
Chapter 3

The Libxac Implementation

In this chapter, I describe the prototype implementation of the Libxac specification. This prototype
demonstrates that it is possible to implement portable memory-mapped transaction system that
supports multiversion concurrency control.

The Libxac prototype has the advantage of being portable. In Section 3.1, I present Libxac’s
system requirements and provides a high-level description of how Libxac uses standard system calls
in Linux to support transactions. Since the prototype relies primarily on the mmap and fsync system
calls and the ability to specify a user-level SIGSEGV handler, the implementation is more portable
than a transaction system that is built on a special research operating system.

In Section 3.2, I explain in greater detail how Libxac executes memory-mapped transactions
on a single process. In particular, I explain how Libxac uses the virtual-memory subsystem to
buffer pages from disk in main memory, and how RMS [35] and Rhino [41] support memory-mapped
transactions on a single process.

I explain how Libxac supports memory-mapped transactions executed on multiple processes in
Section 3.3. I describe Libxac’s centralized control mechanism, the consistency tree data structure
that Libxac uses to ensure transactions are serializable, and related work on concurrency control
by Inohara, et al.[28].

In Section 3.4, I summarize the main shortcomings of the Libxac prototype and explain how
the implementation might be improved. First, Libxac’s centralized control is a potential bottleneck
that limits concurrency. Second, although Libxac in principle writes enough data to disk to recover
from crashes, the recovery mechanism has not been implemented yet and some minor changes to
the structure of Libxac’s log files need to be made before Libxac can fully support recoverable
transactions running on multiple processes. Finally, the prototype uses several unsophisticated data
structures which impose unnecessary restrictions on the Libxac interface.

3.1 Overview

In this section, I explain how a memory-mapped transaction system can be implemented portably.
I first describe the system requirements of Libxac, and then present a high-level description of how
Libxac uses the mmap system call and user-level SIGSEGV handlers in Linux to execute a simple,
nondurable transaction.

System Requirements

The Libxac prototype is portable because it is designed as a user-space C library for systems running
Linux. It does not rely on any special operating system features or hardware, and can be adapted
to any system that provides the following functionality:

1. Memory mapping: The operating system must support memory mapping of pages, i.e., mmap
and munmap, with read/write, read-only, and no-access memory protections. Programs must be

37



able to change the mapping of a particular page. The OS must also support multiple mappings,
each with different memory protections, for the same page in a file. The mmap function must
also support the MAP FIXED argument, which allows the programmer to force a memory map
to begin at particular address. Durable transactions also require msync to flush changes from
a memory-mapped file to disk.

2. File management: Libxac uses the open system call to open a file and get its file descriptor.
For durable transactions, the operating system must support fsync or a similar method that
forces changes made to a file out to disk.1

3. SIGSEGV handler: the system must allow programs to run a user-specified fault handler when
the memory-protection on a page is violated.

4. Locking primitives: Since Libxac requires must execute some runtime methods atomically, I
resort to using simple spin locks in the implementation. Ideally, the runtime could also be
implemented with non-blocking synchronization primitives such as compare-and-swap (CAS)
instructions.

Aside from these important system-dependent components, the runtime is implemented using stan-
dard C libraries.

Executing a Simple Transaction

In Libxac, every transaction that executes has the following state associated with it:

• Readset and Writeset: The readset and writeset are the set of pages in the shared-memory
segment that the transaction has read from and written to, respectively.2

• Status: A transaction in progress is either PENDING or FAILED. This status changes from
PENDING (FAILED) to COMMITTED (ABORTED) during an xend.

• Global id: During a call to xbegin, every transaction is assigned a unique integer id equal
to the current value of a global transaction counter. This counter is incremented after every
xbegin.

• Runtime id: Every transaction is also assigned a runtime id that is unique among all live
transactions. A transaction is alive until the transaction manager has determined that it can
safely kill it (i.e delete its state information).

The prototype stores the transaction state in a data structure that is globally accessible to all
processes that have xMmaped the shared-memory segment.

Since I argued in Section 1.1 that programs that use memory mapping are simpler than those
using explicit I/O operations, it is not surprising that Libxac runtime itself uses memory mapping.
As a transaction executes, Libxac modifies both the global state information and the memory-map
for each process. Figure 3-1 illustrates the steps of the execution of a simple transaction.

1. The xMmap call initially maps the entire shared-memory segment (x in this example) for the
current process with no-access memory protection (PROT NONE). The xbegin call starts the
current transaction with a status of PENDING.

2. Line 6 causes a segmentation fault when it attempts to read from the first page of mapped file.
Inside the SIGSEGV handler, Libxac checks the global transaction state to determine whether
one or more transactions need to be FAILED because this memory access causes a conflict. As
described in Section 2.2, a failed transaction always sees a consistent value for x[0], and keeps
executing until the xend call completes and the transaction becomes ABORTED.

1The man page states that when fsync returns, the data may not actually be written to disk if the harddrive’s
write-cache is enabled.

2The readset and writeset are defined to be disjoint sets.

38



1 int main(void) {

2 int a; int* x;

3 x = (int*)xMmap("input.db",

4 4*4096);

5 xbegin();

6 a = x[0];

7 x[1024] += (a+1);

8 xend();

9

10 xMunmap("input.db", 4*4096);

11 return 0;

12 }

Figure 3-1: Changes to the memory map for a simple transaction.

39



Whether or not the transaction is PENDING or FAILED, Libxac mmap’s the correct version of
the page with read-only permission, PROT READ.

3. Line 7 causes two segmentation faults when it tries to write to the second page of the file.3

Libxac handles two segmentation faults. Libxac handles the first SIGSEGV as in Step 2,
checking for conflicts and mapping the page as read-only. On the second fault, Libxac checks
for conflicts again, possibly failing one or more transactions. The runtime then creates a copy
of the page and mmap’s the new copy with read/write access, PROT READ|PROT WRITE.

4. After mapping the second page with read/write access, the transaction updates the value of
x[1024]. When the xend function is reached, the transaction commits if its status is pending
and aborts if the status is failed. All pages that the transaction touched are mapped with
no-access protection again.

5. It may be incorrect to immediately replace the original version of a page because failed trans-
actions may still need to read the older versions. Eventually, during execution of a later
transaction or during a checkpoint operation, Libxac garbage collects new versions of pages
by copying them back into the original file when it determines that the older versions are no
longer necessary.

These first four steps (xbegin, the first read of a page, the first write to a page, and xend) represent
the basic actions handled by the runtime. In Section 3.3, I describe how Libxac handles these
actions with multiple, concurrent transactions.

3.2 Transactions on a Single Process

In this section, I explain in more detail how Libxac supports memory-mapped transactions executed
on a single process. In particular, I describe how Libxac uses the virtual-memory subsystem to
buffer pages from disk in memory and how the transaction systems in [35, 41] support memory-
mapped transactions on a single process.

Libxac buffers the pages touched by a transaction in virtual memory by using mmap. For
nondurable transactions, Libxac stores the copies of pages made by transaction writes in a memory-
mapped buffer file on disk. Pages from this buffer file are allocated sequentially, as transactions write
to new pages. When a transaction reads from a page, the runtime mmap’s the correct page from the
original user file or the buffer file with read-only access. The runtime either creates a new buffer file
when the existing buffer file is full, or reuses an old buffer file once all the new versions of pages in
that file have been copied back into the original file.

For durable transactions, Libxac stores the pages written by transactions in memory-mapped
log files. Since log information must be maintained until the programmer explicitly deletes it, the
runtime does not reuse log files. For durable transactions, the log file also contains the following
types of metadata pages:

• XBEGIN: On an xbegin function call, the runtime reserves a page in the log for recording the
the transaction’s global id. On an xend call, this page is updated with the list of pages in the
log file that the transaction wrote to. This list may spill over onto multiple pages for large
transactions.

• XCOMMIT: The runtime writes this page in the log when a transaction commits. This page
stores the global id and also a checksum for all other the pages (data and metadata) written
by this transaction.

• XABORT: This page records the global id of an aborted transaction.

3To my knowledge, Linux does not provide any mechanism for differentiating between a SIGSEGV caused by a read
and one caused by a write.

40



• XCHECKPT BEGIN and XCHECKPT END: The runtime writes these pages when a checkpoint oper-
ation starts and finishes, respectively.

When a durable transaction commits, the runtime performs an asynchronous msync followed by
an fsync on the log file(s) to force the transaction’s data and metadata out to disk. After a program
crash, the recovery routine uses the checksum to determine whether a transaction successfully wrote
all of its pages to disk.4

When the user calls xCheckPoint, the runtime determines which pages will be garbage collected,
i.e., copied back to the original file, and records this list in a XCHECKPT BEGIN page. This page is
synchronized on disk using fsync, and then the new versions are copied back to the original file.
Those pages are forced to disk with fsync, and a XCHECKPT END page is written and synchronized
with a final fsync.

The XCHECKPT BEGIN page also contains a list of pointers to the XBEGIN pages of all transactions
whose new pages could not be garbage-collected. After a XCHECKPT END page appears in a log, the
only committed transactions whose updates may need to be copied back to the original file are those
transactions whose XBEGIN pages are either referenced in the XCHECKPT BEGIN page or appear after
the XCHECKPT BEGIN.

Although Libxac in principle writes enough data to disk to do recovery, I have not yet imple-
mented the recovery module, and I need to cleanly separate metadata and data pages in the log file
to correctly support recovery when multiple processes execute transactions concurrently. One way
of achieving this separation is to write the metadata and data into separate log files. This change
should not hurt performance if the system can use multiple disks. See Appendix B for a more
detailed discussion of how transaction recovery in Libxac might be supported. Since transaction
recovery has been extensively studied, there are likely to be many ways of handling recovery in
Libxac. For example, many transaction systems in the literature derive their recovery mechanism
from the ARIES system [36].

Comparison with Related Work

In this section, I compare and contrast Libxac with the RMS [35] and Rhino [41] transaction
systems. See [20] for a more general, extensive treatment of transaction systems.

Transaction systems for databases traditionally maintain explicit buffer pools for caching pages
accessed by transactions. Whenever a transaction accesses an unbuffered page, the system brings
the page into the buffer pool, possibly evicting another page if the buffer is full. Since paging is
also done by an operating system, researchers have explored the integration of transaction support
into operating systems. In [35], McNamee argues that in an environment where other programs are
competing for memory, a transaction system that maintains an explicit buffer pool does not perform
as well as one that integrates buffer management with the operating system. The primary reason
is the phenomenon of double paging [17], the fact that a page cached by the buffer pool may have
been paged out by the operating system.

McNamee also argues that most commercial operating systems do not provide support for trans-
actions, and most research operating systems use special OS features to integrate buffer management
with virtual memory. For example, the Camelot distributed transaction system uses the external
pager of Mach, a research operating system [46]. This pager allows users to specify their own rou-
tines for moving pages between disk and main memory. Other examples of transaction systems
implemented on top of special operating systems include [8, 11, 12, 19]. Because integration usu-
ally happens only on special operating systems, McNamee presents a hybrid transaction system,
RMS, that is compatible with commercial operating systems. Like Libxac, this system works by
manipulating process memory maps and virtual memory protections.

4The prototype does not yet compute this checksum. The data in Table C.8 in Appendix C and in Chapter 4 show
that using a hash function such as md5 is not too expensive compared to the cost of writing the page out to disk.
Alternatively, the runtime could force the data out to disk with an fsync, write the XCOMMIT metadata page, and then
perform a second fsync. This method ensures that a transaction’s XCOMMIT page never makes it to disk before any of
its data pages.

41



Saito and Bershad in [41] also implement Rhino, a transaction system in both Digital UNIX and
also on SPIN [7], an extensible operating system. Their system also memory-maps the database files
to avoid double paging, and uses virtual memory protections to automatically detect which pages
transactions write to. One main point of [41] is that an extensible operating system such as SPIN
can support automatic write detection more efficiently than Digital UNIX because SPIN requires
fewer user-kernel boundary crossings to handle a page fault.

There are several interesting comparisons to make between Libxac and the RMS and Rhino.
First, Libxac, like RMS and Rhino, integrates buffer pool management with the virtual-memory
system by using memory mapping. Also, both RMS and Rhino automatically detect transaction
writes by memory-mapping the shared-memory segment with read-only protection by default. When
a transaction writes to the page, a SIGSEGV handler creates a before-image, (a copy of the old data),
and then mmap’s the existing page with read/write protection.

Both RMS and Rhino must guarantee that the before-image is written on disk before this call to
mmap. Otherwise, the database will be corrupted if the transaction modifies the page, the OS writes
this temporary page out to disk, and the program crashes, all before the before-image is saved to
disk. McNamee’s scheme synchronously forces this before-image out to disk before calling mmap.
Therefore, this scheme require a synchronous disk write every time a transaction writes to a new
page, even when nothing needs to be paged out. The experimental results in Chapter 4 indicate
that a synchronous disk write in a modern system is quite expensive. Saito and Bershad avoid this
problem because SPIN, like Mach, allows users to specify their own procedures for pageouts. Before
a new version is paged out, the system has a chance to write the before-image to disk first.

Libxac can avoid performing synchronous disk writes in the middle of a transaction or using a
special OS feature such as an external pager because the runtime maintains redo records instead of
undo records. On a transaction write, Libxac creates a copy of the original page, but mmap’s the
new copy of the data instead of the original. Thus, the before-image on disk is never overwritten
if the new version is paged out. This policy is similar to a no-steal buffer replacement, because the
before-image always remains in the database before the transaction commits.5 Alternatively, in a
steal policy, the before-image is overwritten during a pageout. See [20] for a textbook discussion of
buffer replacement policies.

Since Libxac has a complicated multiversion concurrency control algorithm, it is natural to mmap

the new copies of a page instead of the old copy: there is only one committed version of a page, but
multiple working copies. In contrast, the systems described in [35, 41] maintain at most two copies
of a given page at any one time. Both McNamee and Saito and Bershad do not discuss concurrency
control since both assume that a standard locking protocol such as two-phase locking is used.

Because Libxac maintains multiple versions of a page, transactions must find the correct version
to mmap before every page access. Pages that are contiguous in the shared-memory segment may
actually be mapped to discontiguous pages in the log file. Eventually, however, garbage collection
will copy the pages back to the original file, and the original ordering. This problem of fragmented
data occurs in database systems that use shadow files instead of write-ahead-logging. Write-ahead
logging, the mechanism used by [35, 41], is the technique of writing undo or redo information to
a log on disk before modifying the actual database. A system that uses shadow files constantly
switches between two versions of a page: one version that is the committed version, and one that
is the working version that active transactions modify. Two examples of systems that use shadow
files are [13, 19]. When there are n processes attached to the shared-memory segment, Libxac’s
multiversion concurrency control could be implemented by reserving enough virtual address space
to have n extra shadow copies of the segment, one for each process.

Finally, one idea for a future implementation of Libxac is to separate the data and metadata
pages in the log into separate files, ideally, on two different disks. This design allows metadata entries
in the log to be smaller, as we would not need to waste an entire page to store a global transaction
id for an XBEGIN or XCOMMIT. This scheme would also write less data to disk on a commit if the
runtime logged only the diffs of the pages that a transaction wrote. The authors of [41] in their
study concluded that computing page-diffs provided better performance than page-grain logging for

5The steal/no-steal definitions tend to assume single-version concurrency control, so they not be completely appli-
cable for Libxac.

42



small transactions. Using page diffs had previously been proposed in [47].

3.3 Concurrent Transactions

In this section, I explain how Libxac supports memory-mapped transactions executed on multiple
processes. The runtime’s centralized control mechanism uses locks to ensure that the four primary
events, the xbegin function call, a transaction’s first read from a page, a transaction’s first write to
a page, and the xend function call, are all processed atomically. I also describe the consistency tree
data structure that Libxac uses to ensure transactions are serializable, and one example of related
work on concurrency control, [28].

The Libxac Runtime

In Section 3.1, I described the four primary events that the runtime handles: xbegin, a transaction’s
first read from a page, first write to a page, and xend. With multiple concurrent transactions, the
runtime uses locks to process each event atomically.

The Libxac prototype is implemented using centralized control, storing all control data struc-
tures in a control file which is memory-mapped by a process during a call to xMmap. This control file
stores four main pieces of information: the transaction state described in Section 3.1, transaction
page tables for recording which transactions are reading or writing a particular page, the log infor-
mation required to manage the buffer/log files described in Section 3.2, and finally a consistency
tree used for concurrency control between transactions.

The prototype obeys a relatively simple locking protocol of holding a global lock while processing
a transaction event. To improve concurrency, the runtime does not hold the global lock while
changing the memory map with mmap or munmap or during calls to msync or fsync. Libxac decouples
log file manipulation and transaction state modification by using a separate global lock for managing
the log files.

Libxac’s centralized control is easy to implement, but represents a bottleneck that limits scala-
bility to systems with many processes. Since the primary target system for the Libxac prototype is
symmetric multiprocessor systems with only 2, 4, or 8 processors, a centralized control mechanism
may be tolerable. A scalable solution, however, would have an efficient distributed control mecha-
nism. Using a fine-grained locking scheme could also improve system performance. A nonblocking
implementation of the runtime using synchronization primitives such as compare-and-swap or load-
linked-store-conditional instructions may also be a complex but efficient alternative to using global
locks.

Consistency Tree

Libxac supports the memory model presented in Section 2.2 by maintaining a consistency tree of
transactions. Every transaction in the system is represented by a node in this tree. The root is a
special committed transaction T0 that represents main memory (T0’s writeset is the entire shared-
memory segment). A transaction T is said to own a version of a page x if it writes to x. Libxac

uses the tree to determine which version of a page a transaction should read when it executes.
An edge in the consistency tree captures potential dependencies between transactions, i.e., if a

transaction T is an ancestor of T ′, then T comes before T ′ in some serializable schedule of transac-
tions. Recall that every transaction can be in one of four states: PENDING, FAILED, COMMITTED, and
ABORTED. A valid consistency tree must satisfy the following invariants:
Invariant 1: For every page x in the readset of a transaction T , T reads the version from the closest
ancestor of T in the tree that owns x.
Invariant 2: Only COMMITTED transactions have children, and a transaction has at most one
COMMITTED child.

Figure 3-2 exhibits one example of a consistency tree. By Invariant 1, T3 can read page T1’s
version of x only if both T5 and T6 do not write to x. Invariant 1 guarantees that a parent-child
relationship between two committed transactions corresponds to a valid serial ordering of the two

43



Figure 3-2: An example of a consistency tree.

transactions. Because T1 is the parent of T5, it is correct to order T1 before T5. This ordering is the
only correct one if T5 reads any page written by T1.

By Invariant 2, T2, T3, T4 and T7 cannot have children, and T0, T1, T5, and T6 can each have
at most one committed child. Invariant 2 is required for Libxac’s memory model. Suppose a new
transaction T8 could read a page x from an uncommitted transaction T3. Since the runtime traps
only T3’s first write to a page, T8 sees an inconsistent view of x if T8 reads x and then T3 writes to
x again. This invariant implies that the tree is an ordered list of unordered lists. Each unordered
list is a committed transaction with some number of uncommitted children.

It can be shown that if transactions read and write pages in a way that maintains Invariants 1 and
2 on the consistency tree, then the schedule of transactions is serializable. The correct serialization
order for transactions corresponds to a pre-order traversal of the tree, where the committed children
of a transaction are visited last.

The consistency tree is simplification of a serialization graph data structure [6]. With a complete
serialization graph, a schedule of transaction reads and writes is serializable if and only if the graph
does not have a cycle. The consistency tree maintains less information and only permits a subset of
all possible serializable schedules. Every valid consistency tree allows some, but not all serializable
schedules of transactions.

I have only specified Libxac’s memory model for committed and aborted transactions. The
prototype implementation however, maintains an additional invariant for pending and failed trans-
actions:
Invariant 3: If the readsets and writesets of all pending (failed) transactions do not change (i.e.,
all transactions stop reading from or writing to new pages), then all pending (failed) transactions
can be committed (aborted).

Invariant 3 states that Libxac performs incremental validation of transactions. Since the runtime
checks that serializability is maintained after every page access, during an xend, a transaction can
automatically commit if its status was still PENDING.

Implemented Policies

Libxac uses the consistency tree to implement the following generic concurrency control algorithm:

1. On an xbegin, Libxac inserts a new PENDING transaction as a child of some COMMITTED

44



transaction in the tree. This step satisfies Invariant 2.

2. Whenever a transaction reads from (or writes to) a page for the first time, the runtime updates
the transaction’s readset (or writeset) and checks the transaction page tables for a possible
transaction conflict. A conflict occurs if at least one other PENDING transaction is already
accessing that page, and one of those transactions or the current transaction is writing to the
page. If there is a conflict, Libxac may fail some transactions in order to preserve Invariant
3.

Whether the transaction is PENDING or FAILED, on a page read, the runtime walks up the
consistency tree to determine which version of the page to read. On a page write, the system
copies the version of the page that was previously being read. This step satisfies Invariant 1.

3. On an xend, Libxac either commits a PENDING transaction or aborts a FAILED transaction.

4. In steps 2 or 3, the runtime may change the parent of a PENDING transaction to be a different
COMMITTED transaction as long as Invariants 1 and 3 are satisfied.

This framework is general enough to support most reasonable concurrency control algorithms.6 In
the prototype, however, I have implemented only two simple policies for concurrency control. Both
policies satisfy two additional constraints on the consistency tree, that all PENDING transactions
must be children of the last COMMITTED transaction in the tree, and that transactions that have
FAILED never become PENDING again. The first constraint implies that any particular page has
either multiple PENDING readers or one PENDING writer.7 The second constraint means that the
transaction page table can ignore page accesses by a FAILED transaction because that transaction
never generates conflicts by becoming PENDING again.

With these two constraints, when we have both reading transactions and a writing transaction
for a page, we need to decide whether to abort the writer or all the readers. I arbitrarily chose to
implement two abort policies:

• Self-Abort: A transaction aborts itself whenever it conflicts on a page x. More specifically,
when a transaction T tries to read x, it aborts if there is already a writer for x. Similarly,
when T tries to write to x, it aborts if there is already a reader or writer for x.

• Oldest-Wins: Always abort the transaction(s) with larger global id. Since Libxac assigns
global transaction ids according to an increasing counter, this id acts as a timestamp. A new
reader aborts the existing writer only if the reader has a smaller id. A new writer aborts
an existing writer or all existing readers only if it has the smallest id of all the transactions
accessing the page.

Under this policy, livelock is impossible because the transaction with the smallest time stamp
never fails. Starvation is still possible however, because Libxac assigns a new global id to a
transaction after an abort.

Libxac could also support the two opposite policies:

• Selfish-Abort: Whenever a transaction T discovers a conflict with a transaction T ′, it aborts
T ′.

• Youngest-Wins: Always abort the transaction(s) with the smaller global id.

The last two policies are obstruction-free [26]: a transaction always succeeds if all other transac-
tions stop running. The self-abort and oldest-wins policies do not have this property; if one process
crashes while executing its transaction, the other transactions end up waiting indefinitely on that
transaction. Some questions that I have not explored include what the best policies are to use in dif-
ferent situations, and whether some policies are more efficient to implement than others, particularly
with a distributed control system for the runtime.

6A consistency tree can also support optimistic concurrency control if we omit Invariant 3.
7In the more general case, it is possible to have T1 reading page x and T2 writing to x simultaneously, as long

as T1’s parent is earlier in the chain of committed transactions than T2’s parent. For example, if T1 is a read-only
transaction specified using xbeginQuery and xendQuery, it never fails.

45



Garbage Collection

Libxac also uses the consistency tree to determine when it is safe to garbage-collect pages. It is
safe to delete a transaction’s version of a page if no PENDING or FAILED transactions can access that
version of the page.

In the consistency tree, we say a chain of committed transactions can be collapsed if all transac-
tions in the chain except the last have no PENDING or FAILED children. Libxac collapses the chain
of transactions by transferring ownership of the latest version of each page to the first transaction
in that chain. Transferring ownership of a page back to T0 corresponds to copying the version back
into the original file.

In the example in Figure 3-2, T5 and T6 can be collapsed together, leaving only T5 with T3

and T7 as its children. T6 can then be safely deleted from the consistency tree. Libxac does
garbage collection of transactions only when the number of transactions in the tree goes above a
fixed threshold or during a checkpoint operation.

Comparison with Related Work

The textbook concurrency control algorithm for database systems is two-phase locking (2PL) [20].
In 2PL, transactions first enter an expanding phase when they can only acquire locks, and then a
shrinking phase when they can only release locks. For 2PL in a multiversion system, the shrinking
phase may occur at the end of the transaction, and may also involve acquiring certification locks
to validate the transaction. Because Libxac does incremental validation of transactions, its con-
currency control can be thought of as 2PL, except that transactions never wait to acquire a lock.
Instead, either the transaction waiting on the lock or the transaction holding the lock gets aborted
immediately.

Alternatively, Libxac could use an optimistic concurrency control algorithm like the one orig-
inally proposed in [32]. Optimistic algorithms execute the entire transaction and then check for
conflicts once, during commit. One way to implement an optimistic policy using a consistency tree
is to never switch the parent for a PENDING transaction until that transaction tries to commit.

The Libxac prototype is not scalable, partly because accesses to the consistency tree occur
serially. One possible improvement to Libxac is to use a multiversion concurrency control algorithm
designed for distributed systems. The authors of [28] present one such algorithm, the page-based
versioned optimistic (VO) scheme. First, they describe the VO scheme for a centralized system.
When a transaction begins, it is assigned a timestamp that is 1 more than the timestamp of the
last committed transaction in the system. When a transaction T writes to a page for the first time,
it creates a version with its timestamp. When T reads a page x, it finds the version of x with the
greatest timestamp less that T ’s timestamp. If T is read-only, it always commits. T aborts if, for
some page x that T wrote to, some other transaction T ′ has written a newer version of x. In the
VO scheme, a read-only transaction can be serialized before or after a committed transaction, but
a read/write transaction can only be serialized after all other committed transactions.

The consistency tree framework can in theory implement a VO scheme. Transaction T ′ is a
child of T in consistency tree if and only if in the VO scheme, T ′’s timestamp is one more than T ’s
timestamp. The fact that a transaction’s timestamp never changes in the VO scheme implies that
a PENDING transaction in the consistency tree never switches parents until it tries to commit. The
VO scheme validates a transaction T by checking whether T can be serialized after all committed
transactions. This approach is equivalent to checking whether a PENDING transaction can be the
child of the last committed transaction during xend.

3.4 Conclusion

In this section, I summarize the main shortcomings of the Libxac prototype, and explain how
the implementation might be improved in a more complete system supporting memory-mapped
transactions.

The primary drawbacks to the Libxac prototype are:

46



1. Libxac is implemented with centralized control data structures. One possible improvement is
to applying ideas from distributed systems and work such as [28] to create a more decentralized
control for Libxac.

2. Libxac’s control data structures have relatively naive implementations that some impose
unnecessary restrictions on transactions (see Appendix A).

3. The structure of Libxac’s log files for durable transactions does not fully support recovery
when transactions are executed on multiple processes. As I discuss in Appendix B, one possible
improvement is to separate the metadata pages and data pages into different files.

Although these problems with the current implementation are significant, I believe none of them
are fatal. In Chapter 5, I present results from experiments doing random insertions on search trees
using Libxac. When each insertion was done as a durable transaction, the performance of Libxac

search trees ranged from being 4% slower to actually 67 % faster than insertions done on Berkeley
DB’s B-tree. In light of the issues I have described, this result is quite promising. If even a simple
implementation can achieve reasonable performance in some cases, then there is hope that a more
sophisticated and optimized version can support Libxac’s specification efficiently in practice.

47



48


