
Helper Locks for Fork-Join Parallel Programming

Kunal Agrawal∗ Charles E. Leiserson Jim Sukha

MIT Computer Science and Artificial Intelligence Laboratory

kunal@cse.wustl.edu cel@mit.edu sukhaj@mit.edu

Abstract

Helper locks allow programs with large parallel critical sections,
called parallel regions, to execute more efficiently by enlisting
processors that might otherwise be waiting on the helper lock to
aid in the execution of the parallel region. Suppose that a processor
p is executing a parallel region A after having acquired the lock L
protecting A. If another processor p′ tries to acquire L, then instead
of blocking and waiting for p to complete A, processor p′ joins p
to help it complete A. Additional processors not blocked on L may
also help to execute A.

The HELPER runtime system can execute fork-join computa-
tions augmented with helper locks and parallel regions. HELPER
supports the unbounded nesting of parallel regions. We provide the-
oretical completion-time and space-usage bounds for a design of
HELPER based on work stealing. Specifically, let V be the number

of parallel regions in a computation, let T1 be its work, and let eT∞ be
its “aggregate span” — the sum of the spans (critical-path lengths)
of all its parallel regions. We prove that HELPER completes the

computation in expected time O(T1/P+ eT∞ +PV) on P processors.
This bound indicates that programs with a small number of highly
parallel critical sections can attain linear speedup. For the space
bound, we prove that HELPER completes a program using only

O(PeS1) stack space, where eS1 is the sum, over all regions, of the
stack space used by each region in a serial execution. Finally, we
describe a prototype of HELPER implemented by modifying the
Cilk multithreaded runtime system. We used this prototype to im-
plement a concurrent hash table with a resize operation protected
by a helper lock.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Algorithms, Performance, Theory

Keywords Cilk, fork-join multithreading, helper lock, nested par-
allelism, parallel region, scheduling, work stealing.

∗Kunal Agrawal’s current affiliation is Washington University in St. Louis.

This research was supported in part by NSF Grants CNS-0540248 and
CNS-0615215.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright c© 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

1. INTRODUCTION

Many multithreaded-programming environments such as Cilk [6],
Cilk++ [9], Fortress [1], Threading Building Blocks [12], and X10
[5] contain constructs for supporting fork-join parallelism. In this
paradigm, programmers specify parallelism in a program abstractly
by permitting (but not requiring) parallelism in specific locations of
the program. A runtime system dynamically schedules the program
on P processors, called workers.

Environments that support fork-join programming usually sup-
port nested parallelism. For example, a programmer can “spawn”
two nested tasks G1 and G2 from inside a task F, indicating that G1
and G2 can be executed in parallel. The tasks G1 and G2 can spawn
more subtasks, and so on. The runtime does not, however, create
a new thread every time a new nested task is spawned. Depend-
ing on how many workers are available, the runtime may choose to
execute G1 and G2 serially or in parallel.

Some environments that support fork-join programming pre-
clude non-fork-join constructs in order to exploit efficient schedul-
ing algorithms that exist for programs that have only fork-join de-
pendencies. For example, some multithreaded systems use a sched-
uler modeled after the work-stealing scheduler implemented in Cilk
[6], which is known to be provably efficient in terms of both com-
pletion time and stack space [4].

Unfortunately, the theoretical bounds in [4] do not directly ap-
ply to programs that use locks, because locks can introduce arbi-
trary dependencies. The completion-time bound in [4] assumes that
two concurrently spawned tasks G1 and G2 can execute indepen-
dently. If G1 and G2 attempt to acquire the same lock, however,
this assumption may not hold, since one task must wait for the
other. If the lock protects large critical sections in G1 or G2, the
lock may compromise scalability. Alternatively, if one modifies the
scheduler so that workers randomly work-steal instead of waiting
when they block trying to acquire a lock, then, as we shall show in
Section 2, the program can consume exorbitant stack space, since
workers may repeatedly fail to acquire locks.

Helper locks address these issues. Intuitively, a helper lock is
like an ordinary lock, but it is “connected” to a large critical section
containing nested parallelism, called a parallel region. Whenever
a worker fails to acquire a helper lock L, it tries to help complete
the work in the parallel region A connected to L. Helper locks can
improve program performance, because if a worker blocks trying
to acquire L, it can help complete useful work in A, rather than just
waiting. Also, because helper locks direct a worker toward specific
work, the stack space used by a program can be controlled.

This paper makes the following contributions:

• The design of the HELPER runtime system, which can execute
fork-join computations augmented with helper locks and paral-
lel regions of unbounded nesting depth.

• Theoretical bounds on the completion time and stack-space
usage of computations executed using HELPER.

• A prototype of HELPER based on the Cilk runtime system,
which suggests that helper locks can be implemented with rea-
sonable overheads.

Our theoretical work extends the results given in [2, 4] for work-
stealing schedulers, showing that for a computation E , HELPER

completes E on P processors in expected time O(T1/P+ eT∞ +PV),
where T1 is the work of E , eT∞ is E’s “aggregate span” which is
bounded by the sum of spans (critical-path lengths) of all regions,
and V is the number of parallel regions in E . Our completion-time
bounds are asymptotically optimal for certain computations with
parallel regions and helper locks. In addition, the bounds imply
that HELPER produces linear speedup provided that all parallel
regions in the computation are sufficiently parallel. Roughly, if for
every region A, the nonnested work of region A is asymptotically
larger than P times the span of A, then HELPER executes the com-
putation with speedup approaching P. We also show that HELPER

completes E using only O(PeS1) stack space, where eS1 is the sum
over all regions A of the stack space used by A in a serial execution
of the same computation E .

As a proof-of-concept, we implemented a prototype of HELPER
by modifying the Cilk [6] runtime system. We used the HELPER
prototype to program a concurrent hash table that uses helper locks
to protect resize operations. In this hash table, a resize rebuilds the
entire table, and thus it must hold a lock to prevent inserts from in-
terfering. By protecting the resize with a helper lock, workers that
fail to insert can help to complete the resize instead of waiting. We
performed experiments which suggest that a practical and efficient
implementation of HELPER is feasible.

Outline

The rest of this paper is organized as follows. Section 2 explores
the example of a concurrent resizable hash table and the chal-
lenges posed by large critical sections, explaining how helper locks
can address these challenges. Section 3 presents the design of
HELPER, focusing on the runtime support for helper locks. Sec-
tion 4 states the theoretical bounds on completion time and space
usage for HELPER. Sections 5 and 6 give details of the proof of
these bounds. Section 7 describes the prototype implementation of
HELPER, and Section 8 presents experimental results on our pro-
totype system for a simple concurrent hash-table benchmark. Sec-
tion 9 concludes with related work and future research directions.

2. MOTIVATING EXAMPLE

This section motivates the utility of helper locks through the ex-
ample of coding a resizable hash table written using Cilk [6], an
open-source fork-join multithreaded programming language. First,
we briefly review key features of the Cilk language and runtime.
Then, we discuss the challenges of using Cilk with ordinary locks
to exploit parallelism within a hash table’s resize operation. Finally,
we explain helper locks and how they can be used to run the hash-
table example more simply and efficiently.

Overview of Cilk

We review the characteristics of Cilk and its work-stealing sched-
uler using the sample program in Figure 1. This pseudocode shows
a Cilk function that concurrently inserts n random keys into a re-
sizable hash table.

Cilk extends C with two main keywords: spawn and sync. In
Cilk, the spawn keyword before a function invocation specifies that
this child function can potentially execute in parallel with the con-
tinuation of the parent (caller), that is, the code that immediately
follows the spawn statement in the parent. The sync keyword pre-
cludes any code after the sync statement from executing until all
previously spawned children of the parent have completed. As an

1 cilk void rand_inserts(HashTable* H, int n) {
2 if (n <= 32) { random_inserts_serial(H, n); }
3 else {
4 spawn rand_inserts(H, n/2);
5 spawn rand_inserts(H, n-n/2);
6 sync;
7 }
8 }
9 void rand_inserts_serial(HashTable* H, int n) {
10 for (int i = 0; i < n; i++) {
11 int res; Key k = rand();
12 do {
13 res = try_insert(H, k, k);
14 } while (res == FAILED);
15 resize_table_if_overflow(H);
16 }
17 }

Figure 1. An example Cilk function which performs n hash ta-
ble insertions, potentially in parallel. After every insertion, the
rand_inserts method checks whether the insertion triggered an
overflow and resizes the table if necessary.

example, in Figure 1, the rand_inserts function uses the spawn

and sync keywords to perform n insert operations in parallel in a
divide-and-conquer fashion.

The Cilk runtime executes a program on P workers, where P
is determined at runtime. Conceptually, every worker stores its
work on a double-ended queue, or deque. When a function f being
executed by a worker spawns a function f ′, the worker suspends
f , pushes the continuation of f onto the bottom (tail) of its deque,
and begins working on f ′. When the worker completes f ′, it pops
f from the bottom of its deque and resumes it at the point of
the continuation. When a worker’s deque becomes empty or the
executing function stalls at a sync, however, the worker chooses a
victim worker uniformly at random and tries to steal work from the
top (head) of the victim’s deque.

Challenges for Large Critical Sections

Cilk programmers can use ordinary locks to protect critical sec-
tions. For example, the code in Figure 2 uses a reader/writer lock
to implement a resizable concurrent hash table. Every insert opera-
tion acquires the table’s reader lock, and a resize operation acquires
the table’s writer lock. Thus, insert operations (on different buck-
ets) may run in parallel, but a table resize cannot execute in parallel
with any insertion.

When a worker blocks trying to acquire a lock, the worker
typically spins until the lock is released. Workers that block on
a lock protecting a large critical section may waste a substantial
number of processor cycles waiting for its release. Consequently,
most lock implementations avoid tying up the blocked worker
thread by yielding the scheduling quantum after spinning for a short
length of time. This altruistic strategy works well if there are other
jobs that can use the cycles in a multiprogrammed environment, but
if the focus is on completing the computation, it seems better to put
the blocked workers to work on the computation itself.

A naive strategy for putting a blocked worker to work on the
computation itself is for the worker to suspend the function that
failed to acquire a lock and engage in work-stealing. Unfortunately,
this strategy can waste resources in dramatic fashion. Turning back
to the example of the hash table, imagine what would happen if
one worker p write-acquires the resize lock while another worker
p′ attempts an insertion. Unable to read-acquire the resize lock, p′

would suspend the insertion attempt and steal work. What work
is lying around and available to steal? Why another insertion, of
course! Indeed, while p is tooling away trying to resize, p′ might

1 int try_insert(HashTable* H, Key k, void* value) {
2 int success = 0;
3 success = try_read_acquire(H->resize_lock);
4 if (!success) { return FAILED; }
5 int idx = hashcode(H, k);
6 List* L = H->buckets[idx];
7 list_lock(L);
8 list_insert(L, k, value);
9 list_unlock(L);
10 release(H->resize_lock);
11 return SUCCESS;
12 }

13 void resize_table_if_overflow(HashTable* H) {
14 if (is_overflow(H)) {
15 write_acquire(H->resize_lock);
16 List** new_buckets;
17 int new_n = H->num_buckets*2;
18 new_buckets = create_buckets(new_size);
19 for (int i = 0; i < H->num_buckets; i++) {
20 rehash_list(H->buckets[i], new_buckets, new_n);
21 }
22 free_buckets(H->buckets);
23 H->buckets = new_buckets;
24 H->num_buckets = new_n;
25 release(H->resize_lock);
26 }
27 }

Figure 2. Code for inserting into and resizing a concurrent hash
table using a reader/writer lock.

attempt (and fail) to insert most of the items in the hash table, one at
a time, systematically suspending each insertion as it fails to read-
acquire the resize lock and going on to the next.

This strategy is not only wasteful of p′’s efforts, it results in
profligate space usage. Each time a continuation is stolen, the run-
time system requires an activation record to store local variables.
Thus, for the hash table example, the rand_inserts function
could generate as much as Θ(n) space in suspended insertions. In
general, the space requirement could grow as large as the total work
in the computation. In contrast, Cilk’s strategy of simply spinning
and yielding, though potentially wasteful of processor cycles, uses
space of at most Θ(P lgn) on P processors in this example.

The idea of helper locks is to employ the blocked workers in
productive work while controlling space usage by enlisting them to
help complete a large critical section. For helper locks to be useful,
however, the critical section must be parallelized and the runtime
system must be able to migrate blocked workers to work on the
critical section. Ordinary Cilk-style work-stealing is inadequate to
this task, because stealing occurs at the top of the deque, and the
critical section may be deeply nested where workers cannot find it.
For example, in Figure 2, when an insertion triggers a resize, the
parallel work of the resize (i.e., rehash_list) is generated at the
bottom of a deque, with work for rand_inserts above it. In fact,
in this example, by employing Cilk-style work-stealing, workers
would more likely block on another insertion than help complete
the resize.

Helper Locks

Helper locks and the runtime support provided by HELPER allow
blocked workers to productively help to complete parallel criti-
cal sections, or parallel regions. To specify a parallel region, the
programmer encapsulates the critical section in a function and
precedes the invocation of the function with the start_region

keyword. A helper lock extends an ordinary lock by provid-
ing a method helper_acquire for acquiring the lock. (For a

1 CilkHelperLock* L = H->resize_lock;
2 helper_read_acquire(L);
3 try_insert(H, k, k);
4 helper_release(L);
5 if (is_overflow(H)) {
6 helper_write_acquire(L);
7 start_region resize_if_overflow(H);
8 }

Figure 3. Pseudocode for a resizable hash table using a helper
lock L. This code represents a modification of the inner loop of
the rand_inserts function (lines 12–15 of Figure 1).

reader/writer lock, two methods helper_read_acquire and
helper_write_acquire would be provided). When a worker
fails to acquire a helper lock L, it helps complete the work of a
designated parallel region A connected to the lock L.

To be precise, a worker p succeeds in a call helper_acquire(L)
exactly when an ordinary acquire of L would succeed, and it pro-
vides the same exclusion guarantees as the original lock. First, we
describe the case where p succeeds in a helper-acquire of L. There
are two ways to execute L’s critical section and release L. If L
protects a serial critical section, then the programmer can just ex-
ecute the critical section and call helper_release(L), in which
case, L behaves like its underlying ordinary lock. A lock acqui-
sition ending with a helper-release is called a short acquire. If,
on the other hand, the programmer calls start_region on a par-
allel region A while holding a helper lock L, then L protects A.
(Calling start_region while holding an ordinary lock is disal-
lowed.) Conceptually, a start_region call transfers ownership
of any locks L that p has acquired but not released to region A,
and connects any such L to region A. After region A completes, it
automatically releases all helper locks that it holds. An acquisition
that ends with the return from a region is called a region acquire.
Nested start_region calls behave similarly, except that an inner
call transfers and releases ownership of only those helper locks ac-
quired at the current nesting level. In the case of short acquires, the
processor that acquires the locks conceptually owns the locks and
is responsible for releasing them. In the case of region acquires,
the parallel region owns the locks and the locks are automatically
released (by the runtime system) when the region completes.

A worker p1 attempting to acquire a helper lock L can fail either
because some parallel region A holds L or because some other
worker p2 holds L. If a region A holds L, then p1 tries to help
complete the parallel work in A, since L is connected to A. If p2

holds L, then p1 waits (or waits and yields the scheduling quantum)
as with an ordinary failed lock acquisition.

Helper locks help programmers deal with large critical sections
in two ways. When a worker p blocks on a helper lock L, it keeps
productively busy by helping to complete the region A holding L (if
such a region exists). Moreover, it enables faster release of the lock
L on which p is blocked. In addition, this strategy guarantees (see
Section 6) that the stack space can be bounded.

Figure 3 illustrates how one might modify the code with a
reader/writer lock in Figure 2 to use a reader/writer helper lock L. In
Lines 2–4, the hash table insert is protected by a helper-acquire of L
in read mode. Line 6 performs a helper-acquire of L in write mode,
and then Line 7 starts the region for the resize. With a helper lock,
one can potentially execute the resize in parallel, e.g., by spawning
the rehash_list calls in Line 20 of Figure 2. If any worker p fails
to acquire L in either read or write mode because a resize region A
holds L, then p tries to help complete the resize.

HELPER requires that parallel regions be properly nested, as is
enforced by the linguistics of start_region. Short acquires need
not obey this restriction and can be used with other locking dis-

ciplines, such as hand-over-hand locking. HELPER does assume
that locks are not reentrant, however. Our prototype implementa-
tion also assumes that A region acquire does not operate on reader
helper locks, but only on mutex (and writer) helper locks, although
a short acquire can operate on any kind of helper lock. This restric-
tion is not inherent in the HELPER design, but it simplifies analysis
and implementation.

3. THE HELPER RUNTIME SYSTEM

This section describes the HELPER runtime system, which pro-
vides support for helper locks using a Cilk-like work-stealing
scheduler. HELPER provides two new runtime mechanisms: the
start_region mechanism which creates a new parallel region,
and a help_region mechanism which helper locks use to assign
blocked workers to parallel regions. We present HELPER in the
context of Cilk [6], the system we used to implement our proto-
type. The design can be applied more generally to other fork-join
parallel languages that use a work-stealing scheduler.

Parallel Regions

A parallel region is an execution instance of a critical section
created by start_region and is protected by one or more helper
locks. When a worker blocks due to a helper-lock acquire, it tries to
help in a parallel region that holds that lock (if such a parallel region
exists). To manage worker migration, the runtime maintains a pool
of deques for each active (currently executing) parallel region.

When the programmer calls the start_region method to cre-
ate a parallel region A, the runtime system creates a new deque
pool for A, denoted by dqpool(A). While A is being executed, A
has certain workers assigned to it. The runtime system allocates
a deque q ∈ dqpool(A) to every worker p when p is assigned to
A. We denote this relationship by A = region(q) or dq(p,A) = q.
We say dq(p,A) = NULL if p is not assigned to A. The runtime
uses dqpool(A) for self-contained scheduling of region A on A’s
assigned workers. While p is assigned to A, when p tries to steal
work, it randomly steals only from deques q ∈ dqpool(A).

HELPER allows a worker p to enter (be assigned to) a region
A in three ways. First, p can be assigned to A when p successfully
starts region A by executing start_region. Second, p can enter
if it blocks on a lock L held by region A. In this case, the runtime
system executes a help_region call on behalf of the worker, and
the worker is assigned to A. Finally, p can enter a region A due to
random work stealing: if p tries to steal from p′ and discovers that
p′ is assigned to A, then p may also enter A.

Conceptually, a worker may leave a parallel region before the
region completes, but early leaving raises several issues. For ex-
ample, a worker might repeatedly leave and enter the same region,
repeatedly incurring the synchronization overhead. Therefore, for
simplicity in implementation and to guarantee good theoretical
bounds, once HELPER, assigns a worker to a region, it remains
in that until the region is done.

We maintain a deque pool as an array of size P with a dedicated
slot for every worker. Every worker adds or removes themselves
from the pool without waiting on other workers. A protocol based
on a binary tree network of size O(P) can track whether the pool is
empty. With this scheme, each worker waits at most O(lgP) time
to enter the region, and it takes at most O(lgP) time for all workers
to leave the deque pool once all work in the region is completed.

Nested Regions

HELPER supports nested helper locks and nested parallel regions.
That is, a region A protected by region lock L1 can start a region
B protected by lock L2 or call help_region on L2. With nested
locks, every worker p may be assigned to many parallel regions

!"

#"

!"

#"

!"

$"

#"

!"

#"
%"

&"
&"

!"

'"

!"

!"

!"

("

)"

!"
*"

#"

+"

#"

&"

#"

!" u1

u2 v2

v1

final(B)
root(B)

1! 2! 3! 4!
!"

1!
#"

4!1!
$"

4!1!
%"

2!1!
&"

'"
3!1!

3!

Figure 4. (a) A computation dag showing parallel regions. Ovals
represent regions, and nodes are labeled with the number of the
worker that executes each node (e.g., worker p1 executes the nodes
labeled 1). The dotted nodes correspond to help_region calls.
(b) A snapshot of deque pools during execution, where numbers
correspond to workers in the pool.

and thus have many deques. HELPER supports nesting of arbitrary
depth by maintaining a chain of deques for each worker.

The deques for one worker form a deque chain with each deque
along the chain belonging to the deque pool of a distinct region.
The top deque in every worker’s chain belongs to the global deque
pool, which is the original set of deques for a normal Cilk program
context. The bottom deque in p’s chain represents p’s active deque,
denoted activeDQ(p). When p is working normally, it changes
only the tail of activeDQ(p). In addition, p always work-steals
from deques within the deque pool of region(activeDQ(p)), the
region for p’s active deque.

Whenever a worker p with activeDQ(p) = dq(p,A) enters a
region B, it adds a new deque dq(p,B) for region B to the bottom
of its chain and changes activeDQ(p) to dq(p,B). We say that
dq(p,B) has a child deque of dq(p,A), i.e., child(dq(p,A)) =
dq(p,B), and we define parent deque similarly, i.e., parent(dq(p,B))=
dq(p,A).

When B completes, for every worker p assigned to A, p removes
its deque qp = dq(p,B) from the end of its deque chain, sets the
parent of qp as its active deque, and starts working on region
region(parent(qp)). Note that different workers assigned to B
may return to different regions.

Deque chains also help a worker p efficiently find deque pools
for other regions during random work-stealing. A worker p1 with
an empty active deque randomly steals from other pools in the
same region A = region(activeDQ(p1)). If p1 finds a deque
q = dq(p2,A) which is also empty, but a child deque q′ = child(q)
exists, then instead of failing the steal attempt, p1 enters the region
corresponding to q′. If q′ is also empty but child(q′) exists, etc.,
p1 can continue to enter the regions for deques deeper in the chain.

Figure 4 illustrates deque pools and deque chains for a simple
computation using 4 workers. (The dag model for a computation is
presented in Section 4.) In this example, worker p1 enters regions

A through F (all regions are assumed to acquire different helper
locks). Initially, p1 starts a region B, p4 randomly steals from p1

in dqpool(A), and starts region D, and p2 steals from p4 in A, and
starts region F . Next, p1 starts a region C nested inside B. Then, p3

randomly work-steals from p1 in A, and enters B and C. Afterward,
p1 inside C makes a help_region call on the lock for D, enters D,
and steals from p4 in D. Finally, p1 makes a help_region call on
the lock for F and enters F .

Deadlock Freedom

As with ordinary (nonhelper) locks, an arbitrary nesting of helper
locks risks deadlock. If program with ordinary locks protecting
serial critical sections is deadlock free, however, converting the
ordinary locks into helper locks is safe and does not introduce
any new deadlocks. (The discipline often used to ensure deadlock
freedom is to acquire locks in a fixed order.) After the conversion
to helper locks, large serial critical sections can be parallelized,
but the programmer must ensure that any nested parallelism within
critical sections is properly encapsulated using parallel regions.
Specifically, the keywords spawn and sync should not appear
inside a critical section unless both are enclosed within a parallel
region initiated using start_region. This condition essentially
requires that programmers use only the mechanisms provided by
HELPER to generate nested parallelism in critical sections.

4. COMPLETION TIME AND SPACE USAGE

This section states the completion time and space bounds provided
by HELPER and provides an interpretation. The proofs are pre-
sented in Sections 5 and 6. We begin with some definitions.

Definitions

We model the execution of a program as a computation dag E . Each
node in E represents a unit-time task, and each edge represents a
dependence between tasks. We assume the computation executes
on hardware with P processors, with one worker assigned to each
processor. In the remainder of this paper, we consider only compu-
tations E generated by deadlock-free programs.

We model regions as subdags of E . The entire computation E

is itself considered a region that encloses all other regions. For any
node v, we say that a region A contains v if v is a node in A’s dag.
We say that v belongs to region A if A is the innermost region that
contains v. Let regions(E) denote the set of all regions for E .

We assume that regions in E exhibit a canonical structure that
satisfies the following assumptions. First, the (sub)dag for each
region A contains a unique initial node root(A) and a unique
final node final(A) such that all other nodes in the region are
successors of root(A) and predecessors of final(A). Second, the
regions are properly nested: if A contains one node from B, then it
contains all nodes from B.

For a given region A, the (total) work T1(A) of A is the number of
nodes contained in A. The span T∞(A) of A is the number of nodes
along a longest path from root(A) to final(A). The span repre-
sents the time it takes to execute a region on an infinite number of
processors, assuming all nested regions are eliminated and flattened
into the outer region (and ignoring any mutual-exclusion require-
ments for locked regions). For the full computation E , we leave off
the superscript and say that T1 = T1(E) and span is T∞ = T∞(E).

We also define the work and span for a region A considering
only nodes belonging to A. The region work τ1(A) of A is the
number of nodes in the dag belonging to A. For any path h through
the graph E , the path length for region A of h is the number of
nodes u along path h which belong to A. The region span τ∞(A) of
A is the maximum path length for A over all paths h from root(A)
to final(A). Intuitively, the region span of A is the time to execute

A on an infinite number of processors, assuming A’s nested regions
complete instantaneously. As an example, in the computation dag
in Figure 4, region D has T1(D) = 13, τ1(D) = 7, T∞(D) = 8,
and τ∞(D) = 5. For a computation E with parallel regions, the
aggregate region span is

eT∞ =
X

A∈regions(E)

τ∞(A) .

Finally, in order to consider the contention due to short acquires
of helper locks, we define the bondage b of a computation E as the
total number of nodes corresponding to critical sections for short
acquires of all helper locks.

The completion-time bound also depends on the number of re-
gions and how regions are nested and connected to each other.
The region graph for a computation E has a node for each
region in E and an edge from region A ∈ regions(E) to re-
gion B ∈ regions(E) if some worker in region A calls either
start_region for B or help_region for some lock connected
to B. We say B is a child region of A if (A,B) is an edge in the
region graph. We shall generally use the notation V for the number
of regions in a region graph and E for the number of edges.

To state the space bounds, we need the following definition.
For a region A, we define the serial space S1(A) required by A,
as the maximum stack space consumed by region A during the
computation E .

Statement of Bounds

Let T be the running time using HELPER of a computation E

running on P processors. We prove that a computation E with V
regions, E edges between regions in the region graph, work T1,

aggregate span eT∞, and bondage b runs in expected time

E [T] = O(T1/P + eT∞ +E ln(1+PV/E)+b). (1)

Moreover, for any ε > 0, we prove that with probability at least
1− ε, the execution time is

T = O(T1/P + eT∞ +E ln(1+PV/E)+ lg(1/ε)+b). (2)

Our space bounds are a generalization of the bounds in [4].

Let eS1 =
P

A∈regions(E) S1(A) where S1(A) is the serial stack

space required by region A. We prove that HELPER executes a

computation E on P processors using at most O(PeS1) space.

Interpretation and Discussion of Bounds

To understand what the completion-time bound in Equation (1)
means, we can compare it to the completion-time bound for a com-
putation without regions. The ordinary bound for randomized work
stealing [4] says that the expected completion time is O(T1/P +
T∞). The bound in Equation (1) exhibits three differences.

First, there is an additive term of E ln(1+PV/E). We shall show
that V −1 ≤ E ≤ PV . Therefore, in the best case, if E = O(V), the
term reduces to V lnP. This case occurs when a computation has no
contention on helper locks, i.e., when no help_region calls are
made. In the worst case, if E = PV this term is equal to PV . This
worst case assumes that each worker assigned to a region enters
from a different region, whereas we expect that most regions would
have a limited number of entry points.

Even in the worst case, when the additive term is PV , if the
number of parallel regions is small, then this term is insignificant
compared to the other terms in the bound. Since parallel regions
are meant to represent large critical sections, we expect V to be
small in most programs. For example, in the hash-table example
from Section 2, if we perform n insertions, only O(lgn) resizes
occur during the execution. Furthermore, even if there are a large
number of parallel regions, if each parallel region A is sufficiently

large (τ1(A) = Ω(P2)) or long (τ∞(A)≥Ω(P)), then we have PV =

O(T1/P + eT∞), and the PV term is asymptotically absorbed by the
other terms. These conditions seem reasonable, since we expect
programmers to use parallel regions only for large critical sections.
Programmers should generally use short acquires to protect small
critical sections.

Second, HELPER completion time involves the term eT∞ instead
of T∞. If the number of parallel regions is small (as we expect)

then the term eT∞ is generally close to T∞. Even for programs

with a large number of parallel regions, the eT∞ term does not
slow down the execution if the parallel regions are sufficiently
parallel. To understand why, look at both the work-stealing bound
and the parallel-regions bound in terms of parallelism. The ordinary
work-stealing bound means that the program gets linear speedup
if P = O(T1/T∞). That is, the program gets linear speedup if the
parallelism of the program is at least Ω(P). We can restate the
HELPER bound as follows:

O

„

T1

P
+ eT∞ +PV

«

= O

0

@

X

A∈regions(E)

„

τ1(A)

P
+ τ∞(A)+P

«

1

A .

We can now see (ignoring the PV term) that HELPER provides
linear speedup if the parallelism of each region is at least Ω(P).
In the hash-table example, a region A that resizes a table of size
k completely in parallel has span τ∞(A) = O(lgk), and thus on
most machines, the parallelism should greatly exceed the number
of processors.

Third, we have the additive term b. In most programs, it is
unlikely that the real completion time with HELPER will include
all of the bondage. It is difficult to prove a tighter bound, however,
since theoretically, there exist computations for which no runtime
system could do any better. For example, if all lock acquires are for
the same helper lock L, then, ignoring the E ln(1+PV/E) term, our
bound is asymptotically optimal. (No runtime system can execute
the computation asymptotically faster.)

Comparison with Alternative Implementations

We now compare the bounds of our implementation of parallel re-
gions with two other alternatives. The first option does not allow
helping. When a worker p blocks on a lock L, it just waits until
L to become available. Using this traditional implementation for
locks, the completion time of a program with critical sections (ei-
ther expressed as parallel regions or just expressed sequentially)
can be Ω(T1/P +

P

A∈regions(E) τ1(A) + b). Notice that the sec-

ond term is the sum of region work over all regions, as compared
to Equation (1), which has the sum of region spans. Therefore, if
the program has large (and highly parallel) critical sections (as in
the hash-table example), then this implementation may run signifi-
cantly slower than with helper locks.

Second, we can compare against an implementation where a
worker that blocks on a lock suspends its current work and ran-
domly work-steals. As the hash-table example from Section 2 il-
lustrates, this implementation may use Ω(T1) space. In contrast,
HELPER uses O(PT∞) space for this example, which is much
smaller than T1 for reasonable parallel programs.

5. ABSTRACT EXECUTION MODEL

This section formalizes the runtime system described in Section 3.
We shall use this model in Section 6 to prove completion time
bounds for HELPER. This model extends the model of Arora et al.
in [2] by incorporating parallel regions and transitions of workers
between regions.

Definitions

We first adopt some additional terminology. Let E be a compu-
tation. As in [2], we assume that each node u ∈ E has degree at
most 2. Computation dags contain three types of nodes. A node u
is a spawn node if u has in-degree 1 and out-degree 2, a sync node
if u has in-degree 2 and out-degree 1, and a serial node if u has
in-degree and out-degree 1. Without loss of generality, we assume
that if a parallel region B is directly nested inside a parent region
A, then root(B) is immediately preceded by a serial node in A and
final(B) is immediately succeeded by a serial node in A.

For a region A, we say that a serial node u ∈ A is a helper node
if it marks a place after which HELPER may suspend execution
of region A (because of a start_region or help_region call)
to work on a node u′ in a different region. For any helper node
u ∈ A, we define the region successor of u as the unique node
v ∈ A where execution resumes when HELPER returns to A. When
a helper node u corresponds to a start_region call for a region
B directly nested inside A, then u is the immediate predecessor of
root(B) and v is the immediate successor of final(B). When u
corresponds to a help_region call to region B from region A,
then v is simply the immediate successor node of the serial node
u, which without loss of generality, we assume belongs to A. In
both cases, we say that u is the region predecessor of v.

Execution

HELPER uses an execution model similar to the ones described
in [2] and [4]. A node v is ready if all of v’s predecessors have
already been executed. Each worker maintains a deque of ready
nodes. In any time step for which a worker has work available, the
worker owns an assigned node, which it executes. In computations
without helper locks or parallel regions, each worker p takes one of
the following actions on each time step:

1. If p’s assigned node is a spawn node u, then executing u makes
two nodes ready. One of u’s immediate successors is pushed
onto p’s deque, and the other immediate successor becomes p’s
assigned node.

2. If p’s assigned node is a serial or sync node u, and executing
u makes its immediate successor node v ready, then v becomes
p’s assigned node.

3. If p’s assigned node is a serial or sync node u, but executing u
does not make u’s successor node v ready (because v is a sync
node), then p removes the bottom node w from its deque and
assigns it, if such a w exists. Otherwise, after the time step, p
has an empty deque and no assigned node.

4. If p has no assigned node and an empty deque, then p becomes
a thief , chooses a victim deque uniformly at random, and at-
tempts to steal work from the victim. If the victim’s deque is not
empty, p steals the deque’s top node x, x becomes p’s assigned
node, and the steal attempt is considered successful. Otherwise,
the deque is empty and the steal attempt fails.

To support parallel regions in HELPER, we extend this exe-
cution model to incorporate multiple deques on each worker, as
well as the transitions of workers between regions. In the extended
model, each worker p owns an active deque activeDQ(p). This
active deque always contains p’s currently assigned node. Each p
may also own several inactive deques. An inactive deque is either
empty, or it has a blocked node at the bottom which represents the
node where execution will resume once that deque becomes active
again.

Consider a worker p with an active deque qA = activeDQ(p)
and active region A = region(q). The extended model includes the
following additional actions for p:

5. Suppose that p executes a helper node u belonging to region
A, where u corresponds to a start_region call. In this case,

u’s immediate successor in E is root(B) for another region B.
First, worker p creates a new active empty deque qB with
region(qB) = B and assigned node root(B). Then, p changes
activeDQ(p) from qA to qB, and sets u’s region successor as
the blocked node for qA.

6. Suppose that p executes a helper node u ∈ A, where u corre-
sponds to a help_region call to B. First, p creates a new active
empty deque qB with region(qB) = B and no assigned node.
Then, as in the previous case, p changes activeDQ(p) from qA

to qB and sets u’s region successor as qA’s blocked node.
7. Suppose that p with active region A has no assigned node.

Then, p attempts to steal from a randomly chosen victim deque
q∈ dqpool(A). If q is not empty and the top node x of the deque
is not a blocked node, then the steal attempt succeeds as before,
i.e., p steals x, and x becomes p’s assigned node. If q is empty
and active (i.e., q has no child deque), then the steal fails.

We call any deque q ∈ dqpool(A) an exposed deque for A if
either q has a blocked node on top or q is empty and inactive. An
exposed deque always has a child deque. If p tries to steal from
an exposed deque q with a child q′ (where B = region(q′)),
then p enters B. It does so by creating a new active deque
qB in B’s deque pool and changing its active deque to qB. An
exposed deque may cause workers assigned to A to enter B due
to random work stealing.

8. Finally, if p executes final(A), then each worker pi with
a deque qi = dq(pi,A) must have qi = activeDQ(pi). Each
worker pi changes activeDQ(pi) to q′i = parent(qi). If q′i has
a blocked node v, then v becomes pi’s assigned node.

We call any step on which a worker p tries to enter a region
(e.g., Cases 5 and 6 and sometimes Case 7) an entering step for p.
Similarly, any step on which p executes Case 8 is called a leaving
step for p. Otherwise, the step is a running step for p. For Case 7,
on any step when p tries to steal from another worker p′, and p′

takes an entering step into A, we assume that p queues up and tries
to enter A.

The extended execution model preserves the set of invariants
enumerated in the following lemma. The lemma, which is stated
without proof, can be proved by induction on the actions of the
execution model.

LEMMA 1. During a computation E , consider a deque q owned
by worker p. Let v1,v2, . . . ,vk be the nodes on q, arranged from
bottom to top. Let ui be an immediate predecessor of vi if vi is an
unblocked node, or the region predecessor of vi if vi is a blocked
node. The execution model maintains the following invariants:

1. For all i, node vi belongs to region A = region(q).
2. For all i, node ui is unique.

3. For all unblocked nodes vi, node ui is a spawn node.

4. If vi is blocked, then i = 1, that is, a blocked node must be at the
bottom of a deque.

5. Deque q contains a blocked node vi if and only if q is inactive,
that is, q 6= activeDQ(p).

6. For i = 2,3, . . . ,k, node ui is a predecessor of node ui−1.

7. If q is active with assigned node w, then w is a successor of u1.

6. PROOF OF PERFORMANCE BOUNDS

This section proves the bounds on completion time and space ex-
plained in Section 4. We first prove the completion-time bound
without considering the contention on short acquires. In other
words, we assume that no worker ever blocks on a short acquire
of a lock and prove a bound that omits the bondage term b from
Equation (1). We remove the assumption at the end of this section.

Proof Outline for Completion Time

To bound the completion time, we account for each possible action
that each processor (worker) p can take on each time step. Every
processor step falls into one of the following categories:

• Working: p executes its assigned node.
• Entering: p waits as it tries enter a region A.
• Leaving: p waits as it tries to leave a region A or fails to steal

from a worker p′ which is leaving A.
• Stealing: p attempts to steal work randomly in a region A.

Let E be a computation executed on P workers, let V be the

number of regions in E , and let T1 and eT∞ be the work and aggre-
gate span of E , respectively. Then, E has exactly T1 working steps.
For the deque-pool implementation described in Section 3, the en-
tering cost is O(lgP) per worker, and once a region A completes,
each worker in A’s deque pool leaves within O(lgP) time. There-
fore, the total number of entering and leaving steps is O(PV lgP).

We bound the number of steal attempts by partitioning them
into three types which we bound individually. A contributing steal
for region A is any steal attempt in A that occurs on a step when
A has no exposed deques. A leaving steal for region A is any
steal attempt which occurs while A has an exposed deque, and
there exists a region B and a worker p such that B is a child
of A, region(activeDQ(p)) = B, and p is executing a leaving
step. A steal attempt in a region A which is neither a leaving nor
contributing steal is considered an entering steal.

We follow Arora, Blumofe, and Plaxton [2] and use a potential-
function argument to show that every region A has O(Pτ∞(A)) con-
tributing steals in expectation, which implies that the expected to-

tal number of contributing steals is bounded by O(PeT∞). One can
bound the number of leaving steals by P times the number of time
steps when any leaving step occurs. Since any worker p in A’s
deque pool leaves within O(lgP) time of A’s completion, and no
worker enters the same region twice, the total number of time steps
when any worker can be leaving a region is at most O(V lgP).
Therefore, the total number of leaving steals is O(PV lgP). Fi-
nally, we show that the total number of entering steals is at most
O(PE ln(1+PV/E)).

Potential Function

Before defining the potential, we require two auxiliary definitions.
For every node u ∈ A, the depth d(u) of u is the maximum path
length for region A over all paths from root(A) to u. The weight of

a region A is w(A) = τ∞(A)−d(A).1

As in [2], the weights of nodes along any deque strictly decrease
from top to bottom.

LEMMA 2. For any deque q owned by a worker p, let v1,v2, . . . ,vk

be the nodes in q ordered from the bottom of the deque to the top,
and let v0 be the assigned node if q = activeDQ(p). Then, we have
w(v0) ≤ w(v1) < · · · < w(vk).

PROOF. If the deque q is not empty, then either v1 is a blocked
node, or an assigned node v0 exists. Invariants 4 and 5 from
Lemma 1 imply that these two conditions are mutually exclusive.
Define the ui’s as in Lemma 1.

On the one hand, suppose that v1 is a blocked node and v0 does
not exist. Since we assume E is a series-parallel dag, the depth
of any spawn node u is always 1 less than the depth of its two
children. By Invariant 3, for all the unblocked nodes v2,v3, . . . ,vk

in the deque, we have d(ui) = d(vi)− 1. Similarly, for a blocked
node v1, the region predecessor u1 satisfies d(u1) = d(v1)− 1.
Invariant 6 implies that ui is a predecessor of ui−1 in E , and hence

1 In [2], depth and weight are defined in terms of an execution-dependent
enabling tree. We can use this simpler definition, because we are only
considering series-parallel computations.

d(vi−1) > d(vi) for all i = 2,3, . . . ,k. Converting from depth to
weight yields w(v1) < w(v2) < · · · < w(vk).

On the other hand, suppose that v0 does exist (and thus, q
contains only unblocked nodes). Applying the same logic to the
nodes on the deque as in the first case, we have d(vi−1) > d(vi) for
i = 2,3, . . . ,k. Invariant 7 implies that v0 is a successor of u1, and
thus we have d(v0) > d(u1) = d(v1)− 1, which implies d(v0) ≥
d(v1). Converting from depth to weight reverses the inequalities,
yielding w(v0) ≤ w(v1) < · · · < w(vk).

We now define the potential for nodes and extend it to deques
and regions.

DEFINITION 1. The potential of a node u ∈ E is

Φ(u) =

(

32w(u)−1 if u is assigned,

32w(u) if u is ready or blocked.

We extend the potential to deques as follows. Let q be a deque
belonging to worker p, and if q is active, let u be p’s assigned node.
Define the potential of q as

Φ(q) =

(

P

v∈q Φ(v) if q is inactive,

Φ(u)+
P

v∈q Φ(v) if q is active.

We extend the potential to a region A as follows:

Φ(A) =
X

q∈dqpool(A)

Φ(q) .

LEMMA 3. During a computation E , the potential Φ(A) of any re-

gion A ∈ regions(E) increases from 0 to 32τ∞(A)−1 when root(A)
becomes ready. At no other time does Φ(A) increase.

PROOF SKETCH. To prove the lemma, one can check all the
cases of the execution model. In general, actions that execute or
assign nodes within A affect only Φ(A), and by the proof given in
[2], these actions only decrease the potential. The most interesting
case that HELPER introduces is when a worker p with active
deque q = activeDQ(p) executes an (assigned) helper node u from
region A = region(q) (Cases 5 and 6). In these cases, the region
successor v of u is added to q as a blocked node. By definition
of the region successor, we have d(v) = d(u) + 1, and hence, the

potential decrease in region A is 32w(u)−1 − 32w(v) = 2 · 32w(v). In
Case 5, worker p assigns root(B) for the region B that was just

started, increasing Φ(B) to 32τ∞(B)−1. In Case 6, Φ(B) is unchanged
because p creates an empty deque for B.

Contributing Steals

To bound the number of contributing steals in a region A, we divide
steal attempts in A into rounds. The first round R1(A) in region
A begins when root(A) is assigned to some worker. A round
Rk(A) ends after at least P contributing steals in A have occurred
in the round, or when A ends. Any round can have at most 2P−1
contributing steals (if P steals occur in the last time step of the
round). Therefore, a round has O(P) contributing steal attempts in
region A. We say Rk+1(A) begins on the same time step of the next
contributing steal in A after Rk(A) has ended. A round in A may
have many entering steals and there may be gaps of time between
rounds.

First, we bound the number of rounds for a region A. At the
beginning of Rk(A), let Dk(A) be the sum of potentials of all
nonempty deques that are not exposed in A’s deque pool, and let
Ek(A) be the sum of potentials due to empty or exposed deques.
The potential of A at the beginning of round k can then be expressed
as Φk(A) = Dk(A)+Ek(A).

LEMMA 4. For any round Rk(A) of a region A ∈ regions(E), we
have

Pr{Φk(A)−Φk+1(A) ≥ Φk(A)/4} ≥ 1/4.

PROOF. We shall show that each of Dk(A) and Ek(A) decrease by
at least a factor of 1/4 with probability at least 1/4. The lemma
holds trivially for the last round of A, since the region completes.

Any deque that contributes potential to Dk(A) has, at the begin-
ning of the round, at least one node on top that can be stolen. By
definition, every round, except possibly the last round, has at least
P steal attempts. Thus, Lemma 8 from [2] allows us to conclude di-
rectly that Dk(A) decreases by a factor of 1/4 with probability 1/4.
Any entering steals that occur only reduce the potential further.

To show that Ek(A) reduces by at least 1/4, we use the definition
of rounds and contributing steals, which imply that on the first time
step of round k, region A has no exposed deques. Thus, any deque q
that contributes to Ek(A) must be empty. An empty deque q without
an assigned node contributes nothing to Ek(A). An empty deque q
with an assigned node u reduces q’s contribution to Ek(A) by more
than 1/4, since u is executed in the round’s first time step.

LEMMA 5. For any region A ∈ regions(E), the expected number
of rounds is O(τ∞(A)), and the number of rounds is O(τ∞(A) +
ln(1/ε)) with probability at least 1− ε.

PROOF. The proof is analogous to Theorem 9 in [2]. Call round
k successful if Φk(A) − Φk+1(A) ≥ Φk(A)/4, i.e., the poten-
tial decreases by at least a 1/4 fraction. Lemma 4 implies that
Pr{Φk+1(A) ≤ 3Φk(A)/4} ≥ 1/4, i.e., a round is successful with

probability at least 1/4. The potential for region A starts at 32τ∞(A)−1,
ends at 0, and is always an integer. Thus, a region A can have at
most 8τ∞(A) successful rounds. Consequently, the expected num-
ber of rounds needed to finish A is at most 32τ∞(A). For the high
probability bound, one can use Chernoff bounds as in [2].

Entering Steals

To bound the number of entering steals, we require some defini-
tions. Intuitively, we divide the entering steals for a particular re-
gion A into “intervals”, and subdivide intervals into “phases”. For
every region A, we divide the time steps when A is active into en-
tering intervals, which are separated by leaving steps for child re-
gions B. More precisely, entering interval 1 for A, denoted I1(A),
begins with the first entering steal in A and ends with the next leav-
ing step belonging to any region B such that (A,B) is an edge in the
region graph for E , or if A completes. Similarly, Ik(A) begins with
the first entering steal in A after Ik−1(A) completes.

We also subdivide an interval Ik(A) into entering phases, sep-
arated by successful entering steals in A. In general, phase j of
Ik(A), denoted Ik, j(A), begins with the first entering steal of Ik(A)
after phase j−1 and ends with the next successful entering steal, or
at the end of Ik(A). 2 We say that a phase Ik, j(A) has rank j. Define
an entering phase as complete if it ends with a successful entering
steal. Every interval has at most one incomplete phase (the last).

Intuitively, entering intervals and phases are constructed so that
during an interval for A, the number of exposed deques only in-
creases, and the probability of a successful entering steal increases
with the rank of the current phase.

LEMMA 6. For any entering interval Ik(A) for a region A ∈
regions(E),

2 Note that the end of Ik(A) and the beginning of Ik+1(A) occur on different
time steps, but the end of phase j and beginning of phase j + 1 within an
interval can occur within the same time step. If multiple workers try to steal
from the same exposed deque in a time step, they all succeed, and multiple
entering phases end in that time step.

1. interval Ik(A) has at most P−1 phases; and

2. during any phase of rank j, the probability that a given steal
attempt succeeds is at least j/P.

PROOF. At the beginning of the interval, there is at least one
exposed deque in A, and therefore, at least one worker has moved
from A to some child region of A. Every complete phase ends with
a successful entering steal and a successful entering steal causes
a worker to move from A to some child region. Therefore, after j
phases, at least j + 1 workers have moved to some child region.
Moreover, an interval Ik(A) ends with any leaving step for any
child region of A. Therefore, no worker re-enters region A from its
child region during an interval. Due to these two facts, after P−1
complete phases, no processors are working in region A and there
can be no more entering steals. On the other hand, if the last phase is
incomplete, then the number of complete phases is less than P−1.
In either case, the interval has at most P−1 phases.

No exposed deque is eliminated during an interval since no
processor reenters A and thus, the number of exposed deques in A
never decreases. At the beginning of Ik,1(A), the first phase of every
interval, A has at least one exposed deque. Therefore, during phase
1, the probability of any entering steal succeeding is at least 1/P.
As we argued above, after j−1 phases complete, at least j workers
have entered a child region and each of these workers leave behind
an exposed deque in region A (since their deque dq(p,A) is empty).

Hence in phase j, interval Ik, j(A) has at least j exposed deques3 and
the probability of hitting one of these exposed deques on any steal
attempt is at least j/P.

LEMMA 7. Let E be a computation executed on P processors
whose region graph has V regions and E edges, and let rm be
the number of phases of rank m. The following hold:

1. V −1 ≤ E ≤ PV .

2. The number of entering intervals over all regions is at most E.

3. E ≥ r1 ≥ r2 · · · ≥ rP−1.

4. The total number of complete entering phases over all regions
is at most V (P− 1). The total number of incomplete entering
phases is at most E.

5. For any integer K ≥ r1, let α(K) = ⌈
PP−1

j=1 r j/K⌉. Then, for any

nonincreasing function f , we have

P−1
X

j=1

r j f (j) ≤ K

α(K)
X

j=1

f (j).

PROOF. (1) Since only P workers total can enter a region B, and
in the worst case each worker enters along a different edge, every
region B can have in-degree at most P, and thus we have E ≤ PV .
Moreover, every region except E also has in-degree at least 1,
which implies that V −1 ≤ E.

(2) For any region A, let dA be the out-degree of A in the region
graph for E . Intervals for region A end only when some child B
completes and takes a leaving step. Also, the time after the leaving
step for the last child region B does not form an interval because
there can be no more entering steals in A. Thus, A has at most
dA intervals. Summing over all regions, we can have at most E
intervals total.

(3) By construction, every interval can have at most one phase
of a given rank m, and thus we have E ≥ r1. Also, an interval can

3 Phase j might have more than j such deques, since help_region calls
into A or steals within A can exposes new deques.

have a phase of rank m +1 only if it has a phase of rank m, which
implies rm ≥ rm+1.

(4) Every complete entering phase has a successful entering
steal. We can have at most P−1 successful entering steals for each
region A, since one worker enters the region when A is started and
at most P−1 can enter through stealing. Every interval can have at
most 1 incomplete phase.

(5) The quantity
PP−1

j=1 r j f (j) can be viewed as the sum of

entries in a E by P− 1 grid, where row z contains phases for the
zth interval, the jth column corresponds to phases of rank j, and
entry (z, j) has value f (j) if interval z has a phase of rank j, or
0 otherwise. This grid contains at most r j nonzero entries in each
column, and

P

j r j entries total. Since the function f (j) and r j are
both nonincreasing and K ≥ r1, conceptually, by moving entries
left into smaller columns, we can compress the nonzero entries
of the grid into a compact K by α(K) = ⌈

P

j r j/K⌉ grid without

decreasing the sum. The value of the compact grid is an upper
bound for the value of the original grid. The compact grid has
at most α(K) columns, with each column j having value at most
K f (j), giving the desired bound.

We can now bound the expected number of entering steals.

THEOREM 8. For a computation E executed on P processors
whose region graph has V regions and E edges, the expected num-
ber of entering steal attempts is O(PE ln(1+PV/E)).

PROOF. Suppose that E requires rm phases of rank m. Number
the intervals of E arbitrarily, and let Q(z, j) be the random variable
for the number of entering steals in phase j of the zth interval, or
0 if the interval or phase does not exist. By Lemma 7, there can be
at most E intervals. Thus, the total number Q of entering steals is
given by

Q =
E

X

z=1

P−1
X

j=1

Q(z, j).

Lemma 6 implies that E[Q(z, j)] ≤ P/ j, since each entering
steal in the phase succeeds with probability at least j/P. Thus,
linearity of expectation gives us

E[Q] =
E

X

z=1

P−1
X

j=1

E[Q(z, j)] ≤
E

X

z=1

P−1
X

j=1

P

j
=

P−1
X

j=1

r j

„

P

j

«

. (3)

We can apply Fact 5 of Lemma 7 with K = E and f (j) = 1/ j,
since E ≥ r1. Then, we have α(K) = ⌈

P

j r j/E⌉ ≤ 1 + ⌈PV/E⌉,

since
P

j r j is the total number of phases, which is bounded by

(P−1)V +E. Thus, we have

E[Q] ≤ PE

α(K)
X

j=1

1

j
= PEHα(K) ,

where Hn =
Pn

i=1 1/i = O(lnn) is the nth harmonic number, which
completes the proof.

We can also bound the number of entering steals with high
probability.

THEOREM 9. For a computation E executed on P processors
whose region graph has V regions and E edges, the number of en-

tering steal attempts is O
`

PE ln(1+PV/E)+P ln2 P+P ln(1/ε)
´

with probability at least 1− ε.

PROOF SKETCH. Let r j be the number of phases of rank j in E .
One can bound the number of entering steals as a function of
the r j . Divide the entering steals into ⌈lgP⌉ classes of entering
steals, where any entering steal in a phase of rank j is assigned

to class m = ⌊lg j⌋+ 1. Let Rm =
P2m−1

j=2m−1 r j be the number of

phases in class m. By Lemma 6, each class-m entering steal suc-
ceeds with probability β ≥ 2m−1/P. Thus, one can use Chernoff
bounds to show the probability of having more than O(PRm/2m +
P ln(⌈lg(P)⌉/ε)/2m) class-m steals is less than ε/⌈lgP⌉. Union-
bound over all classes to obtain the final bound.

Bounding Completion Time

We can now bound the completion time of a computation.

THEOREM 10. Let E be a computation executed on P workers,
let V be the number of regions in E , and let E be the number of
edges in E’s region graph. If E has work T1 and aggregate span
eT∞, then HELPER completes E in expected time O(T1/P + eT∞ +
E ln(1 + PV/E)). Moreover, for any ε > 0, the completion time is

O(T1/P+ eT∞ +E ln(1+PV/E)+ ln2 P+ lg(1/ε)) with probability
at least 1− ε.

PROOF. On every time step, each of the P processors is working,
entering, leaving, or stealing. Executing a computation requires
exactly T1 work steps. The number of entering steps and leaving
steps is at most O(PV lgP), since every worker waits at most O(V)
times (at most once for entering and leaving every region A), and
each worker spends only O(lgP) waiting each time.

To bound the number of steals, by Lemma 4, we expect O(PeT∞)
contributing steals, and by Theorem 8, we have O(E ln(1+PV/E))
entering steals. Finally, the number of leaving steals is bounded
by P times the number of time steps that any worker spends on a
leaving step. Thus, we have only O(PV lgP) leaving steals.

Since P workers are active on every step, adding up the bounds
on all the steps and dividing by P gives us the expectation bound.
To obtain a high-probability bound, we choose ε′ = ε/2 for both
Lemma 4 and Theorem 9, and then union-bound over the two cases.

Time Bound with Short Acquires

We now add the contention on short acquires into the analysis. It is
difficult to prove interesting bounds for computations with regular
locks. Since short acquires of helper locks are no different than
regular lock acquires (a program with only short acquires behaves
in exactly the same way as a program with regular (non-helper)
locks), this difficulty in proving bounds extends to short acquires.
Here, we present a simple bound for completeness.

As defined in Section 4, the bondage b of a computation E rep-
resents the amount of computation within critical sections protected
by short acquires. In HELPER, when a worker p holds a helper lock
L and another worker p′ blocks trying to acquire L, worker p′ waits.
In this case, we say that p′ takes a waiting step.

LEMMA 11. For a computation E with bondage b executed on
P processors, the total number of waiting steps (due to short ac-
quires) is at most Pb.

PROOF. When any worker takes a waiting step, there exists a p
holding a lock L and executing some node in a critical section
protected by a short acquire. Therefore, the remaining bondage
decreases by at least 1 during that time step. In the worst case, all
P−1 other workers might be taking waiting steps during that time
step, all waiting on lock L.

Adding in waiting steps for each worker, the completion time
bound with short acquires adds the bondage b to the bound in
Theorem 10.

Space

The following theorem bounds stack space usage.

THEOREM 12. For a computation E , let S1(A) be serial stack

space required to execute a region A ∈ regions(E), and let eS1 =

P

A∈regions(E) S1(A). Then, HELPER executes E on P processors

using at most O(PeS1) space.

PROOF. At any point fixed in time, consider the tree T of active
stack frames for the computation E . For any region A, let TA be the
subset of T which consists of only frames which belong to A.

The only time a worker p stops working on its current active
frame f in region A without completing f is if p enters a new
region B. Also, a worker p can only enter a region A once. Using
these two facts, one can show that the set TA is, in actuality, a tree
with at most k leaves, where k is the number of workers which
have entered A. This fact is a generalization of the busy-leaves
property from [4] applied only to nodes of the specific region A.
Thus, A uses at most O(kS1(A)) stack space for TA. In the worst
case, all P workers enter every region A ∈ regions(E), and we
must sum the space over all regions, giving us a space usage of
eS1 =

P

A∈regions(E) S1(A) .

7. PROTOTYPE IMPLEMENTATION

This section describes the HELPER prototype, which we created
by modifying Cilk [6]. In this section, we discuss how we imple-
ment deque chains and deque pools, the two major additions that
HELPER makes to the Cilk runtime.

Deque Chains

To implement parallel regions, we must conceptually maintain a
chain of deques for each worker p. In ordinary Cilk, each deque is
represented by pointers into a shadow stack, a per-worker stack
which stores frames corresponding to Cilk functions. HELPER
maintains the entire deque chain for a worker on that worker’s
shadow stack.

Normally, Cilk uses the THE protocol described in [6] to man-
age deques. Each deque consists of three pointers that point to slots
in the shadow stack. The tail pointer T points to the first empty
slot in the stack. When a worker pushes and pops frames onto its
own deque, it modifies T . The head pointer H points to the frame
at the top of the deque. When other workers steal from this deque,
they remove the frame pointed to by H and decrement H. Finally,
the exception pointer E represents the point in the deque above
which the worker should not pop. If a worker working on the tail
end encounters E > T , some exceptional condition has occurred,
and control returns to the Cilk runtime system.

In order to avoid the overhead of allocating and deallocating
shadow stacks at runtime, HELPER maintains the entire chain of
deques for a given worker p on the same shadow stack, as shown
in Figure 5. Each deque for a given worker p maintains its own
THE pointers, but all point into the same shadow stack. When a
worker enters a region, it only needs to create the THE pointers
for a new deque and set all these pointers equal to the to the tail
pointer for the parent deque in the shadow stack. The correctness
of this implementation relies on the property that two deques in the
same shadow stack (for a worker p) can not grow and interfere
with each other. This property holds for two reasons. First, in
HELPER every worker p works locally only on its bottom active
deque activeDQ(p), and thus, only the tail pointer T of the active
deque at the bottom of the chain can grow downward. Second, for
any deque, the head H never grows upward, since H only changes
when steals remove frames.

Figure 5 shows an example arrangement of a deque chain on a
worker p’s stack. In this example, no worker has stolen any frames
from region B, whereas two frames have been stolen from region C.
The deque dq(p,E) is empty, and activeDQ(p) = dq(p,F).

!"

#"

$"

%"

&"

'"

("

)"

%!"

%#"

%$"

!"

!"

!"

exc!

base!

tail!

head!

exc!

base!

tail!

head!

exc!

base!

tail!

head!

exc!

base!

tail!

head!

exc!

base!

tail!

head!

A

B

C

F

E!

dq(p,A)!

dq(p,B)!

dq(p,E)!

dq(p,F)!

dq(p,C)!

Figure 5. A chain of deques for a given worker p. Each deque
dq(p,A) consists of pointers (tail, head, and exception) into p’s
stack of Cilk frames. For clarity, we show a pointer for the base of
each deque q, although in practice, q’s base always equals the tail
pointer of q’s parent deque.

Implementation of Deque Pools

The HELPER prototype implements a deque pool as a single array
of deques (i.e., THE pointers). An array of P slots is statically allo-
cated when the user creates a helper lock. When a region is active,
one or more slots of this array are occupied by workers. Instead of
dedicating a slot for every worker p as described in Section 3, how-
ever, our prototype maintains a packed array. If k workers are as-
signed to a region, the first k slots of the deque-pool array contains
those workers. It also maintains a shared counter to track whether
the pool is empty. Theoretically, with this packed array implemen-
tation, each worker p might spend Θ(P) time entering and leaving
(as opposed to O(lgP) with the sparse array described in Section 3),
if there is worst-case contention and p waits for all other work-
ers. The contention is unlikely to be this bad in practice, however.
Moreover, even with worst-case contention, using this scheme does
not change the worst-case theoretical bounds. The bound remains
the same as when E = PV, and the space bound is not affected.
Also, with this scheme, workers may spend less time finding work
in practice, because if work is available to be stolen, each steal suc-
ceeds with probability at least 1/k, instead of 1/P.

8. EXPERIMENTAL RESULTS

This section presents a small experimental study of an implemen-
tation of a resizable hash table using the HELPER prototype. Al-
though the hash-table implementation is not optimized, these re-
sults suggest that HELPER is not merely a theoretical construct
and that a practical and efficient implementation of HELPER may
well be feasible.

Hash-Table Implementation

The resizable hash table maintains an array of pointers for hash
buckets, where each bucket is implemented as a linked list. The
table supports search and an atomic insert_if_absent function.
A search or insertion locks the appropriate bucket in the table.
When an insertion causes the chain in a bucket to overflow beyond
a certain threshold, it atomically increments a global counter for
the table. When more than a constant fraction of the buckets have
overflowed, the insertion triggers a resize operation.

The resize operation sets a flag to indicate that a resize operation
is in progress. It then acquires all the bucket locks, scans the buckets
to compute the current size of the table, doubles the size of the table
until the density of the table is below a certain threshold, allocates

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

S
pe

ed
up

P

10 Million Random Insertions

Serial Resize, Initial Size = 10 Million Buckets
Helper Locks, Initial Size = 10 Million Buckets

Helper Locks, Initial Size = 10 Buckets
Serial Resize, Initial Size = 10 Buckets

Figure 6. Results from an experiment inserting n = 107 random
keys into a concurrent resizable hash table. Speedup is normalized
to the runtime of the hash table with the same initial size and serial
resize for P = 1. For tables with initial size of 10 and n buckets,
the runtime was 8.66 s and 3.60 s, respectively. Each data point
represents the average of 5 runs with the same parameters. This
experiment was run on a two-socket quad-core (3.16-GHz Intel
Xeon X5460) machine with 8 GB RAM.

a new array for buckets, and rehashes the elements from the old
buckets into new buckets. We parallelized the lock acquires, the
size computation, and the insertions into the new table.

We implemented two flavors of the hash table. The first flavor
performs the resize operation serially, and the second spawns the
resize operation as a parallel region protected by a resize region
helper lock. Each bucket lock functions as a short helper lock linked
to this resize lock. If the resize lock is held, then an attempt by a
worker to acquire a bucket lock causes the worker to help resize.

Our benchmark performs n insert_if_absent operations on
the hash table by spawning 20 functions, with each function per-
forming n/20 inserts serially.4 Keys are chosen uniformly at ran-
dom based on a deterministic seed chosen for each of the 20 func-
tions. Since each key k is random, the benchmark uses the simple
hash function of taking k modulo the number of buckets in the hash
table.

Experimental Results

Figure 6 shows results from performing insertions into the resizable
hash table. We ran two versions of the experiment: one that contains
no resize operations and one that does. In both experiments, the
number of insertions was n = 107.

In the first experiment, the table began with 107 buckets, and
thus, with 107 insertions, no resize operations were triggered. In
this experiment, the implementations with both serial and parallel
resize were comparable, and both provided a speedup of about 3.5
on 8 processors. These results indicate that the overhead of using
a helper lock in this application is relatively small. In the second
experiment, the table began with 10 buckets, and the table size
repeatedly doubled on resizes. In this case, the implementation that
uses a parallel resize operation with helper locks provided speedup

4 The number 20 was chosen arbitrarily to be a number larger than P.

of about 3. In contrast, the implementation that used the serial
resize provided speedup of at most 2. This experiment suggests
helper locks have potential utility.

The plots in Figure 6 for the two experiments (107 versus 10
buckets) should not be directly compared to each other. The serial
table that does not resize ran about 2.4 times faster than the serial
hash table that does resize. This additional factor is approximately
consistent with the amortized cost of table doubling. Theoretically,
every insertion into a resizable table pays about 3 times the cost
of a normal insertion: once for the original insertion, once to move
the item when the table is expanded, and once to move another item
that has already been moved once.

Our current hash-table implementation does not appear to scale
beyond 4 processors, even when no resizes occur. Thus, additional
work is needed to improve scalability in this benchmark. In prac-
tice, one hopes that a program exhibits a more realistic and scalable
mix of concurrent operations (i.e., a combination of searches and
insertions). Our primary goal for the benchmark, however, was to
test and evaluate the feasibility of the HELPER prototype, and thus,
we tried to trigger resize operations as often as possible.

9. CONCLUSION

We conclude by briefly reviewing some related work and dis-
cussing future research directions.

OpenMP uses a parallel construct to support nested par-
allelism [11]. HELPER exhibits some similarities to the imple-
mentation of this construct, although the design goals differ. For
convenience in implementation, in the HELPER prototype, as in
OpenMP, every parallel region has one (worker) thread which is
the first to enter the region and which is guaranteed to resume exe-
cution after the region completes. Unlike in OpenMP, however, the
number of workers is not fixed when a region begins. Additional
workers can enter the region, either through random work stealing
or because they are blocked on the lock for the region.

Cooperative techniques, where one thread helps another thread
complete its work, have previously been proposed in a variety of
contexts. In the context of nonblocking algorithms, researchers
[3, 8, 13] describe algorithms where threads cooperate to complete
an operation when they would otherwise block for synchronization.
In the area of databases, Lim, Ahn, and Kim [10] describe a concur-
rent Blink tree algorithm which uses cooperative locking to handle
nodes with concurrent underflow.

Both our implementation and experimental results can be im-
proved to provide a more thorough evaluation of HELPER. For ex-
ample, one avenue for future work is to implement a more sophis-
ticated hash table using helper locks for resizing and to compare
it to other optimized concurrent hash-table implementations. Most
concurrent hash tables (e.g., hopscotch hashing by Herlihy, Shavit
and Tzafrir [7]) are optimized for the case when most operations
are queries. It would be interesting to explore whether one can ef-
ficiently parallelize resize operations using helper locks for times
when updates are frequent without affecting the performance in the
common case where queries dominate. Also, we would like to iden-
tify applications which might benefit from helper locks and bench-
mark these applications on an improved prototype of HELPER.

It appears to be difficult to improve the theoretical guarantees on
completion time when programs can use helper locks and parallel
regions arbitrarily. It would be interesting to see if real applications
might use helper locks in a more restricted fashion, possibly allow-
ing us to prove a stronger bound on completion time.

We plan to explore other applications of parallel regions. In our
design, parallel regions have their own deque pool and are sched-

uled independently of other parts of the computation. Therefore,
they could be used for purposes other than helper locks. For exam-
ple, one might conceivably allow different regions to operate under
different (specifically tailored) scheduling policies. Alternatively,
one might design a more locality-aware runtime system, for exam-
ple, by assigning workers that share a cache to the same region so
that they are more likely to steal work from each other.

Acknowledgments

We would like to thank I-Ting Angelina Lee for helpful comments
and discussions.

References

[1] E. Allen, D. Chase, J. Hallett, V. Luchango, J.-W. Maessen, S. Ryu,
G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress language spec-
ification, version 1.0. Technical report, Sun Microsystems, Inc.,
March 2008. URL http://research.sun.com/projects/plrg/
Publications/fortress.1.0.pdf.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling
for multiprogrammed multiprocessors. In Proceedings of the ACM

Symposium on Parallel Algorithms and Architectures, pages 119–129,
Puerto Vallarta, Mexico, 1998.

[3] G. Barnes. A method for implementing lock-free shared-data struc-
tures. In SPAA ’93: Proceedings of the Fifth Annual ACM Symposium

on Parallel Algorithms and Architectures, pages 261–270, New York,
NY, USA, 1993. ACM. ISBN 0-89791-599-2.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. Journal of the ACM, 46(5):720–748, 1999.

[5] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: an experimental lan-
guage for high productivity programming of scalable systems. In Pro-

ceedings of the Second Workshop on Productivity and Performance in

High-End Computing (PPHEC-05), Feb. 2005. Held in conjunction
with the Eleventh Symposium on High Performance Computer Archi-
tecture.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 212–223, 1998.

[7] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing. In
DISC ’08: Proceedings of the 22nd International Symposium on

Distributed Computing, pages 350–364, Berlin, Heidelberg, 2008.
Springer-Verlag.

[8] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations
of strong shared memory primitives. In PODC ’94: Proceedings of

the Thirteenth Annual ACM Symposium on Principles of Distributed

Computing, pages 151–160, New York, NY, USA, 1994. ACM.

[9] C. E. Leiserson. The Cilk++ concurrency platform. In DAC ’09:

Proceedings of the 46th Annual Design Automation Conference, pages
522–527, New York, NY, 2009. ACM.

[10] S.-C. Lim, J. Ahn, and M. H. Kim. A concurrent Blink-tree algorithm
using a cooperative locking protocol. In Lecture Notes in Computer

Science, volume 2712, pages 253–260. Springer Berlin / Heidelberg,
2003.

[11] OpenMP Architecture Review Board. OpenMP application program
interface, version 3.0. http://www.openmp.org/mp-documents/
spec30.pdf, May 2008.

[12] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for

Multi-Core Processor Parallelism. O’Reilly, 2007.

[13] J. Turek, D. Shasha, and S. Prakash. Locking without blocking:
making lock based concurrent data structure algorithms nonblocking.
In PODS ’92: Proceedings of the Eleventh ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pages 212–
222, New York, NY, USA, 1992. ACM.

