
Chapter 4

A Performance Study

Memory-mapped transactions are easy to use because the underlying system automatically handles
I/O operations and concurrency control, but this convenience comes at a cost. In this chapter, I
describe several experiments designed to measure the performance of memory-mapped transactions
in Libxac. I use these results to construct approximate performance models for both nondurable
and durable transactions whose working sets fit into main memory.

In Section 4.1, I describe the four different machines on which I tested the Libxac prototype: a
3.0 GHz Pentium 4, a 2-processor 2.4 GHz Xeon, a 4-processor, 1.4 GHz AMD Opteron, and a 300
MHz Pentium II.

In Section 4.2, I estimate the cost of executing a nondurable memory-mapped transaction by
measuring the time required for expensive operations: entering and exiting a SIGSEGV handler and
executing the mmap system calls. For a nondurable transaction that reads from R different pages and
writes to W different pages, I estimate the additive overhead on a modern machine for executing
the transaction is roughly of the form aR + bW , where b ≈ 2a and a is in the range of 15 to 55 µs.
Using the advisory function to inform the runtime which pages a transaction accesses reduces this
overhead on modern machines by anywhere from 20% to 50%.

Section 4.3 describes similar experiments for estimating the cost of executing a durable memory-
mapped transaction. The single-most expensive operation for a durable transaction is the call to
fsync that forces data to be written out to disk on a transaction commit. For durable transactions
that write to only a few pages, I conjecture a performance model of the form aR + bW + c, where a
is tens of microseconds, b is a few hundred microseconds, and c is fixed cost of anywhere from 5 to
15 ms.

Section 4.4 presents results from experiments designed to measure the potential concurrency of
Libxac. On a multiprocessor machine, when two different processes ran independent nondurable
transactions, Libxac achieved near-perfect linear speedup when the work done on the page touched
by each transaction required time approximately two orders of magnitude greater than the overhead
of accessing that page. With durable transactions, however, the same Libxac program did not
exhibit any speedup on two processors, most likely because the time to synchronously write data to
disk during a transaction commit represents a serial bottleneck.

Since the overhead of automatically detecting pages accessed is significant for nondurable transac-
tions, and the synchronous writes to disk are a serial bottleneck for concurrent, durable transactions,
the current Libxac prototype seems best suited for executing durable transactions on a single pro-
cess. Improving the implementation to work with multiple disks may improve the performance of
concurrent, durable transactions.

4.1 The Hardware

This section describes the four machines I used for testing the Libxac prototype.

1. A 3.0GHz Pentium 4 with hyperthreading and 2GB of RAM. The system has a RAID 10
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Machine Processor Speed Time per Cycle
1 3.0 GHz 0.33 ns
2 2.4 GHz 0.42 ns
3 1.4 GHz 0.71 ns
4 300 MHz 3.33 ns

Table 4.1: Processor speeds and time per clock cycle for the test machines.

configured with 4 120GB, 7200-rpm SATA disks with 8MB cache and a 3ware 8506 controller.
The drives were mounted with an ext3 filesystem. The system runs Fedora Core 2 with Linux
kernel 2.6.8-1.521-smp.1

2. A machine with 2, 2.4GHz Intel Xeon processors and 1GB of RAM. The harddrive is a 80GB,
7200rpm Barracuda ATA IV with a 2MB cache. The drive was mounted with an ext3 filesys-
tem. The system was running Fedora Core 1 with Linux kernel 2.4.22-1.2197.nptlsmp.

3. A machine with 4, 1.4GHz AMD64 Opteron processors and 16 GB of RAM. The system was
running SUSE 9.1, with Linux kernel 2.6.5-7.147-smp. This machine has two different disks
that I ran tests on:

(a) A 73.4GB, 10,000rpm IBM Ultrastar 146Z10 with 8MB cache and an Ultra320 SCSI
interface, mounted with the ReiserFS filesystem.

(b) A 146.8GB, 10,000rpm IBM Ultrastar disk with 8MB cache and an Ultra320 SCSI inter-
face, mounted with an ext3 filesystem.

4. A 300 MHz Pentium II with 128 MB of RAM, running Redhat 8.0 with Linux Kernel 2.4.20.
The machine has a 4.3 GB ATA disk drive.

The first three machines are relatively modern machines; the first is a standard single-processor
machine while the second and third are more expensive multiprocessor machines. The fourth is a
relatively old system with a slow processor and limited amount of memory. Testing Libxac on these
different systems ensures I am not obtaining results that are specific to a single machine.

Each aspect of the system has a different effect on Libxac’s performance. The type and number
of processors affects how quickly transactions can execute and how much concurrency we can expect
to get. See Table 4.1. The amount of RAM determines how many pages can be buffered in main
memory. A nondurable transaction that accesses data that is entirely in memory should not incur
the cost of disk writes. Changes made between Linux kernel 2.4 and 2.6 may affect the performance
of system calls such as mmap. Finally, for durable transactions, the cost of msync and fsync depends
on the rotational latency, seek times, and write speed of the disk drives.

Unless otherwise noted, all times for nondurable transactions in Section 4.2 were measured by
reading the processor’s cycle counter twice using the rdtsc instruction, and recording the time
difference. For durable transactions, in Section 4.3, I instead used gettimeofday. See Appendix
C.1 for details on the resolution of the timers.

4.2 Performance of Nondurable Transactions

In this section, I present a rough performance model for small nondurable transactions. The additive
overhead on a modern machine for executing a nondurable transaction that reads from R distinct
pages and writes to W distinct pages is approximately aR + bW , where a is a constant between 10
and 60 µs and b ≈ 2a. Using an advisory function to inform the runtime which pages a transaction
accesses reduces this overhead by anywhere from 20 to 50%. I also describe several experiments that
suggest that a significant fraction of the overhead for a transaction is spent entering and exiting the
SIGSEGV handler, calling mmap, and handling page faults.

1The kernel was modified to install perfctr, a package for performance monitoring counters.
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// Transaction that reads

// from n pages

int* x = xMmap("input.db",

n*PAGESIZE);

int i, value;

...

xbegin();

for (i = 0; i < n; i++) {

value = x[i*PAGESIZE/sizeof(int)];

}

xend();

// Transaction that writes

// to n pages

int* x = xMmap("input.db",

n*PAGESIZE);

int i;

...

xbegin();

for (i = 0; i < n; i++) {

x[i*PAGESIZE/sizeof(int)] = i;

}

xend();

(a) (b)

Figure 4-1: A simple transaction that (a) reads from n consecutive pages, and (b) writes to n consecutive
pages.

4.2.1 Page-Touch Experiment

For a transaction that reads from R pages and writes to W pages, I conjecture a performance
model of aR + bW and in this section I describe experiments designed to estimate the constants
a and b. From the results, I conclude that for small nondurable transactions, a is on the order of
tens of microseconds, and b ≈ 2a. Whenever a transaction reads from or writes to a new page,
the Libxac runtime must mmap the appropriate page in memory. During a transaction commit or
abort, the runtime must change the memory protection of every accessed page back to no-access.
The performance model is reasonable because the time for these operations is proportional to the
number of pages accessed.

I tested the accuracy of this model with an experiment that ran the transactions shown in Figure
4-1. Transaction (a) reads from n consecutive pages, while (b) writes to n consecutive pages. Figure
4-2 shows the results on Machine 1 for transactions (a) and (b) as n varies between 1 and 1024.
Transaction (a) took an average of about 110,000 clock cycles (37 µs) per page read. The data was
less consistent for (b); for n ≥ 24, the average time per page written was roughly 200,000 clock
cycles.

The sharp peak for transaction (b) in Figure 4-2 is somewhat typical behavior for long running
Libxac programs. Although the average and median times to execute a small transaction are fairly
stable, the maximum time is often one or more orders of magnitude greater than the average time.
Since Linux does not generally provide any bound on the worst-case time for mmap or other system
calls, this result is not too surprising. Also, because I measure real time in all experiments, any
time when the test program is swapped out is also included. One of these phenomena may possibly
explain the sharp peak.

4.2.2 Page-Touch with an Advisory Function

In this section, I present data that suggests that using the advisory function described in Section 2.3
for the page-touch experiment reduces the cost per page access on a modern machine by anywhere
from 20 to 50%. Libxac detects which pages a transaction accesses by handling the SIGSEGV signal
caused by the transaction first attempt to read from or write to a page. The advisory function,
setPageAccess informs the runtime that a transaction is about to access a page. This optimization
replaces the triggering and handling of a SIGSEGV with a function call.

Figure 4-3 exhibits the programs from the page-touch experiment, modified to call the advisory
function before each page access. Figure 4-4 plots the average access times per page as n varies
from 1 to 1024 on Machine 1. The advisory function reduced the average time per page read and
write from 110,000 to about 60,000 clock cycles and from 200,000 to just under 100,000 clock cycles,
respectively. Thus, on Machine 1, the advisory function cut down the per-page overhead by almost
a factor of 2. Also, with the advisory function, the plots do not have any sharp peaks, suggesting
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Figure 4-2: Average time per page to execute the transactions shown in Figure 4-1 on Machine 1. For each
value of n, each transaction was repeated 1000 times.
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// Transaction that reads

// from n pages

int* x = xMmap("input.db",

n*PAGESIZE);

int i, value;

...

xbegin();

for (i = 0; i < n; i++) {

int j = i*PAGESIZE/sizeof(int);

setPageAccess(&(x[j]),

READ);

value = x[j];

}

xend();

// Transaction that writes

// to n pages

int* x = xMmap("input.db",

n*PAGESIZE);

int i;

...

xbegin();

for (i = 0; i < n; i++) {

int j = i*PAGESIZE/sizeof(int);

setPageAccess(&(x[j]),

READ_WRITE);

x[j] = i;

}

xend();

(a) (b)

Figure 4-3: The transactions in Figure 4-1 written with the advisory function. The transaction in (a) reads
from n consecutive pages, the transaction in (b) writes to n consecutive pages.

Machine tread twrite

# Normal With Adv. % Speedup Normal With Adv. % Speedup
1 110.0 58.5 47% 195.5 88.2 55%
2 44.4 31.1 31% 91.6 63.4 31%
3 21.7 16.0 26% 43.5 34.8 20%
4 16.1 10.1 37% 149.4. 143.8 4%

Table 4.2: Average # of clock cycles per page access for transactions touching 1024 pages, with and
without the advisory function. Numbers are in thousands of cycles. Percent speedup is calculated as

100
“

Normal - With Adv
Normal

”

.

that eliminating the need to handle SIGSEGVs reduced the variability of the experiment.2

Table 4.2 summarizes the average access times per page for all machines for n = 1024. The
advisory function improved performance on Machine 1 by approximately a factor of 2, but the
improvement was less significant on the other machines. For example, on Machine 3, the speedup
was only 26% and 20% for page reads and writes, respectively. One explanation that I discuss in
Section 4.2.3 is that the cost of entering a SIGSEGV handler appears to be particularly expensive on
Machine 1 compared to the other machines. The speedup for writes on Machine 4 was only 4%.
Since Machine 4 has only 64 MB, it is possible that this experiment no longer fits into main memory.
Machine 4’s slow processor speed might be another factor.

Converting the time per page read from clock cycles to microseconds, we find that a, the time
per page read, ranges from 15 µs on Machine 3 to 54 µs on Machine 4. On all but Machine 4, b, the
time per page write, is slightly less than 2a.

4.2.3 Decomposing the Per-Page Overhead

In this section, I attempt to account for the per-page overheads observed in Sections 4.2.1 and 4.2.2
by estimating the times required for individual runtime operations. The experimental results suggest
that in most cases, over half the overhead can be explained by the time required to handle a SIGSEGV

signal, to call mmap, to copy a page on a transaction write, and the time to handle a page fault.
I conjecture that most of the remaining time is spent handling cache misses and additional page
faults.

2Similar plots for other machines are shown in Appendix C.2.
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Figure 4-4: Average time per page to execute the transactions shown in Figure 4-3 on Machine 1. For each
value of n, each transaction was repeated 1000 times.
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Machine Entering SIGSEGV Exiting SIGSEGV mmap

# Handler (Cycles) Handler (Cycles) Clock Cycles µs
1 32,216 29,323 15,156 5.05
2 8,032 9,723 10,054 4.19
3 3,489 4,745 3,228 2.31
4 3,078 3,140 2,282 7.61

Table 4.3: Number of clock cycles required to enter SIGSEGV handler, call mmap, and exit handler (average
of 10,000 repetitions).

Memory Mapping and Fault Handlers

As I described in Section 3.1, the runtime detects which pages a transaction accesses by mapping
pages with no-access or read-only memory protections and handling SIGSEGV signals. I describe
results from an experiment that measured the time required for the three expensive operations in
this process: entering the fault handler, calling mmap, and exiting the handler.

In the experiment, I ran a loop that captures the basic actions that the runtime executes when
a transaction tries to read from or write to a new page for the first time. The times required for the
loop operations give a lower bound on the overhead of a nondurable transaction. Starting with a
memory-mapped file that is initially unmapped, I timed 10,000 repetitions of the following loop:

1. Attempt to increment the first int stored on the first page of the file. Measure the time
required to enter the SIGSEGV handler for this operation.

2. Inside the SIGSEGV handler, mmap the same page with read-write protection. Record the time
for this operation.

3. Measure the time required to exit the SIGSEGV handler.

4. Unmap the first page in the file and repeat.

Table 4.3 reports the average number of clock cycles required to do these operations on each
machine. The main observation is that entering and exiting fault handlers and the mmap system call
all took several thousand to tens of thousands of clock cycles. These times are one or two orders
of magnitude greater than a cache miss that takes a hundred clock cycles. Of the three modern
machines, Machine 1, the Pentium 4 required the most time for these operations. In summary, a
transaction must incur at least several microseconds in overhead for every new page accessed.

Although I present only average values here, there is some variability in the measured values.
For example, on Machines 2 and 3, the maximum time for an mmap operation was about 5 times the
average value. See Table C.3 in Appendix C for more complete statistics for this experiment.

First Access to an mmaped Page

Linux does not actually bring an mmap’ed page into memory until it is first accessed. The time to
handle this page fault represents another expensive component of nondurable transactions. In this
experiment, I mmap’ed a single page of a file with read/write protection and then recorded the time
required to increment the first integer on the page for the first time. Table 4.4 shows that these
times are comparable to the time to enter and exit a fault handler.

Test of memcpy

Before a transaction writes to a page for the first time, Libxac first makes a copy of the old page.
In this experiment, I measured the time required for a memcpy between two 4K character arrays. In
Table 4.5, the first value is the time for the program’s first memcpy, the second is the average time

55



Machine Avg. # of Clock Cycles σ Time in µs
1 16,851 945 5.6
2 5,310 139 2.2
3 3,311 211 2.3
4 3,995 1,133 13.3

Table 4.4: Clock cycles required to write to a page for the first time after memory mapping that page. Each
experiment was repeated 5 times.

Machine First memcpy Avg. of Ops 2 through 5 Avg. of 1000 Ops.

1 44,067 2,493 1,122
2 19,497 1,718 1,052
3 9,578 676 608
4 7,324 3,320 932

Table 4.5: Clock cycles required for a memcpy between two 4K character arrays in memory.

of the 2nd through 5th memcpy’s, and the third is the average time for 1,000 memcpy’s between the
two arrays.3

The data suggests that optimizing the Libxac runtime to avoid cache misses and page faults
could significantly improve performance. For the first two machines, a memcpy between two pages
that are already in cache (the third value) costs approximately an order of magnitude less than the
mmap from Table 4.3. The difference is less for the other two machines, but a memcpy is still faster
than an mmap. On the other hand, a memcpy when the arrays are not cached is a factor of about 2
to 3 more expensive than an mmap call.

Predicting Per-Page Overhead

I use the data in Tables 4.3, 4.4, and 4.5 to try explain the per-page overheads observed in the
page-touch experiments from Sections 4.2.1 and 4.2.2.

For transaction (a) in Figures 4-1 and 4-3, recall that every time a transaction tries to read from
a page for the first time, the runtime must handle a SIGSEGV and change the memory map from a
page mapped as no-access to a (possibly different) page mapped read-only. At least one page fault
occurs when the transaction actually reads from the page. Finally, when the transaction commits,
the memory protection on that page must be changed back to no-access. Thus, transaction (a)
involves handling one SIGSEGV, two calls to mmap and one page fault. Using the advisory function
eliminates the cost of entering and exiting the fault handler.

On a given machine, let tsegvEnter and tsegvExit be the average time to enter and exit a SIGSEGV

handler, respectively, and let tmmap and tpageFault be the average times to call mmap and to handle
a page fault, respectively. Then, based on this model, a lower bound on tread and t′read, the time to
read a new page inside a transaction, without and with the advisory function, is4

tread ≥ tsegvEnter + tsegvExit + 2tmmap + tpageFault

t′read ≥ 2tmmap + tpageFault

(4.1)

When a transaction writes to a page, the runtime handles two SIGSEGV’s: the first for reading
the page, and the second to copy the page and mmap the new copy with read/write protection. Thus,
a page write requires one extra fault handler, an additional call to mmap, and one memcpy.5 Using

3The first and second values are averages from 5 repetitions of the experiment. The third is an average from 1000
repetitions of the experiment. See Table C.4 for detailed data.

4To get a more accurate lower bound, I actually subtract ttimerDelay, the delay in our timer, once from every
measured value measured (in this case, 5ttimerDelay).

5For tmemcpy , I use the value the smallest value, value 3, from Table 4.5.
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Machine tread twrite

# Est. Actual ∆ % Diff. Est. Actual ∆ % Diff.

1, no Adv. 108.2 110.0 1.8 1.6% 185.7 195.5 9.8 5.0%

1, w Adv. 46.9 58.5 11.6 19.8% 47.9 88.2 40.3 45.7%
2, no Adv. 43.2 44.4 1.3 2.8% 72.0 91.6 19.6 21.3 %

2, w. Adv. 25.4 31.1 5.7 18.2% 26.5 63.4 26.5 58.2 %
3, no Adv. 18.0 21.7 3.8 17.4% 30.0 43.5 13.5 31.0 %

3, w. Adv. 9.7 16.0 6.3 39.3% 10.3 34.8 24.4 70.3 %
4, no Adv. 14.6 16.1 1.6 9.7% 23.9 149.4. 125.6 84.0 %

4, w. Adv. 8.4 10.1 1.7 16.4% 9.3 143.8. 134.5 93.5 %

Table 4.6: Average # of clock cycles per page access for transactions touching 1024 pages. All numbers are
in thousands of clock cycles.

the advisory function eliminates the entering and exiting of the SIGSEGV, and also one call to mmap,
as the runtime does not need to map the original version of the page as read-only first. Thus, I
estimate twrite and t′write, the time required for a transaction to write to a new page, without and
with the advisory function, as

twrite ≥ 2tsegvEnter + 2tsegvExit + 3tmmap + tpageFault + tmemcpy

t′write ≥ 2tmmap + tpageFault + tmemcpy

(4.2)

After repeating the transactions in Figures 4-1 and 4-3 1,000 times, with n = 1024, I obtained the
data shown in Table 4.6. I use the average values from Table 4.3 as estimates for tsegvEnter, tsegvExit,
and tmmap, and I use the data in Table 4.4 and 4.5 as estimates for tpageFault and tmemcpy, respectively.

On modern machines, a majority of the overhead for a nondurable transaction comes from
handling the SIGSEGV signal, calling mmap, copying the page, and handling page faults. On Machines
1, 2, and 4, the lower bound in (4.1) accounted for all but 10% of tread. The bound in (4.2) was less
accurate for predicting twrite, however. Generally, the predictions were most accurate for Machine 1,
which has the greatest overhead in clock cycles for the fault handler and the mmap operations. With
the exception of twrite on Machine 4, the predictions for tread and twrite account for at least 50% of
the time spent per page access.

The lower bounds are even less successful for predicting the overheads when the advisory function
is used. Equation (4.1) accounts for at least 50% of t′read, but equation (4.2) significantly underes-
timates t′write. One reason for this discrepancy is that Equations (4.1) and (4.2) assume the time
spent updating control data structures is negligible. Although the computation required to modify
the transaction state or maintain the consistency tree is not significant for a small transaction run-
ning on a single process, any cache misses or page faults incurred when accessing the control data
structures may noticeably increase the overhead. For example, when running the transaction in Fig-
ure 4-1(a) with n = 1 on Machine 3, I noticed that the Libxac runtime spent 21,000 cycles inside
the fault handler, but actually spent about 11,500 cycles adding the first page to the transaction’s
readset. Since this operation only involves adding an element to an empty list stored in an array,
this operation is probably expensive only because a page was not cached in main memory.

I conjecture that most of the unexplained overhead is due to poor caching behavior. Libxac’s
data structures for a transaction’s readset and writeset and for the transaction page tables are both
implemented as large, fixed-size arrays. These data structures are unlikely to exhibit significant
locality, since they are stored in a 59 MB control file. This phenomenon may be even more no-
ticeable on Machine 4, which is only 300 MHz and has only 64 MB of RAM. With a more efficient
implementation of the control structures, the discrepancies may be lower.

Although Equations (4.1) and (4.2) underestimate the overhead, for small transactions that fit
into memory, the simple linear performance model of aR + bW should still be reasonable. Failing to
account for all the page faults or cache misses should only increase the constants a and b.
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Machine Avg. Time (µs)
# Page Read Page Write

1, no Adv. 39 1,569
1, w. Adv. 22 1,297

3(a), no Adv. 15 235
3(a), w. Adv. 14 179
3(b), no Adv. 16 227
3(b), w. Adv 15 182

Table 4.7: Average Access Time (µs) per Page, for Transactions Touching 1024 Pages.

4.3 Durable Transactions

In this section, I attempt to construct a performance model for durable transactions and test
this model by repeating some of the experiments described in Section 4.2 for durable transac-
tions.6 Durable transactions incur extra overhead when they commit because the runtime must
synchronously force data to the log file on disk using an fsync. This disk write should add both a
large constant overhead to all transactions for the latency of accessing disk, and a roughly constant
overhead per page written for updating the log file. Thus, I conjecture that a small durable trans-
action that reads from R pages and writes to W page incurs an additive overhead of aR + bW + c,
where a is tens of microseconds, b is hundreds to a few thousand microseconds, and c is between 5
and 15 milliseconds.

Page Touch Experiments

Table 4.7 presents data from page-touch experiments for durable transactions, when n = 1024.7

Since each transaction runs for tens to hundreds of milliseconds, the latency of accessing disk is not
significant and I can use this data to construct slight over-estimates of a and b.

From the data, we see that the per-page overhead for nondurable and durable read-only transac-
tions are roughly the same. Since fsync for a read-only transaction writes only meta-data to disk,
the latency to access disk is amortized over 1024 pages. The time required per page write, however,
increases by several orders of magnitude. Machine 1, which only has SATA drives, performs page
writes 6 or 7 times slower than Machine 3, which has SCSI drives. It is possible, however, that other
effects may explain this difference.

Synchronizing a File

To estimate c, the latency of a write to disk, I measured the time required to synchronize a memory-
mapped file after modifying a one randomly selected page. This benchmark repeats the following
loop:

1. Pick a page uniformly at random from the 10,000 page memory-mapped file. Increment the
first int on that page.8

2. Measure the time for an asynchronous msync on that page in the file.

3. Measure the time for an fsync on the file.

The time required for the msync operation was on average less than 10 µs on all machines. In
Table 4.8, I report the times required to do fsync. The average time for to write a page out to disk

6For these tests, I disabled the write-cache to ensure that fsync actually writes all data to disk. I omit results
from Machine 2, because I had insufficient permissions to disable the write-cache.

7Table C.5 gives a more complete version of this table.
8I had arbitrarily set the default size for Libxac’s log files to 10,000 pages.
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Operation Mean St. Dev Min Median 99th %tile Max
1: fsync 13.6 184.3 2.4 8.0 12.7 5,836.5
3(a): fsync 4.8 24.0 0.7 4.0 7.0 761.6
3(b): fsync 4.7 23.1 0.8 3.9 6.9 731.9

Table 4.8: Time required to call msync and fsync on a 10,000 page file with one random page modified,
1000 repetitions. All times are in ms.

Machine Test Mean Time per Xaction Speedup
1 proc. 2 proc.

2 A 26.2 23.0 1.14
2 B 28.3 24.2 1.16
2 C 1,786 903 1.98

3(a) A 22.9 24.3 0.94
3(a) B 28.1 27.5 1.02
3(a) C 2,259 1,132 2.00
3(b) A 24.3 24.9 0.98
3(b) B 28.2 26.3 1.07
3(b) C 2,248 1,130 1.99

Table 4.9: Concurrency tests for nondurable transactions. Times are µs per transaction. Speedup is calcu-
lated as time on 1 processor over time on 2 processors.

seems to be between 5 and 15 ms on average. Again, the harddrives on Machine 3 are faster than
on Machine 1. The maximum time required for an fsync is 0.8 seconds on Machine 3, and almost
6 seconds on Machine 1. This result is consistent with the fact that the operating system does not
provide any guarantees on the worst-case behavior of system calls. Expensive operations occur, but
only infrequently.

4.4 Testing Concurrency in Libxac

I conclude this chapter by describing several experiments that test Libxac’s performance when
executing independent transactions on two concurrent processes. In an experiment for nondurable
transactions, the system achieved near-linear speedup when the work done on a page touched by a
transaction was about two orders of magnitude greater than the overhead of accessing that page.
The same program did not exhibit significant concurrency with durable transactions, however, most
likely because the writes to disk during a transaction commit represents a serial bottleneck.

Test Programs

Figure 4-5 shows the transactions used to test the concurrency of Libxac. The single-process
version of Test A executes a simple transaction 10,000 times, while the two-process version runs
5,000 independent transactions on each process.9 Since Test A does little work incrementing the
first integer on a page, I also tested two other versions of this program, shown in Figure 4-6. Test B
increments every integer on the page inside the transaction, and Test C repeats B’s loop 1000 times.
In Figure 4-6, I only show the single-process version, as the two-process version is similar.

9Although this code does not show it, I use the advisory function for these concurrency tests.
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Test A

Single process version:

for (i = 0; i < 10000; i++) {

xbegin();

x[0]++;

xend();

}

Two process version:

Process 1

for (i = 0; i < 5000; i++) {

xbegin();

x[0]++;

xend();

}

Process 2

for (i = 0; i < 5000; i++) {

xbegin();

x[PAGESIZE/sizeof(int)]++;

xend();

}

Figure 4-5: Concurrency Test A: Each transaction increments the first integer on a page 10,000 times.

Test B Test C

xbegin();

for (j = 0;

j < PAGESIZE/sizeof(int);

j++) {

x[j]++;

}

xend();

xbegin();

for (k = 0; k < 1000; k++) {

for (j = 0;

j < PAGESIZE/sizeof(int);

j++) {

x[j]++;

}

}

xend();

Figure 4-6: Concurrency Tests B and C: Test B increments every integer on the page. Test C repeats the
transaction in Test B 1,000 times. I omit the outermost for-loop, but as in Figure 4-5, each transaction is
repeated 10,000 times.
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Machine Test Mean Time per Xaction Speedup
1 proc. 2 proc.

3(a) A 6.12 6.16 0.99
3(a) B 6.11 6.20 0.99
3(a) C 6.32 6.63 0.95
3(b) A 6.21 6.26 0.99
3(b) B 6.22 6.21 1.00
3(b) C 6.39 6.62 0.97

Table 4.10: Concurrency tests for durable transactions. Times are milliseconds per transaction.

Nondurable Transactions

Table 4.9 exhibits the results with nondurable transactions for Tests A, B, and C.10 From this data,
we can make several observations. First, there is no significant speedup on Machines 1 or 4. Since
both machines have a single processor, this result is not surprising. The slight speedup for Tests A
and B on Machine 1 may be due to the Pentium 4’s hyperthreading.

Machine 2, which has 2 processors, exhibited speedup on all three tests, ranging from about 12%
for Test A to almost 50% is Test C. On the other hand, Tests A and B actually run faster on one
process than on two on Machine 3. Test C, which performs a lot of work on one page, does manage
to achieve near-perfect linear speedup. It is unclear whether the differences between Machines 2 and
3 are due to the different architectures or due to some other factor.

These results suggest that on Machine 3, Libxac only exhibits concurrency for independent
transactions if each transaction does significantly more work per page than the overhead for a page
access. Thus, the prototype implementation of Libxac may not be efficient for small concurrent
nondurable transactions.

Durable Transactions

Table 4.10 presents the data for Tests A, B, and C, repeated with durable transactions. For a durable
transaction, the cost of forcing data out to disk at a transaction commit is significant. These results
are consistent with the data from Table 4.8 for the times required to complete fsync on the various
machines.

In these experiments, we do not observe any speedup on the multiprocessor machines. Since we
are running transactions using only one disk, the fsync is likely to be a serialization point. Thus,
it may not be possible to achieve significant speedup with only one disk without an implementation
that supports group commits, i.e., committing multiple transactions on different processes with the
same synchronous disk write. One possible reason for observing slowdown is that having multiple
processes accessing the same log file simultaneously may cause slightly more disk head movement
compared to having a single process access the file.

10See Table C.9 for more detailed data.
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