared-memory segment that corresponds to the appropriate pages
in the shared file. The second argument to xMmap must be a multiple of the system’s page size. The

26



1 int fileLength = 10;

2 int main(void) {

3 int* x;

4

5 xInit(".", NONDURABLE);

6 x = (int*)xMmap("input.db", 4096*fileLength);

7

8 while (1) {

9 xbegin();

10 x[0]++;

11 if (xend() == COMMITTED) break;

12 }

13

14 xMunmap("input.db");

15 xShutdown();

16 return 0;

17 }

Figure 2-1: Libxac program that increments the first integer of a memory-mapped file.

function prototype for xMmap is effectively a version of the normal mmap with fewer arguments.1

Lines 8–12 contain the actual transaction, delimited by xbegin and xend function calls. After
calling xMmap, programs may access the shared-memory segment inside a transaction (Line 10).2 The
transaction appears to either execute atomically or not at all. The xend function returns COMMITTED
if the transaction completes successfully, and ABORTED otherwise.

A transaction may abort because of a conflict with another concurrent transaction. This program
encloses the transaction in a simple loop that immediately retries the transaction until it succeeds,
but in a real application, the programmer may want to specify some algorithm for backoff (i.e,
waiting) between transaction retries to reduce contention.

Libxac’s memory model guarantees that transactions are serializable with respect to the shared-
memory segment. In other words, when the program executes, there exists a serial order for all com-
mitted transactions such that execution is consistent with that ordering. For example, if two copies
of the program in Figure 2-1 run concurrently, the execution always appears as if one transaction
happens completely before the other. In particular, the interleaving shown in Figure 1-4 can never
occur. As I describe later in Section 2.2, Libxac actually makes a stronger guarantee, that aborted
transactions see a consistent view of the shared-memory segment as well.

Line 14 calls xMunmap, the transactional analog to munmap. This function should not be called
by a process until all transactions on that process have completed. Line 15 calls xShutdown to shuts
down Libxac, guaranteeing that all changes made to files that have been xMmaped have been stored
on disk. After xShutdown completes, it is safe to modify those files via normal means, such as mmap
or write.

Programs with Complex Transactions

Libxac’s interface is easy to use because specifying a block of code as a transaction is independent
of that code’s complexity. Even a long and complicated transaction in between xbegin and xend still
appears to execute atomically. For example, recall the program using memory-mapped transactions
that reads the first 4-byte integer from each of 5 randomly selected pages in a file and stores their sum

1Memory protections and sharing are handled by Libxac, eliminating the need for those extra arguments. The
xMmap function does not use an offset argument because the prototype currently allows only mappings that start at
the beginning of the file. A more general specification for xMmap would behave more like mmap, handling multiple
shared-memory segments and mappings of only parts of a file.

2Attempting to access the shared-memory segment outside a transaction results in unspecified program behavior
(usually a fatal program error).

27



// Serial version using mmap.

1 int fileLength = 100000;

2 int main(void) {

3 int i, j, sum = 0;

4 int fd;

5 int* x;

6 fd = open("input.db",

7 O_RDWR,

8 0666);

9 x = (int*)mmap(x,

10 4096*fileLength,

11 PROT_READ|PROT_WRITE,

12 MAP_SHARED,

13 fd,

14 0);

15

16

17 for (j = 0; j < 5; j++) {

18 i = rand() % fileLength;

19 sum += x[1024*i];

20 }

21

22 i = rand() % fileLength;

23 x[1024*i] = sum;

24

25

26

27 munmap(x, fileLength);

28 close(fd);

29 return 0;

30 }

// Concurrent version using Libxac

// and xMmap

1 int fileLength = 100000;

2 int main(void) {

3 int i, j, sum = 0;

4 int* x;

5

6 xInit(".", NONDURABLE);

7

8

9 x = (int*)xMmap("input.db",

10 4096*fileLength);

11

12

13

14

15 while (1) {

16 xbegin();

17 for (j = 0; j < 5; j++) {

18 i = rand() % fileLength;

19 sum += x[1024*i];

20 }

21

22 i = rand() % fileLength;

23 x[1024*i] = sum;

24 if (xend()==COMMITTED) break;

25 }

26

27 xMunmap("input.db");

28 xShutdown();

29 return 0;

30 }

Figure 2-2: A side-by-side comparison of the program in Figure 1-2 and the parallel version written with
Libxac.

on a randomly selected 6th page (see Figure 1-6). Figure 2-2 compares the original serial memory-
mapped version of this program to the complete Libxac version. The only significant changes in the
transactional version are the addition of xbegin and xend calls and the while loop to retry aborted
transactions.

Libxac also supports simple nested transactions by subsumption, i.e., nested inner transactions
are considered part of the outermost transaction. This feature is necessary for transactions that in-
volve recursion. Consider the method in Figure 2-3 that recursively walks down a tree and computes
the sum of all the nodes in the tree. An xend call nested inside another transaction returns FAILED
if the runtime detects that the outermost transaction has encountered a conflict and will abort, and
PENDING otherwise.3 In a recursive function, the programmer should only retry the transaction if
the status returned is ABORTED, i.e., when the outermost transaction reaches its xend. Libxac must
support at least subsumed nested transactions if it allows a transaction to call a subroutine that
contains another transaction. This feature is desirable for program modularity: a transaction should
not care whether its subroutines are themselves implemented with transactions.

Interface for Durable Transactions

Programmers using Libxac can choose for all transactions to be durable by calling the xInit

function with the DURABLE flag. When a durable transaction commits, Libxac forces enough data
and meta-data out to a log file on disk to ensure that the changes made by committed transactions

3A side note: the program in Figure 2-3, cannot return answer from inside the transaction because control flow
will skip the xend function call. In general, every xbegin call must be paired with a corresponding xend.

28



1 int sum(tree* t) {

2 int answer = 0;

3 while (1) {

4 xbegin();

5 if (t == NULL) answer = 0;

6 else {

7 answer = t->value + sum(t->left) + sum(t->right);

8 }

9 if (xend() != ABORTED) break;

10 }

11 return answer;

12 }

Figure 2-3: A recursive function that uses nested transactions.

are not lost if the program or system crashes.4 There are three library functions specific to durable
transactions:

1. xRecover: If the program crashes, then calling xRecover on the xMmaped file restores the file
to a consistent state. After recovery has been run, Libxac guarantees that all changes made
by committed transactions have been restored, in the same order as before. Recovery is done
by scanning the log files and copying the changes made by committed transactions back into
the original file.

2. xCheckPoint: Checkpointing reduces the number of transactions that have to be repeated
during recovery by forcing the runtime to copy changes made by committed transactions into
the original file.5

3. xArchive: A log file is no longer needed for recovery once all the changes recorded in that log
file have been copied back to the original file. This function identifies all such log files that are
safe to delete.

For both nondurable and durable transactions, xShutdown automatically executes a xCheckPoint

operation, ensuring that the original file contains consistent data after Libxac has been shut down.
Similarly, the specification of the xInit requires that Libxac verify the integrity of the file and run
xRecover if necessary. The description of these functions for durable transactions, completes the
specification for all the basic functions that a fully functional version of Libxac provides.6

Restrictions on Libxac

The implementation inevitably imposes some restrictions on the Libxac interface. The most signifi-
cant one is that programs using Libxac can have only one transaction per process. Because Libxac

supports concurrency control between processes, not threads, transactions on one thread should not
run concurrently with conflicting code on other threads in the same process. This restriction is diffi-
cult to remove because Linux supports memory protections at a per-process level, not a per-thread
level.

4This guarantee assumes that the hardware (i.e., the disk) has not failed.
5Because of the multiversion concurrency control, after a checkpoint completes, it is not true that the data from

every committed transaction has been copied back into the file. A transaction that is still running may need to access
older values stored in the original file. The checkpoint operation copies as much data as possible, however. If no other
transactions are being executed, then all changes is copied into the original file.

6As a caveat, although I have devised a specification for the recovery, checkpoint, and archive functions, in the
Libxac prototype, in the prototype, I have not actually implemented the recovery or archive routines, and I have only
implemented the implicit xCheckpoint in xShutdown. See Chapter 3 for implementation details.

29



Another restriction is that every xbegin function call must be properly paired with an xend. In
other words, the control flow of a program should never jump out of a transaction without executing
xend. See Appendix A for a more detailed discussion of restrictions to Libxac.

2.2 Semantics of Aborted Transactions

In this section, I argue that memory-mapped transactions can have well-defined semantics by describ-
ing Libxac’s memory model. Libxac guarantees that both committed and aborted transactions are
“serializable,” and that aborted transactions always see a consistent view of the memory-mapped
file. Libxac specifies that transactions abort synchronously upon reaching the xend function, and
that on an abort, only changes to the shared-memory segment are rolled back, and any changes that
the transaction makes to local variables remain. I argue that these restrictions on the behavior of
aborted transactions lead to more predictable program behavior.

Libxac guarantees that transactions on the shared-memory segment appear to happen atomically
or not at all. The committed transactions are serializable, meaning there exists a total order of
all transactions such that the system appears to have executed transactions in that order.7 This
definition of serializability is intuitive and fairly straightforward. For a more formal, textbook
treatment of serializability theory, in both the single-version and multiversion contexts, see [6].

The behavior of a transaction that commits is straightforward because a transaction completes
successfully in only one way. Aborted transactions, however, can be handled in multiple ways. In
this section, I discuss several design decisions for aborted transactions.

Asynchronous vs. Synchronous Aborts

Once the runtime detects a conflict and decides to abort a transaction, it can either abort the
transaction immediately i.e., asynchronously, or it can continue to execute the transaction until it
reaches a specified point where it can be safely aborted synchronously. This specified point can be
in the middle of a transaction, or it can simply be the xend function call. A transaction that will
abort but has not reached a specified point is said to have FAILED.

Libxac synchronously aborts a transaction once the xend function is reached because asyn-
chronous aborts are more difficult to implement cleanly and portably.8 Unfortunately, performing
synchronous aborts may be inefficient for a program with many levels of nested transactions. If
the outermost transaction aborts, the runtime must still return from each nested transaction. An
asynchronous abort might allow the program to jump immediately to the outermost transaction.

Consistent vs. Inconsistent Execution

A system that performs synchronous aborts may specify what kinds of values an FAILED transaction
can see in the shared-memory segment. A transaction’s execution is consistent if a FAILED trans-
action never sees intermediate data from other transactions. A system that guarantees consistent
execution typically requires a multiversion concurrency control protocol.

If a system performs synchronous aborts but does not guarantee a consistent execution, then a
transaction may enter an infinite loop or cause a fatal error because it read a corrupted value in the
shared memory segment. In this case, the runtime must be capable of handling these exceptional
cases.

Libxac supports consistent execution, ensuring that aborted transactions always see a consistent
view of the shared-memory segment. In other words, if one considers only the operations each trans-
action does on the shared-memory segment, then all transactions, whether committed or aborted,
are serializable. If a transaction aborts, its changes to the shared-memory segment are discarded.

7In this situation, I use the term transaction to refer to a particular transaction instance, i.e., the instructions
that execute between an xbegin and an xend. When a transaction is aborted and retried, it counts as a different
transaction instance.

8I have not fully explored using setjmp and longjmp to do asynchronous aborts in Libxac.

30



// Program 1

1 int main(void) {

2 int y = 0, z = 0; a = 0, b = 0;

3 int* x;

4 xInit(".", NONDURABLE);

5 x = xMmap("input.db", 4096);

6

7 while (1) {

8 a++;

9 xbegin();

10 b += x[0];

11 y++;

12 x[0]++;

13 z += (x[0] - 1);

14 if (xend()==COMMITTED) break;

15 }

16

17 munmap(x, 4096);

18 xShutdown();

19 return 0;

20 }

// Program 2

1 int main(void) {

2

3 int* x;

4 xInit(".", NONDURABLE);

5 x = xMmap("input.db", 4096);

6

7 while (1) {

8

9 xbegin();

10

11

12 x[0]--;

13

14 if (xend()==COMMITTED) break;

15 }

16

17 munmap(x, 4096);

18 xShutdown();

19 return 0;

20 }

Figure 2-4: A transaction that that accesses local variables inside a transaction.

If the transaction commits, however, its changes are made visible to transactions that come later in
the order.

In Libxac, the combination of synchronous aborts and consistent execution has an interesting
implication because the point of abort is at the xend function call. Since all transactions see a
consistent view of the shared-memory segment, read-only transactions, in principle, can always
succeed.

Transactional vs. Nontransactional Operations

Libxac only enforces transactional semantics for memory operations that access the shared-memory
segment. We refer to these as transactional operations, while other operations that access process-
local variables or other memory are nontransactional operations.9 By default, it is unclear how
these two types of operations should interact with each other. For example, suppose that the two
programs in Figure 2-4 run concurrently. Program 1 modifies local variables b, y, and z inside the
transaction. If the initial value of x[0] is 42, what are the possible final values for a, b, y and z?

The answer depends on how the system deals with local variables. If the runtime does a complete
rollback, then all nontransactional operations get rolled back to their original value, before the
transaction started executing. With this approach, variables b, y, and z are always rolled back to
0 on a transaction abort. Therefore, after the transaction in Program 1 commits, y is 1 and a is
the number of times the transaction tried to execute. Both b and z will be 41 if the transaction in
Program 2 executes first, and both will be 42 otherwise. Unfortunately, without additional compiler
support for detecting local variables and backing up their original values, it seems difficult to support
complete rollback with only a runtime library. Semantically, complete rollback works equally well
with synchronous or asynchronous aborts and with consistent or inconsistent execution, provided
that it is possible to rollback all nontransactional operations. Nontransactional operations such as
printf may be impossible to roll back however, if the output has already been sent to the user’s
terminal.

Alternatively, the system can roll back only transactional operations. More specifically, Libxac,
reverses changes to the shared-memory segment, but not to local variables. There are several cases
to consider:

9Note that this definition is based on the memory location, not whether the operation happened in a transaction.
The Libxac prototype disallows transactional operations outside of a transaction, but it does specify the behavior of
some nontransactional operations inside a transaction.

31



1. If the runtime does not guarantee consistent execution of transactions, then arbitrary values
may get stored into b and z.

2. If the runtime performs asynchronous aborts and guarantees consistent execution, after Pro-
gram 1 completes, the variable a stores the number of times the transaction was attempted,
while y stores the number of times the transaction made it past the increment of y before
aborting or committing. Similarly, b and z may have different values, depending on how often
and when the transaction was aborted.

3. With synchronous aborts and consistent execution, after Program 1 completes, a and y will
always both equal the number of different transaction instances executed on process 1. Also,
b and z will always have the same value (41 if the transaction in program 2 completes first,
and 42 otherwise).

Libxac satisfies Case 3, the case that most cleanly specifies the behavior of nontransactional
operations inside a transaction. The example program demonstrates that Case 3 leads to the most
predictable behavior for aborted transactions. Conceptually, an aborted transaction is similar to
a committed transaction. First, a transaction modifies its own local copy of the shared-memory
segment. After the xend completes, these changes atomically replace the actual values in the shared-
memory segment only if the transaction commits.

One final method for handling nontransactional operations is to simply ignore them, leaving their
behavior completely unspecified. This option is undesirable, however, as the program in Figure 2-4
demonstrates that it is possible to have well-defined semantics for some nontransactional operations
inside a transaction. nontransactional operations provide the programmer with a loophole to strict
serializability. For example, the programmer can use local variables to log what happens in aborted
transaction instances. Obviously, such a loophole should be used cautiously.

Related Work

Serializability theory is discussed for both single-version and multiversion concurrency control in
[5]. These concepts are also described in [6]. Many researchers have proposed other correctness
criteria for concurrent systems. One such definition is the concept of linearizability for concurrent
objects, proposed by Herlihy and Wing in [27]. In this model, each object has a set of operations it
can perform. To perform an operation, an object makes a request, and later it receives a response.
Every response matches a particular request. If the objects are transaction instances (committed or
aborted), then the request and response are the beginning and end of the transaction, respectively.
Linearizability guarantees that each transaction appears as though the execution happened instan-
taneously between the request and response. The Libxac memory model can be thought of as a
particular case of linearizability.

2.3 Optimizations for Libxac

The simplicity of an interface based on memory-mapped transactions creates opportunities for ad-
ditional program optimizations. This section discusses three functions for optimizing Libxac pro-
grams. The xValidate function explicitly validates a transaction in the middle of execution, facili-
tating quicker detection of transaction conflicts. The xbeginQuery and xendQuery functions specify
a read-only transaction that never generates transaction conflicts. Finally, the advisory function,
setPageAccess informs the runtime that a transaction wishes to access a certain page, reducing the
overhead of automatically detecting accesses to that page.

Transaction Validation

Since Libxac synchronously aborts transactions, a transaction that fails because of a conflict keeps
running until reaching xend. Continuing to run a long transaction that has already failed is inef-
ficient, however. To avoid unnecessary work, a program can periodically call xValidate inside a

32



transaction to check if it has failed. This function returns FAILED if the runtime has detected a
conflict and will abort the transaction, and returns PENDING otherwise. Based on the result, the
program can use goto to jump to a user-specified label at xend to abort the transaction.10

Read-Only Transactions

Read-only transactions in Libxac can, in principle, always succeed because transactions always see
a consistent view of the shared-memory segment. Libxac assumes that all transactions both read
and write to the segment, however. Thus, xend may return ABORTED even for a read-only transaction
that could have safely committed. A programmer that knows a transaction is read-only could safely
ignore the return value, but this approach is susceptible to error. Instead, Libxac provides the
xbeginQuery and xendQuery functions for explicitly specifying a read-only transaction.

As a replacement for xbegin and xend, xbeginQuery and xendQuery provide three advantages.
First, Libxac performs slightly less bookkeeping for read-only transactions because they always
succeed. Second, even if Libxac is in durable-transaction mode, the runtime does not need to
force data out to disk when a read-only transaction commits. Finally, Libxac can report an error
if a program writes to the shared-memory segment inside a read-only transaction (by immediately
halting the program, for example). Note that it is legal to nest a read-only transaction inside a
normal transaction, but not a normal transaction inside a read-only transaction.

Advisory Function

A programmer can reduce the overhead incurred when a transaction accesses a page in the shared-
memory segment for the first time by calling the advisory function, setPageAccess. Without the
advisory function, Libxac automatically detects a page access by handling a SIGSEGV. A programmer
can use the advisory function to inform Libxac that the current transaction plans to access a
specified page with a specified access permission (read or read/write), thereby avoiding the SIGSEGV.

Using the advisory function affects only the performance of a program, not its correctness. If
the programmer uses the advisory function on the wrong page, then this only hurts concurrency
by generating a possibly false conflict. On the other hand, if the programmer forgets to call the
advisory function on a page, the access will be caught by the default mechanism.

2.4 Related Work

In this section, I discuss memory-mapped transactions in the context of related work on mecha-
nisms for simplifying concurrent and/or persistent programming. I focus primarily on three areas:
transaction systems for databases, persistent storage systems, and transactional memory.

The idea of virtual memory and memory-mapping is decades old. For example, in the 1960’s,
Atlas [31] implemented paged virtual memory and Multics [37] implemented a single-level store.
Appel and Li in [2] survey many applications of memory-mapping, including the implementation of
distributed-shared memory and persistent stores. Transactions, described in [18, 33], are a funda-
mental concept in database systems. See [20] for an extensive treatment of database issues.

Transaction Systems

Countless systems implement transactions for databases,11 but in this thesis, I only compare Libxac

primarily to two similar transaction systems: McNamee’s implementation of transactions on a single
level store, the Recoverable Memory System (RMS), [35], and Saito and Bershad’s implementation
of the Rhino transactional memory service [41].

10The xValidate function has a one-sided error: if it returns FAILED, then there is a conflict, but when it returns
PENDING, there can still be a conflict. This specification allows the runtime to simply query a status flag, instead of
actively checking for new conflicts.

11There are many transaction systems in both research and practice. Some examples (but certainly not all) include
[8, 12, 13, 35, 38, 41, 44, 45, 46, 47].

33



Like Libxac, both RMS and Rhino provide a memory-mapped interface: a programmer calls
functions to attach and detach a persistent segment of memory. Programmers should not store ad-
dress pointers in this persistent area, as the base address for the segment changes between different
calls to xMmap. Some persistent storage systems perform pointer swizzling, i.e., runtime conversion
between persistent addresses on disk and temporary addresses in memory, to eliminate this restric-
tion. This method further simplifies programming, but incurs additional overhead. An alternative to
pointer swizzling, adopted by the µDatabase, a library for creating and memory-mapping multiple
memory segments [9], is to always attach persistent areas at same address. This scheme allows a
program to access only one memory-mapped file at a time, however.

Both RMS and Rhino provide two separate functions for committing and aborting a transaction,
while Libxac provides one single xend function which returns a status of COMMITTED or ABORTED and
automatically aborts the transaction. Although the programmer can control if and when rollback
of the shared-memory segment occurs with the first option, Libxac’s automatic rollback is more
convenient for the default case.

Like Libxac, both RMS and Rhino automatically detect the memory locations accessed by a
transaction, and both specify the same memory model. Aborts only happen synchronously, when
the programmer calls the appropriate function. This abort only rolls back the values in the shared-
memory segment. The authors of both RMS and Rhino ignore the issue consistent execution because
they do not discuss concurrent transactions. Instead, they assume that the programmer or the system
designer uses a conventional locking protocol such as two-phase locking [20].

McNamee describes an implementation that could run on a Linux operating system, but Saito
and Bershad describe two implementations: one on an extensible operating system, SPIN [7], and
one on Digital UNIX. The Digital UNIX implementation appears to rely on the ability to install
a callback that runs right before a virtual-memory pageout. Other examples of operating systems
with built-in support for transactions on a single-level store are [8, 45, 46].

Persistent Storage Systems

The goal of many persistent storage systems is to provide a single-level store interface. Libxac,
RMS, and Rhino all provide persistent storage by having a persistent area of memory that the
programmer can attach and detach. Other systems choose to maintain persistent objects in terms of
reachability: any object or region that is accessible through a pointer stored anywhere in the system
is considered persistent.

Persistent stores are sometimes implemented with compiler support and a special language that
allows programmers to declare whether objects should be persistent. Others provide orthogonal per-
sistence (persistence that is completely transparent to the programmer) by implementing a persistent
operating system ([40] is one example).

Inohara, et al. in [28] describe an optimistic multiversion concurrency control algorithm for a
distributed system. In [28], persistent objects are memory-mapped shared-memory segments, at
the granularity of a page. The programming interface is reversed compared to Libxac: first, the
programmer calls a function to begin a transaction, and then calls a function to open/attach each
object/segment inside the transaction before using it.

Transactional Memory

Libxac’s programming interface is based on work on transactional memory. Unlike databases,
transactional memory supports nondurable transactions on shared-memory machines. Herlihy and
Moss described the original hardware mechanism for transactional memory in [24], a scheme that
builds on the existing cache-coherency protocols to guarantee that transactions execute atomically.
Ananian, Asanović, Kuszmaul, Leiserson, and Lie in [1] describe a hardware scheme that uses xbegin
and xend machine instructions for beginning and ending a transaction, respectively. Instructions
between xbegin and xend form a transaction that is guaranteed to execute atomically.

Although hardware transactional memory systems usually track the cache lines accessed by a
transaction, recent implementations of software transactional memory (STM) work with transac-

34



tional objects. Fraser in [14] implements a C library for transactional objects (FSTM), while Herlihy,
Luchangco, Moir, and Scherer implement a dynamic STM system in Java [25], DSTM.

As in [28], the interface of DSTM and FSTM requires the programmer to explicitly open each
transactional object inside a transaction before that transaction can access the object. Thus, these
systems do not automatically detect the memory locations a transaction accesses. Although both
DSTM and FSTM do not handle nesting of transactions, both describe modifications for supporting
subsumed nested transactions.

The authors of DSTM describe a release function that allows a transaction in progress to drop
a transactional object from its read or write set. Using this feature may lead to transactions that
are not serializable, but it provides potential performance gains in applications where complete
serializability is unnecessary. None of the authors of DSTM or FSTM focus on the interaction
between transactional and nontransactional objects.

DSTM, like Libxac, performs incremental validation for transactions, checking for violations of
serializability on a transaction’s first access to a transactional object, (i.e., opening a transactional
object). DSTM maintains an old copy and a new copy of every transactional object. Transactions
always execute consistently: after opening an object, a transaction either accesses the correct copy,
or it aborts by throwing an exception.

On the other hand, FSTM uses an optimistic validation policy, with a combination of both
synchronous and asynchronous aborts. A transaction is validated when it attempts to commit,
and aborts synchronously if there is a conflict. With this scheme, it is possible for transactions to
read inconsistent data, causing a null pointer dereference or an infinite loop. Therefore, the system
detects these cases by catches faults and by gradually validating the objects touched by a transaction
during execution. After detecting these exceptional conditions, the transaction encountering these
exceptional conditions, the transaction aborts asynchronously by using the setjmp and longjmp

functions.

In Libxac, xMmap returns a pointer to a transactional memory segment. Programming dynamic
data structures in this segment is somewhat cumbersome however, as the Libxac prototype does
not provide a corresponding memory allocation routine. Object-based transactional interfaces do
not suffer from this problem.

2.5 Advantages of the Libxac Interface

In this section I summarize the main advantages an interface based on memory-mapped transactions.
Programs that use memory-mapped transactions are more modular than programs that perform
explicit I/O or locking operations. With memory-mapped transactions, programmers can easily
parallelize existing serial code and code complex but algorithmically efficient data structures. Finally,
a memory-mapped transaction system is flexible enough to provide features such as multiversion
concurrency control and support for durable transactions.

Libxac implements xMmap, a transactional version of the mmap function. Memory-mapping pro-
vides the illusion of a single-level storage system, allowing programs to access data on disk without
explicit I/O operations. A programmer can easily specify a transaction in Libxac by enclosing the
relevant code between xbegin and xend function calls. The runtime automatically detects which
pages a transaction accesses, eliminating the need for explicit locking operations. Programs written
with Libxac are modular because the concurrency properties of a program or data structure are
independent of the specific implementation.

Later, in Chapter 5, I describe how I used Libxac to easily parallelize existing serial, memory-
mapped implementations of a B+-tree and a cache-oblivious B-tree (CO B-tree). This process
using Libxac was considerably easier than it would have been using locks, as it was unnecessary
for me to understand all the details of the specific implementation. The fact that I was able to
easily parallelize a cache-oblivious B-tree shows that memory-mapped transactions facilitate the
programming of complex but algorithmically efficient data structures.

Finally, an memory-mapped transaction system is flexible enough to provide extra useful fea-
tures. Since Libxac uses a multiversion concurrency control algorithm to guarantee that aborted

35



transactions always see a consistent view of the memory-mapped file, read-only transactions can
always succeed. Libxac could also support transactions that are recoverable after a program or
system crash.

The simplicity of a memory-mapped transactional interface is both an advantage and a disad-
vantage. With memory-mapped transactions, programmers do not have fine-grained control over
I/O or synchronization operations. There is a tradeoff between simplicity and performance. In this
chapter, I have argued that Libxac provides a simple programming interface. Later, in Chapters 4
and 5, I investigate the cost in performance of using this interface.

36


