
Chapter 5

Search Trees Using Libxac

In this chapter I describe how memory-mapped transactions can be used in a practical application,
specifically in search trees that support concurrent searches and insertions. I also present exper-
imental results comparing the performance of search trees written using Libxac to the B-tree of
Berkeley DB [44], a high-quality transaction system.

For data that resides on disk, B-trees are the canonical data structure for supporting dictionary
operations (search, insertion, deletion, and range queries). In Section 5.1, I describe the Disk
Access Machine Model, the performance model primarily used to analyze B-trees. In this model,
computation is free, but moving a block between main memory and disk has unit cost. I then
describe the concept of a cache-oblivious algorithm, an algorithm that tries to minimize the number
of memory transfers per operation without knowing the actual block size. Finally, I briefly describe
how a cache-oblivious B-tree (CO B-tree) supports dictionary operations with an asymptotically
optimal number of memory transfers.

In Section 5.2, I investigate the practical differences between two different B-tree variants by
presenting experimental results comparing the performance of a serial B+-tree and a serial CO B-
tree, both written using memory mapping, but without Libxac.1 The data demonstrates that a
CO B-tree can simultaneously support efficient searches, insertions, and range queries in practice.
Random searches on the CO B-tree ran only 3% slower than on a tuned B+-tree on one machine
and ran 4% faster on a newer machine.

In Section 5.3, I describe the ease of using memory-mapped transactions to convert the serial
implementations of the B+-tree and CO B-tree into parallel versions.

I present experimental results in Section 5.4 that suggest that small, durable memory-mapped
transactions using Libxac are efficient. In an experiment where a single process performed random
insertions, each as a durable transaction, the Libxac B+-tree and CO B-tree are both competitive
with Berkeley DB. On the three newer machines, the performance of the B+-tree and CO B-tree
ranged from being 4% slower than Berkeley DB to actually being 67 % faster. This result is quite
surprising, especially in light of the fact that I am comparing an unoptimized prototype with a
sophisticated, commercial transaction system.

Finally, in Section 5.5, I conclude by describing possible future experiments for evaluating the
performance of Libxac. I also discuss potential improvements to the implementation that are
motivated by the experimental results.

5.1 Introduction

The DAM Model

In today’s computer systems, there is significant disparity between the time required to access
different memory locations at different levels of the memory hierarchy. In Chapter 4, we saw examples

1Sections 5.1 and 5.2 describes joint work with Michael A. Bender, Martin Farach-Colton, and Bradley C. Kusz-
maul.

63

Figure 5-1: An illustration of the Disk Access Machine (DAM) model.

of this phenomenon. A single clock cycle on the newer test systems is less than 1 nanosecond. A
memcpy between two arrays in memory takes a few microseconds, while using fsync to force data
out to disk typically requires several milliseconds. The rotational latency of a 10,000 rpm disk is
6 ms, creating a lower bound on the worst-case time to read data from disk. Because the time to
access disk is at least 6 orders of magnitude larger than the time for a single clock cycle, the cost of
actual computation for a program that performs many disk accesses can often be ignored. Instead,
the performance model traditionally used to analyze programs that access large data sets on disk
is the Disk-Access Machine (DAM) model [3]. The DAM model assumes a system has two levels of
memory, as illustrated in Figure 5-1. Main memory has size M , disk has infinite capacity. In this
model, computation on data in main memory is free, but each transfer of a size-B block between
main memory and disk has unit cost.

Using the DAM model we can analyze the cost of doing a single query on a B+-tree. A B-tree
can be thought of as a normal binary-search tree, except with a branching factor of Θ(B) instead
of 2. A search on a B-tree storing N keys requires O(logB N) block transfers: a constant number
of transfers at every level of the tree. An information-theoretic argument proves a lower bound
on the worst-case time for a dictionary operation of Ω(log

B
N). Thus, searches on B-trees use an

asymptotically optimal number of memory transfers. A B+-tree is similar to a B-tree, except that
the data is stored only at the leaves of the tree, minimizing the number of block transfers by putting
as many keys in a single block as possible. The fact that B-trees or variants of B-trees are widely
used in practice corroborates the validity of the DAM model.

Cache-Oblivious B-Trees

The optimality of the B+-tree in the DAM model requires that the implementation know the value
of B. Unfortunately, in a real system, it is not always clear what the exact value of B is. For
example, on a disk, the cost of accessing data in a block near the current position of the disk head

64

20

21 22

23

24 25 27

26

28

29

30 31

1

5 6 7 8 9 10 11 12 13 15 1614 22212018 19 23 24 25 29 30 3126 27 281 2 3 4 17

17

18
19

2
4

3

6 7

85

9 10

11

1312

14

15 16

Figure 5-2: The van Emde Boas layout (left) in general and (right) of a tree of height 5.

is cheaper than accessing a block on a different track. There are multiple levels of data locality: two
memory locations may be on the same cache line in L1 cache, the same line in L2 cache, the same
page in memory, the same sector on disk, or the same track on disk. In a real system, there may
not be a single “correct” block size B.

An alternative to the DAM model is the cache-oblivious model of computation [16, 39]. An
algorithm is said to be cache-oblivious if it is designed to minimize the number of memory block
transfers without knowing the values of B or M . A fundamental result for cache-oblivious algorithms
is that any algorithm that performs a nearly optimal number of block transfers in a two-level memory
model without knowing B and M also performs a nearly optimal number of memory transfers on
any unknown, multilevel memory hierarchy [39].

A cache-oblivious B-tree (CO B-tree) [4] is a search tree structure that supports dictionary
operations efficiently. The CO B-tree guarantees the following bounds on dictionary operations
without needing to know the exact value of B:

1. Search: O(log
B

N) memory transfers.

2. Range queries of R elements: O(logB N + R/B) memory transfers.

3. Insertions and deletions: O(log
B

N + log2 N/B) memory transfers.

The bounds for searches and range queries are asymptotically optimal. A CO B-tree achieves
these bounds by organizing the tree in a van Emde Boas layout [39]. This layout is a binary tree
recursively laid out in memory. A tree with N nodes and height h can be divided into one root
tree with Θ(

√
N) nodes and height approximately h/2, and Θ(

√
N) child subtrees, each also with

Θ(
√

N) nodes and height h/2. In the van Emde Boas layout, each of these height h/2 subtrees is
stored contiguously in memory, with the layout recursively repeated for each height h/2 tree. Figure
5-2 illustrates this layout for trees of height 5.

Intuitively, this layout is cache-oblivious because for any block size B, we can recurse until our
layout eventually gets to a tree of height approximately Θ(lg B). This tree fits entirely into one block,
so any query from root to leaf in the original tree visits O(lg N)/Θ(lg B), or O(logB N) blocks.

The van Emde Boas layout is sufficient for a static dictionary that does not support insertions
or deletions. One method for creating a dynamic tree is to use this static tree as an index into a
packed memory array [4]. A packed memory array stores N elements in sorted order in O(N) space.
The array leaves carefully spaced gaps in between elements and carefully maintains these gaps to
satisfy certain density thresholds. These threshold ensure that large rearrangements of the array are
be amortized over many insert or delete operations.

I have only sketched the details the the CO B-tree here. For a more thorough presentation of
this data structure, I refer the reader to [4].

65

Data structure Average time per search
Machine 4: small Machine 3: big

CO B-tree 12.3ms 13.8ms
Btree: 4KB Blocks: 17.2ms 22.4ms

16KB blocks: 13.9ms 22.1ms
32KB blocks: 11.9ms 17.4ms
64KB blocks: 12.9ms 17.6ms

128KB blocks: 13.2ms 16.5ms
256KB blocks: 18.5ms 14.4ms
512KB blocks: 16.7ms

Table 5.1: Performance measurements of 1000 random searches on static trees. Both trees use 128-byte
keys. In both cases, we chose enough data so that each machine would have to swap. On the small machine,
the CO B-tree had 223 (8M) keys for a total of 1GB. On the large machine, the CO B-tree had 229 (512M)
keys for a total of 64GB.

5.2 Serial B+-trees and CO B-trees

In this section,2 I present several experimental results that show the CO B-tree is competitive with
the B+-tree for dictionary operations. When doing random searches on a static tree, the CO B-tree
ran 3% slower than the B+-tree with the best block size on one machine and 4% faster than the
B+-tree on another machine. For dynamic trees, we observe that as the block size increases, the
time to do random insertions in the B+-tree increases, but the time for range queries and searches
decreases. The CO B-tree is able to efficiently support all three operations simultaneously.

These experiments were conducted on Machine 3, which has 16 GB of RAM, and on Machine 4,
which has only 128 MB of RAM.3

Random Searches on Static Trees

The first experiment performed 1000 random searches on a B+-tree and a CO B-tree. On Machines
3 and 4, these static trees had 229 and 223 keys, respectively. These sizes were chosen to be large
enough to require the machine to swap. For the B+-tree, we tested block sizes ranging from 4 KB
to 512 KB. In this test, we flushed the filesystem cache by unmounting and then remounting the file
system before the first search.

From the results in Table 5.1, we see that the CO B-tree is competitive on Machine 4: the B+-tree
with the best block size only outperformed the CO B-tree by 3 %. For Machine 3, the CO B-tree
was 4% faster than the B+-tree with the best block size. This data also hints at the slight difficulty
in finding the right block size B for the B+-tree. On Machine 3, the best block size was 256 KB,
while on Machine 4 it was 32 KB. Both values are significantly larger than the default operating
system page size of 4 KB. For each machine, the B+-tree needed to be tuned to find the optimal
block size, while the CO B-tree was efficient without tuning.

Dynamic Trees

The next experiment tested dynamic trees on the smaller machine, Machine 4. We compared the
time to insert 440,000 and 450,000 random elements for the CO B-tree, respectively. We chose
these data points because 450,000 is the point right after the CO B-tree must reorganize the entire
data structure. We also compared this data to B+-trees with different block sizes. For the B+-tree
experiments, allocation of new blocks was done sequentially to improve locality on disk. This choice
represents the best possible behavior for the B+-tree. In a real system, as the data structure ages,
the blocks become dispersed on disk, possibly hurting performance. Finally, we compared this data

2This section describes joint work with Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul
3These machines are described in Section 4.1. At the time of this test, however, Machine 3 was running a 2.4

kernel.

66

Block insert range 1000
Size query random

random of all searches
values data

CO B-tree 440,000 inserts 15.8s 4.6s 5.9s
CO B-tree 450,000 inserts 54.8s 9.3s 7.1s

B+-tree
Sequential 2K 19.2s 24.8s 12.6s

block 4K 19.1s 23.1s 10.5s
allocation: 8K 26.4s 22.3s 8.4s

(450,000 16K 41.5s 22.2s 7.7s
inserts) 32K 71.5s 21.4s 7.3s

64K 128.0s 11.5s 6.5s
128K 234.8s 7.3s 6.2s
256K 444.5s 6.5s 5.3s

Random block allocation: 2K 3928.0s 460.3s 24.3s
Berkeley DB (default parameters): 1201.1s
Berkeley DB (64 MB pool): 76.6s

Table 5.2: Timings for memory-mapped dynamic trees. The keys are 128 bytes long. The range query is a
scan of the entire data set after the insert. Berkeley DB was run with the default buffer pool size (256KB),
and with a customized loader that uses 64MB of buffer pool. These experiments were performed on the
small machine.

Time to insert a sorted sequence of 450,000 keys
Dynamic CO B-tree 61.2s
4KB Btree 17.1s
Berkeley DB (64MB) 37.4s

Table 5.3: The time to insert a sorted sequence 450,000 keys. Inserting sorted sequence is the most expensive
operation on the packed memory array used in the dynamic CO B-tree.

to random insertions done into a Berkeley DB database using the db load command. The buffer
pool size for Berkeley DB was set to 64 MB.

The data in Table 5.2 demonstrates that the CO B-tree performs well, even at the pessimal
point, just after reorganizing the entire array. For the B+-tree, there is a tradeoff between small
and large block sizes. Small block sizes imply that insertions are faster, but only at the cost of
more expensive range queries and searches. The CO B-tree is able to efficiently support all three
operations simultaneously. We did not observe any block size B where the B+-tree was strictly
better than the CO B-tree for all three operations.

Using Berkeley DB with the default tuning parameters, it took 20 minutes to load the data.
Building a customized version of db load with the buffer pool size set to 64 MB, however, we
managed to improve Berkeley DB to run only 40% slower than the CO B-tree for insertions. Perhaps
by tuning additional parameters, Berkeley DB could be sped up even further. Unfortunately, needing
to optimize a large number of tuning parameters represents a disadvantage in practice.

In-Order Insertions

Finally, we ran an experiment testing the worst-case for the CO B-tree, when the data is inserted
in order. Table 5.3 shows the time required to insert 450,000 elements in order into each search
tree. In this case, the CO B-tree is about 65% slower than Berkeley DB. This behavior is reasonable
considering we are testing the CO B-tree at a worst possible point.

In summary, these empirical results show that the performance of a serial CO B-tree for dictionary
operations is competitive, and in some situations, actually faster than an optimally tuned B+-tree
or Berkeley DB.

67

Code Serial Version Using Libxac Libxac Function Calls Added

B+-tree 1122 lines 1527 lines 23
CO B-tree 1929 lines 2026 lines 17

Table 5.4: Changes in Code Length Converting B+-tree and CO B-tree to Use Libxac.

5.3 Search Trees Using Libxac

This section explains how I parallelized the serial implementations of the B+-tree and the CO B-tree
tested in the previous section. This process was relatively painless and involved few changes to the
existing code.

Parallelizing Search Trees Using Libxac

The serial implementations of a B+-tree and a CO B-tree that I started with both stored data in
a single file. Each tree opened and closed the database using mmap and munmap, respectively. I
modified the open and close methods to use Libxac’s xMmap and xMunmap instead. I supported
concurrent searches and insertions by enclosing the search and insert methods between xbegin and
xend function calls. In the implementation, no backoff method was specified; every transaction
immediately retries after an abort until it succeeds.

Parallelizing these codes required only these few, simple changes. Table 5.4 gives a rough estimate
of the size of the source code before and after modification with Libxac. Although counting the
number of lines of code is, at best, an imprecise way to estimate code complexity, these numbers
reflect the total programmer effort required to use Libxac. Less that two dozen Libxac function
calls were required for each data structure. For the B+-tree, 8 out of the 23 calls were actually
optimizations, i.e., calls to the advisory function, setPageAccess. Also, most of the additional
code for the B+-tree was for testing concurrent insertions on the tree, not for supporting the data
structure operations.

Because the conversion process was simple, I was able to successfully modify the CO B-tree
structure in only a few hours, i.e., overnight. Since the CO B-tree was previously implemented by
another student [29], most of this time was spent actually understand the existing code. The serial
B+-tree was also coded by someone else.

My experience provides anecdotal evidence as to the ease of programming with Libxac. Using
this library, it was possible to modify a complex serial data structure to support concurrent updates,
knowing only a high-level description of the update algorithm. Unlike a program that uses fine-
grained locks, the concurrency structure of the program with transactions is independent of the
underlying implementation.

5.4 Durable Transactions on Search Trees

In this section, I describe experiments performing insertions on Libxac search trees, with each
insertion as a durable transaction. On newer machines, I found that the search trees coded with
Libxac were actually competitive with Berkeley DB’s B-tree, running anywhere from 4% slower to
67% faster. Tables 5.5 and 5.6 summarize the results from this experiment. For more details on the
experimental setup, see Section C.6.

On a single process, on an ext3 filesystem (Machines 1 and 3(b)), the average time per insertion
on the Libxac search trees was over 60% faster than on Berkeley DB. On the Reiser FS filesys-
tem (Machine 3(a)), the Libxac search trees ran only 4% slower than Berkeley DB. These results
demonstrate that durable memory-mapped transactions with Libxac can be efficient.

It is unclear exactly why Berkeley DB takes so long to perform random insertions as durable
transactions. It is possible that I have not tuned Berkeley DB properly, or that I have not taken

68

Machine Search Tree Avg. Time/Insert (ms) % Speedup Speedup
1 Proc. 2 Proc.

1 B+-tree, w. adv. 18.3 14.6 20.2% 1.25
1 CO B-tree, no adv. 13.5 15.7 -16.3% 0.86
1 Berkeley DB 45.9 44.2 3.7% 1.04

3(a) B+-tree, w. adv. 7.7 7.7 0 % 1.00
3(a) CO B-tree, no adv. 7.5 7.8 -4.0 % 0.96
3(a) Berkeley DB 7.4 5.1 31.1 % 1.45
3(b) B+-tree, w. adv. 7.4 7.2 2.7% 1.03
3(b) CO B-tree, no adv. 7.2 7.3 -1.4% 0.99
3(b) Berkeley DB 22.4 17.7 21.0% 1.28
4 B+-tree, w. adv. 82.0 – – –
4 CO B-tree, no adv. 66.5 – – –
4 Berkeley DB 57.7 – – –

Table 5.5: Time for 250,000 durable insertions into Libxac search trees. All times are in ms. Percent speedup

is calculated as 100(t1−t2)
t2

, where t1 and t2 are the running times on 1 and 2 processors, respectively.

Machine B+-tree vs. BDB CO B-tree vs. BDB
1 Proc. 2 Proc. 1 Proc. 2 Proc.

1 60% 67% 71% 65%
3(a) -4% -51% -1% -53 %
3(b) 67% 59% 68% 59%

4 -42% – -15% –

Table 5.6: The % speedup of Libxac search trees over Berkeley DB. Percent speedup is calculated as
100(tL−tB)

tB

, where tL and tB are the running times on the Libxac and the Berkeley DB tree, respectively.

Speedup is t1/t2.

full advantage of its functionality. The fact that I cannot simply use Berkeley DB with default
parameters is another argument in favor of simpler interfaces like the one provided by Libxac.

The Libxac search trees on Machine 3 achieve almost no speedup or slight slowdown going from
one to two processes. These results are consistent with the previous data from the concurrency tests
on durable transactions in Table 4.10: the simple transactions in concurrency Test A take about
6 ms on average, while the search tree inserts take about 8 ms. It is interesting that the B+-tree
achieves speedup about 20% speedup on Machine 1. One observation is that concurrency test A
takes about 8 or 9 ms on Machine 1, while the B+-tree inserts take about 18 ms. Thus, there may
be more potential for speedup compared to Machine 3.

We can look a little more closely at the time required for individual inserts. Figure 5-3 plots the
time required for the kth most expensive insert on Machine 3(a) and 3(b).

For all the search trees, only about 100 insertions require more than 100 ms. There is a sharp
contrast between the Libxac search trees and Berkeley DB; the most expensive inserts for Libxac

trees take over a second, while the most expensive inserts for Berkeley DB take on the order of
a tenth of a second. The fastest inserts for Libxac tend to be faster than Berkeley DB however,
taking on the order of a millisecond. The conclusion is that the Berkeley DB B-tree exhibits more
consistent behavior than Libxac search trees, but on average the two systems are competitive.

Since Libxac relies more heavily on the operating system than Berkeley DB, the fact that
some insertions with Libxac are expensive is not surprising. Also, since all results are real-time
measurements, it is possible that some of these 100 expensive insertions include times when the
program was swapped out for a system process.

Finally, although I do not present the detailed results here, I have observed that even when the

69

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

T
im

e
(m

s)

k

Machine 3(a): Time Required for kth-Most Expensive Durable Insert

Libxac COB-Tree
Libxac B-Tree

Berkeley DB

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

T
im

e
(m

s)

k

Machine 3(b): Time for kth-Most Expensive Insert

Libxac COB-Tree
Libxac B-Tree

Berkeley DB

Figure 5-3: Machine 3: Time for kth most expensive insert operation.

70

write-cache on the harddrives are enabled, Berkeley DB and the Libxac search trees are comparable
(see Appendix C, Table C.12). Although these transactions are not strictly recoverable, these results
suggest that memory-mapped transactions using Libxac may still be efficient in other situations,
(if our systems had harddrive caches with battery-backup, for example).

5.5 Summary of Experimental Results

In this chapter, I have presented experimental results testing the performance of search trees imple-
mented with and without Libxac. The results in Section 5.2 show that a CO B-tree can simulta-
neously support efficient searches, insertions, and range-queries in practice. The CO B-tree is even
competitive with a B-tree whose block size B has been carefully tuned. Section 5.4 shows that the
Libxac B+-tree and CO B-tree can support insertions as durable transactions efficiently. In the
experiments I conducted, insertions using Libxac search trees ranged from being only 4% slower to
about 67% faster than Berkeley DB. This last result is quite surprising, considering the fact that I
am comparing an unoptimized prototype of Libxac with several significant flaws to a high-quality
transaction system such as Berkeley DB.

Although this result is quite promising, I believe there is still significant work that needs to be
done:

1. Libxac needs to be modified to fully support recovery on multiple processes, and a recovery
process needs to be implemented and fully tested. Separating the log data and meta-data into
separate files should accomplish this goal and not hurt performance if Libxac uses multiple
disks, but it is impossible to know for sure without actual tests.

In particular, one shortcut I took during implementation was to not calculate the checksum for
each page during transaction commit. Appendix C, Table C.8 shows that calculating an MD5
checksum on a single page takes about 36,000 clock cycles on Machines 1 and 2 (about 12 to
15 µs). For small transactions that touch only a few pages, this cost seems fairly reasonable.
For larger transactions, however, performing two calls to fsync to ensure that the commit
record is written to disk after all the data pages is probably more efficient than computing a
checksum. In some cases, I have noticed that the time for a second fsync is fairly small if
it occurs soon after the first, possibly because the disk head does not move between the two
writes. It would be interesting to more rigorously test whether performing two fsync’s during
a transaction commit substantially impacts the performance of Libxac.

2. Berkeley DB supports group commits, i.e., allowing transactions on different threads or pro-
cesses commit together with the same synchronous disk write. Modifying Libxac to support
group commits may improve concurrency when the system uses a single disk.

3. The prototype currently limits a transaction’s maximum size to around 64 or 128 MB.4 Unfor-
tunately, on the three newer machines, this constraint allows us to test only search trees that
can fit into main memory. It would be interesting to test Libxac on large databases that do
not fit into memory.

Another interesting experiment would be to test Libxac in a memory-competitive environ-
ment, with other applications running simultaneously.

4. Currently, Libxac maintains its logs at page granularity; the runtime saves a copy of every
page that a transaction writes, even if the transaction modifies only a few bytes on a page.
A single run of the experiment doing 250,000 insertions to a B+-tree or CO B-tree, Libxac

generates approximately 5 GB of log files. In contrast, Berkeley DB only creates 185 MB of
log files. There is significant room for improvement in the way Libxac maintains its logs.

In addition to questions related to the Libxac implementation, there are also several theoretical
questions that these experiments raise:

4In Linux, a process is allowed to have at most 216 different mmaped segments. The Libxac runtime ends up
creating 1 or 2 segments for every page a transaction touches.

71

1. In all these experiments, I have used the oldest-wins abort policy with no backoff when trans-
actions conflict. A backoff loop may improve performance for concurrent insertions in practice.
It would be interesting to experiment with other policies for contention resolution, especially
if the Libxac runtime is modified to be more decentralized.

2. Although I managed to “parallelize” the CO B-tree, it is unclear whether this data structure
still performs an optimal number of memory-transfers per operation. For example, some CO B-
tree insert operations must rebalance the entire packed memory array, leading to a transaction
that conflicts with any other transaction that modifies the tree. Appropriate backoff in this
situation may improve the performance of a concurrent version of the CO B-tree.

3. The serial version of the CO B-tree written without Libxac is cache-oblivious by construction.
Since Libxac supports multiversion concurrency by memory-mapping multiple copies of pages
in complex ways, it is unclear whether the property of cache-obliviousness still holds. For
example, in Libxac, it is possible for two adjacent pages in the user file to end up being
mapped to two nonadjacent pages in Libxac’s log file, and vice-versa. The behavior is even
more complicated when operations are being done on multiple processors. One interesting
research question to explore is whether a serial, cache-oblivious B-tree can be converted into
a parallel cache-oblivious structure while still supporting multiversion concurrency.

In conclusion, I consider Libxac not as a finished product, but as work in progress. The Libxac

prototype has some interesting features in its implementation, but there is much room for improve-
ment. The fact that Libxac manages to support durable search-tree insertions as efficiently as the
Berkeley DB B-tree in our experiments is a strong indication that memory-mapped transactions can
be practical.

I have spent the majority of this chapter discussing performance, but arguably the most important
result is the one I have spent the least time discussing. Libxac is intended to be a library that is easy
to program with. For concurrent and persistent programs, the hope is that the ease of parallelizing
serial data structures is the rule rather than the exception.

72

